/* ==================================================================== * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA256) #include #include #include #include #include #include "modes_lcl.h" #ifndef EVP_CIPH_FLAG_AEAD_CIPHER #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000 #define EVP_CTRL_AEAD_TLS1_AAD 0x16 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17 #endif #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1) #define EVP_CIPH_FLAG_DEFAULT_ASN1 0 #endif #if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) #define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0 #endif #define TLS1_1_VERSION 0x0302 typedef struct { AES_KEY ks; SHA256_CTX head,tail,md; size_t payload_length; /* AAD length in decrypt case */ union { unsigned int tls_ver; unsigned char tls_aad[16]; /* 13 used */ } aux; } EVP_AES_HMAC_SHA256; #define NO_PAYLOAD_LENGTH ((size_t)-1) #if defined(AES_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) extern unsigned int OPENSSL_ia32cap_P[3]; #define AESNI_CAPABLE (1<<(57-32)) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); int aesni_cbc_sha256_enc (const void *inp, void *out, size_t blocks, const AES_KEY *key, unsigned char iv[16], SHA256_CTX *ctx,const void *in0); #define data(ctx) ((EVP_AES_HMAC_SHA256 *)(ctx)->cipher_data) static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_AES_HMAC_SHA256 *key = data(ctx); int ret; if (enc) memset(&key->ks,0,sizeof(key->ks.rd_key)), ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks); else ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks); SHA256_Init(&key->head); /* handy when benchmarking */ key->tail = key->head; key->md = key->head; key->payload_length = NO_PAYLOAD_LENGTH; return ret<0?0:1; } #define STITCHED_CALL #if !defined(STITCHED_CALL) #define aes_off 0 #endif void sha256_block_data_order (void *c,const void *p,size_t len); static void sha256_update(SHA256_CTX *c,const void *data,size_t len) { const unsigned char *ptr = data; size_t res; if ((res = c->num)) { res = SHA256_CBLOCK-res; if (lenNh += len>>29; c->Nl += len<<=3; if (c->Nl<(unsigned int)len) c->Nh++; } if (res) SHA256_Update(c,ptr,res); } #ifdef SHA256_Update #undef SHA256_Update #endif #define SHA256_Update sha256_update #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK typedef struct { unsigned int A[8],B[8],C[8],D[8],E[8],F[8],G[8],H[8]; } SHA256_MB_CTX; typedef struct { const unsigned char *ptr; int blocks; } HASH_DESC; void sha256_multi_block(SHA256_MB_CTX *,const HASH_DESC *,int); typedef struct { const unsigned char *inp; unsigned char *out; int blocks; u64 iv[2]; } CIPH_DESC; void aesni_multi_cbc_encrypt(CIPH_DESC *,void *,int); static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key, unsigned char *out, const unsigned char *inp, size_t inp_len, int n4x) /* n4x is 1 or 2 */ { HASH_DESC hash_d[8], edges[8]; CIPH_DESC ciph_d[8]; unsigned char storage[sizeof(SHA256_MB_CTX)+32]; union { u64 q[16]; u32 d[32]; u8 c[128]; } blocks[8]; SHA256_MB_CTX *ctx; unsigned int frag, last, packlen, i, x4=4*n4x, minblocks, processed=0; size_t ret = 0; u8 *IVs; #if defined(BSWAP8) u64 seqnum; #endif if (RAND_bytes((IVs=blocks[0].c),16*x4)<=0) /* ask for IVs in bulk */ return 0; ctx = (SHA256_MB_CTX *)(storage+32-((size_t)storage%32)); /* align */ frag = (unsigned int)inp_len>>(1+n4x); last = (unsigned int)inp_len+frag-(frag<<(1+n4x)); if (last>frag && ((last+13+9)%64)<(x4-1)) { frag++; last -= x4-1; } packlen = 5+16+((frag+32+16)&-16); /* populate