/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/evp.h> #include <openssl/objects.h> #include "internal/evp_int.h" #include "evp_locl.h" int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int ret; if (c->cipher->set_asn1_parameters != NULL) ret = c->cipher->set_asn1_parameters(c, type); else if (c->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1) { switch (EVP_CIPHER_CTX_mode(c)) { case EVP_CIPH_WRAP_MODE: if (EVP_CIPHER_CTX_nid(c) == NID_id_smime_alg_CMS3DESwrap) ASN1_TYPE_set(type, V_ASN1_NULL, NULL); ret = 1; break; case EVP_CIPH_GCM_MODE: case EVP_CIPH_CCM_MODE: case EVP_CIPH_XTS_MODE: case EVP_CIPH_OCB_MODE: ret = -2; break; default: ret = EVP_CIPHER_set_asn1_iv(c, type); } } else ret = -1; if (ret <= 0) EVPerr(EVP_F_EVP_CIPHER_PARAM_TO_ASN1, ret == -2 ? ASN1_R_UNSUPPORTED_CIPHER : EVP_R_CIPHER_PARAMETER_ERROR); if (ret < -1) ret = -1; return ret; } int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int ret; if (c->cipher->get_asn1_parameters != NULL) ret = c->cipher->get_asn1_parameters(c, type); else if (c->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1) { switch (EVP_CIPHER_CTX_mode(c)) { case EVP_CIPH_WRAP_MODE: ret = 1; break; case EVP_CIPH_GCM_MODE: case EVP_CIPH_CCM_MODE: case EVP_CIPH_XTS_MODE: case EVP_CIPH_OCB_MODE: ret = -2; break; default: ret = EVP_CIPHER_get_asn1_iv(c, type); break; } } else ret = -1; if (ret <= 0) EVPerr(EVP_F_EVP_CIPHER_ASN1_TO_PARAM, ret == -2 ? EVP_R_UNSUPPORTED_CIPHER : EVP_R_CIPHER_PARAMETER_ERROR); if (ret < -1) ret = -1; return ret; } int EVP_CIPHER_get_asn1_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int i = 0; unsigned int l; if (type != NULL) { l = EVP_CIPHER_CTX_iv_length(c); OPENSSL_assert(l <= sizeof(c->iv)); i = ASN1_TYPE_get_octetstring(type, c->oiv, l); if (i != (int)l) return -1; else if (i > 0) memcpy(c->iv, c->oiv, l); } return i; } int EVP_CIPHER_set_asn1_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type) { int i = 0; unsigned int j; if (type != NULL) { j = EVP_CIPHER_CTX_iv_length(c); OPENSSL_assert(j <= sizeof(c->iv)); i = ASN1_TYPE_set_octetstring(type, c->oiv, j); } return i; } /* Convert the various cipher NIDs and dummies to a proper OID NID */ int EVP_CIPHER_type(const EVP_CIPHER *ctx) { int nid; ASN1_OBJECT *otmp; nid = EVP_CIPHER_nid(ctx); switch (nid) { case NID_rc2_cbc: case NID_rc2_64_cbc: case NID_rc2_40_cbc: return NID_rc2_cbc; case NID_rc4: case NID_rc4_40: return NID_rc4; case NID_aes_128_cfb128: case NID_aes_128_cfb8: case NID_aes_128_cfb1: return NID_aes_128_cfb128; case NID_aes_192_cfb128: case NID_aes_192_cfb8: case NID_aes_192_cfb1: return NID_aes_192_cfb128; case NID_aes_256_cfb128: case NID_aes_256_cfb8: case NID_aes_256_cfb1: return NID_aes_256_cfb128; case NID_des_cfb64: case NID_des_cfb8: case NID_des_cfb1: return NID_des_cfb64; case NID_des_ede3_cfb64: case NID_des_ede3_cfb8: case NID_des_ede3_cfb1: return NID_des_cfb64; default: /* Check it has an OID and it is valid */ otmp = OBJ_nid2obj(nid); if (OBJ_get0_data(otmp) == NULL) nid = NID_undef; ASN1_OBJECT_free(otmp); return nid; } } int EVP_CIPHER_block_size(const EVP_CIPHER *e) { return e->block_size; } int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->block_size; } int EVP_CIPHER_impl_ctx_size(const EVP_CIPHER *e) { return e->ctx_size; } int EVP_Cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, unsigned int inl) { return ctx->cipher->do_cipher(ctx, out, in, inl); } const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { return ctx->cipher; } int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { return ctx->encrypt; } unsigned long EVP_CIPHER_flags(const EVP_CIPHER *cipher) { return cipher->flags; } void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { return ctx->app_data; } void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { ctx->app_data = data; } void *EVP_CIPHER_CTX_get_cipher_data(const EVP_CIPHER_CTX *ctx) { return ctx->cipher_data; } void *EVP_CIPHER_CTX_set_cipher_data(EVP_CIPHER_CTX *ctx, void *cipher_data) { void *old_cipher_data; old_cipher_data = ctx->cipher_data; ctx->cipher_data = cipher_data; return old_cipher_data; } int EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { return cipher->iv_len; } int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->iv_len; } const unsigned char *EVP_CIPHER_CTX_original_iv(const EVP_CIPHER_CTX *ctx) { return ctx->oiv; } const unsigned char *EVP_CIPHER_CTX_iv(const EVP_CIPHER_CTX *ctx) { return ctx->iv; } unsigned char *EVP_CIPHER_CTX_iv_noconst(EVP_CIPHER_CTX *ctx) { return ctx->iv; } unsigned char *EVP_CIPHER_CTX_buf_noconst(EVP_CIPHER_CTX *ctx) { return ctx->buf; } int EVP_CIPHER_CTX_num(const EVP_CIPHER_CTX *ctx) { return ctx->num; } void EVP_CIPHER_CTX_set_