descriptors with pointers and IVs */ hash_d[0].ptr = inp; ciph_d[0].inp = inp; ciph_d[0].out = out+5+16; /* 5+16 is place for header and explicit IV */ memcpy(ciph_d[0].out-16,IVs,16); memcpy(ciph_d[0].iv,IVs,16); IVs += 16; for (i=1;imd.data,8); seqnum = BSWAP8(blocks[0].q[0]); #endif for (i=0;iA[i] = key->md.h[0]; ctx->B[i] = key->md.h[1]; ctx->C[i] = key->md.h[2]; ctx->D[i] = key->md.h[3]; ctx->E[i] = key->md.h[4]; ctx->F[i] = key->md.h[5]; ctx->G[i] = key->md.h[6]; ctx->H[i] = key->md.h[7]; /* fix seqnum */ #if defined(BSWAP8) blocks[i].q[0] = BSWAP8(seqnum+i); #else for (carry=i,j=8;j--;) { blocks[i].c[j] = ((u8*)key->md.data)[j]+carry; carry = (blocks[i].c[j]-carry)>>(sizeof(carry)*8-1); } #endif blocks[i].c[8] = ((u8*)key->md.data)[8]; blocks[i].c[9] = ((u8*)key->md.data)[9]; blocks[i].c[10] = ((u8*)key->md.data)[10]; /* fix length */ blocks[i].c[11] = (u8)(len>>8); blocks[i].c[12] = (u8)(len); memcpy(blocks[i].c+13,hash_d[i].ptr,64-13); hash_d[i].ptr += 64-13; hash_d[i].blocks = (len-(64-13))/64; edges[i].ptr = blocks[i].c; edges[i].blocks = 1; } /* hash 13-byte headers and first 64-13 bytes of inputs */ sha256_multi_block(ctx,edges,n4x); /* hash bulk inputs */ #define MAXCHUNKSIZE 2048 #if MAXCHUNKSIZE%64 #error "MAXCHUNKSIZE is not divisible by 64" #elif MAXCHUNKSIZE /* goal is to minimize pressure on L1 cache by moving * in shorter steps, so that hashed data is still in * the cache by the time we encrypt it */ minblocks = ((frag<=last ? frag : last)-(64-13))/64; if (minblocks>MAXCHUNKSIZE/64) { for (i=0;iks,n4x); for (i=0;iMAXCHUNKSIZE/64); } #endif #undef MAXCHUNKSIZE sha256_multi_block(ctx,hash_d,n4x); memset(blocks,0,sizeof(blocks)); for (i=0;iA[i]); ctx->A[i] = key->tail.h[0]; PUTU32(blocks[i].c+4,ctx->B[i]); ctx->B[i] = key->tail.h[1]; PUTU32(blocks[i].c+8,ctx->C[i]); ctx->C[i] = key->tail.h[2]; PUTU32(blocks[i].c+12,ctx->D[i]); ctx->D[i] = key->tail.h[3]; PUTU32(blocks[i].c+16,ctx->E[i]); ctx->E[i] = key->tail.h[4]; PUTU32(blocks[i].c+20,ctx->F[i]); ctx->F[i] = key->tail.h[5]; PUTU32(blocks[i].c+24,ctx->G[i]); ctx->G[i] = key->tail.h[6]; PUTU32(blocks[i].c+28,ctx->H[i]); ctx->H[i] = key->tail.h[7]; blocks[i].c[32] = 0x80; PUTU32(blocks[i].c+60,(64+32)*8); edges[i].ptr = blocks[i].c; edges[i].blocks = 1; } /* finalize MACs */ sha256_multi_block(ctx,edges,n4x); for (i=0;iA[i]); PUTU32(out+4,ctx->B[i]); PUTU32(out+8,ctx->C[i]); PUTU32(out+12,ctx->D[i]); PUTU32(out+16,ctx->E[i]); PUTU32(out+20,ctx->F[i]); PUTU32(out+24,ctx->G[i]); PUTU32(out+28,ctx->H[i]); out += 32; len += 32; /* pad */ pad = 15-len%16; for (j=0;j<=pad;j++) *(out++) = pad; len += pad+1; ciph_d[i].blocks = (len-processed)/16; len += 16; /* account for explicit iv */ /* arrange header */ out0[0] = ((u8*)key->md.data)[8]; out0[1] = ((u8*)key->md.data)[9]; out0[2] = ((u8*)key->md.data)[10]; out0[3] = (u8)(len>>8); out0[4] = (u8)(len); ret += len+5; inp += frag; } aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x); OPENSSL_cleanse(blocks,sizeof(blocks)); OPENSSL_cleanse(ctx,sizeof(*ctx)); return ret; } #endif static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_HMAC_SHA256 *key = data(ctx); unsigned int l; size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and later */ sha_off = 0; #if defined(STITCHED_CALL) size_t aes_off = 0, blocks; sha_off = SHA256_CBLOCK-key->md.num; #endif key->payload_length = NO_PAYLOAD_LENGTH; if (len%AES_BLOCK_SIZE) return 0; if (ctx->encrypt) { if (plen==NO_PAYLOAD_LENGTH) plen = len; else if (len!=((plen+SHA256_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)) return 0; else if (key->aux.tls_ver >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; #if defined(STITCHED_CALL) if (OPENSSL_ia32cap_P[1]&(1<<(60-32)) && /* AVX? */ plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA256_CBLOCK)) { SHA256_Update(&key->md,in+iv,sha_off); (void)aesni_cbc_sha256_enc(in,out,blocks,&key->ks, ctx->iv,&key->md,in+iv+sha_off); blocks *= SHA256_CBLOCK; aes_off += blocks; sha_off += blocks; key->md.Nh += blocks>>29; key->md.Nl += blocks<<=3; if (key->md.Nl<(unsigned int)blocks) key->md.Nh++; } else { sha_off = 0; } #endif sha_off += iv; SHA256_Update(&key->md,in+sha_off,plen-sha_off); if (plen!=len) { /* "TLS" mode of operation */ if (in!=out) memcpy(out+aes_off,in+aes_off,plen-aes_off); /* calculate HMAC and append it to payload */ SHA256_Final(out+plen,&key->md); key->md = key->tail; SHA256_Update(&key->md,out+plen,SHA256_DIGEST_LENGTH); SHA256_Final(out+plen,&key->md); /* pad the payload|hmac */ plen += SHA256_DIGEST_LENGTH; for (l=len-plen-1;plenks,ctx->iv,1); } else { aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off, &key->ks,ctx->iv,1); } } else { union { unsigned int u[SHA256_DIGEST_LENGTH/sizeof(unsigned int)]; unsigned char c[64+SHA256_DIGEST_LENGTH]; } mac, *pmac; /* arrange cache line alignment */ pmac = (void *)(((size_t)mac.c+63)&((size_t)0-64)); /* decrypt HMAC|padding at once */ aesni_cbc_encrypt(in,out,len, &key->ks,ctx->iv,0); if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ size_t inp_len, mask, j, i; unsigned int res, maxpad, pad, bitlen; int ret = 1; union { unsigned int u[SHA_LBLOCK]; unsigned char c[SHA256_CBLOCK]; } *data = (void *)key->md.data; if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3]) >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; if (len<(iv+SHA256_DIGEST_LENGTH+1)) return 0; /* omit explicit iv */ out += iv; len -= iv; /* figure out payload length */ pad = out[len-1]; maxpad = len-(SHA256_DIGEST_LENGTH+1); maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8); maxpad &= 255; inp_len = len - (SHA256_DIGEST_LENGTH+pad+1); mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1))); inp_len &= mask; ret &= (int)mask; key->aux.tls_aad[plen-2] = inp_len>>8; key->aux.tls_aad[plen-1] = inp_len; /* calculate HMAC */ key->md = key->head; SHA256_Update(&key->md,key->aux.tls_aad,plen); #if 1 len -= SHA256_DIGEST_LENGTH; /* amend mac */ if (len>=(256+SHA256_CBLOCK)) { j = (len-(256+SHA256_CBLOCK))&(0-SHA256_CBLOCK); j += SHA256_CBLOCK-key->md.num; SHA256_Update(&key->md,out,j); out += j; len -= j; inp_len -= j; } /* but pretend as if we hashed padded payload */ bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bits */ #ifdef BSWAP4 bitlen = BSWAP4(bitlen); #else mac.c[0] = 0; mac.c[1] = (unsigned char)(bitlen>>16); mac.c[2] = (unsigned char)(bitlen>>8); mac.c[3] = (unsigned char)bitlen; bitlen = mac.u[0]; #endif pmac->u[0]=0; pmac->u[1]=0; pmac->u[2]=0; pmac->u[3]=0; pmac->u[4]=0; pmac->u[5]=0; pmac->u[6]=0; pmac->u[7]=0; for (res=key->md.num, j=0;j>(sizeof(j)*8-8); c &= mask; c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8)); data->c[res++]=(unsigned char)c; if (res!=SHA256_CBLOCK) continue; /* j is not incremented yet */ mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1)); data->u[SHA_LBLOCK-1] |= bitlen&mask; sha256_block_data_order(&key->md,data,1); mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1)); pmac->u[0] |= key->md.h[0] & mask; pmac->u[1] |= key->md.h[1] & mask; pmac->u[2] |= key->md.h[2] & mask; pmac->u[3] |= key->md.h[3] & mask; pmac->u[4] |= key->md.h[4] & mask; pmac->u[5] |= key->md.h[5] & mask; pmac->u[6] |= key->md.h[6] & mask; pmac->u[7] |= key->md.h[7] & mask; res=0; } for(i=res;ic[i]=0; if (res>SHA256_CBLOCK-8) { mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1)); data->u[SHA_LBLOCK-1] |= bitlen&mask; sha256_block_data_order(&key->md,data,1); mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1)); pmac->u[0] |= key->md.h[0] & mask; pmac->u[1] |= key->md.h[1] & mask; pmac->u[2] |= key->md.h[2] & mask; pmac->u[3] |= key->md.h[3] & mask; pmac->u[4] |= key->md.h[4] & mask; pmac->u[5] |= key->md.h[5] & mask; pmac->u[6] |= key->md.h[6] & mask; pmac->u[7] |= key->md.h[7] & mask; memset(data,0,SHA256_CBLOCK); j+=64; } data->u[SHA_LBLOCK-1] = bitlen; sha256_block_data_order(&key->md,data,1); mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1)); pmac->u[0] |= key->md.h[0] & mask; pmac->u[1] |= key->md.h[1] & mask; pmac->u[2] |= key->md.h[2] & mask; pmac->u[3] |= key->md.h[3] & mask; pmac->u[4] |= key->md.h[4] & mask; pmac->u[5] |= key->md.h[5] & mask; pmac->u[6] |= key->md.h[6] & mask; pmac->u[7] |= key->md.h[7] & mask; #ifdef BSWAP4 pmac->u[0] = BSWAP4(pmac->u[0]); pmac->u[1] = BSWAP4(pmac->u[1]); pmac->u[2] = BSWAP4(pmac->u[2]); pmac->u[3] = BSWAP4(pmac->u[3]); pmac->u[4] = BSWAP4(pmac->u[4]); pmac->u[5] = BSWAP4(pmac->u[5]); pmac->u[6] = BSWAP4(pmac->u[6]); pmac->u[7] = BSWAP4(pmac->u[7]); #else for (i=0;i<8;i++) { res = pmac->u[i]; pmac->c[4*i+0]=(unsigned char)(res>>24); pmac->c[4*i+1]=(unsigned char)(res>>16); pmac->c[4*i+2]=(unsigned char)(res>>8); pmac->c[4*i+3]=(unsigned char)res; } #endif len += SHA256_DIGEST_LENGTH; #else SHA256_Update(&key->md,out,inp_len); res = key->md.num; SHA256_Final(pmac->c,&key->md); { unsigned int inp_blocks, pad_blocks; /* but pretend as if we hashed padded payload */ inp_blocks = 1+((SHA256_CBLOCK-9-res)>>(sizeof(res)*8-1)); res += (unsigned int)(len-inp_len); pad_blocks = res / SHA256_CBLOCK; res %= SHA256_CBLOCK; pad_blocks += 1+((SHA256_CBLOCK-9-res)>>(sizeof(res)*8-1)); for (;inp_blocksmd,data,1); } #endif key->md = key->tail; SHA256_Update(&key->md,pmac->c,SHA256_DIGEST_LENGTH); SHA256_Final(pmac->c,&key->md); /* verify HMAC */ out += inp_len; len -= inp_len; #if 1 { unsigned char *p = out+len-1-maxpad-SHA256_DIGEST_LENGTH; size_t off = out-p; unsigned int c, cmask; maxpad += SHA256_DIGEST_LENGTH; for (res=0,i=0,j=0;j>(sizeof(int)*8-1); res |= (c^pad)&~cmask; /* ... and padding */ cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1); res |= (c^pmac->c[i])&cmask; i += 1&cmask; } maxpad -= SHA256_DIGEST_LENGTH; res = 0-((0-res)>>(sizeof(res)*8-1)); ret &= (int)~res; } #else for (res=0,i=0;ic[i]; res = 0-((0-res)>>(sizeof(res)*8-1)); ret &= (int)~res; /* verify padding */ pad = (pad&~res) | (maxpad&res); out = out+len-1-pad; for (res=0,i=0;i>(sizeof(res)*8-1); ret &= (int)~res; #endif return ret; } else { SHA256_Update(&key->md,out,len); } } return 1; } static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_AES_HMAC_SHA256 *key = data(ctx); unsigned int u_arg = (unsigned int)arg; switch (type) { case EVP_CTRL_AEAD_SET_MAC_KEY: { unsigned int i; unsigned char hmac_key[64]; memset (hmac_key,0,sizeof(hmac_key)); if (arg < 0) return -1; if (u_arg > sizeof(hmac_key)) { SHA256_Init(&key->head); SHA256_Update(&key->head,ptr,arg); SHA256_Final(hmac_key,&key->head); } else { memcpy(hmac_key,ptr,arg); } for (i=0;ihead); SHA256_Update(&key->head,hmac_key,sizeof(hmac_key)); for (i=0;itail); SHA256_Update(&key->tail,hmac_key,sizeof(hmac_key)); OPENSSL_cleanse(hmac_key,sizeof(hmac_key)); return 1; } case EVP_CTRL_AEAD_TLS1_AAD: { unsigned char *p=ptr; unsigned int len=p[arg-2]<<8|p[arg-1]; if (ctx->encrypt) { key->payload_length = len; if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) { len -= AES_BLOCK_SIZE; p[arg-2] = len>>8; p[arg-1] = len; } key->md = key->head; SHA256_Update(&key->md,p,arg); return (int)(((len+SHA256_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE) - len); } else { if (arg>13) arg = 13; memcpy(key->aux.tls_aad,ptr,arg); key->payload_length = arg; return SHA256_DIGEST_LENGTH; } } #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE: return (int)(5+16+((arg+32+16)&-16)); case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: { EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr; unsigned int n4x=1, x4; unsigned int frag, last, packlen, inp_len; if (arg < 0) return -1; if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) return -1; inp_len = param->inp[11]<<8|param->inp[12]; if (ctx->encrypt) { if ((param->inp[9]<<8|param->inp[10]) < TLS1_1_VERSION) return -1; if (inp_len) { if (inp_len<4096) return 0; /* too short */ if (inp_len>=8192 && OPENSSL_ia32cap_P[2]&(1<<5)) n4x=2; /* AVX2 */ } else if ((n4x=param->interleave/4) && n4x<=2) inp_len = param->len; else return -1; key->md = key->head; SHA256_Update(&key->md,param->inp,13); x4 = 4*n4x; n4x += 1; frag = inp_len>>n4x; last = inp_len+frag-(frag<frag && ((last+13+9)%64<(x4-1))) { frag++; last -= x4-1; } packlen = 5+16+((frag+32+16)&-16); packlen = (packlen<interleave = x4; return (int)packlen; } else return -1; /* not yet */ } case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: { EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr; return (int)tls1_1_multi_block_encrypt(key,param->out,param->inp, param->len,param->interleave/4); } case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT: #endif default: return -1; } } static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = { #ifdef NID_aes_128_cbc_hmac_sha256 NID_aes_128_cbc_hmac_sha256, #else NID_undef, #endif 16,16,16, EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1| EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, aesni_cbc_hmac_sha256_init_key, aesni_cbc_hmac_sha256_cipher, NULL, sizeof(EVP_AES_HMAC_SHA256), EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha256_ctrl, NULL }; static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = { #ifdef NID_aes_256_cbc_hmac_sha256 NID_aes_256_cbc_hmac_sha256, #else NID_undef, #endif 16,32,16, EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1| EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, aesni_cbc_hmac_sha256_init_key, aesni_cbc_hmac_sha256_cipher, NULL, sizeof(EVP_AES_HMAC_SHA256), EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha256_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) { return((OPENSSL_ia32cap_P[1]&AESNI_CAPABLE) && aesni_cbc_sha256_enc(NULL,NULL,0,NULL,NULL,NULL,NULL) ? &aesni_128_cbc_hmac_sha256_cipher:NULL); } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) { return((OPENSSL_ia32cap_P[1]&AESNI_CAPABLE) && aesni_cbc_sha256_enc(NULL,NULL,0,NULL,NULL,NULL,NULL)? &aesni_256_cbc_hmac_sha256_cipher:NULL); } #else const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) { return NULL; } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) { return NULL; } #endif #endif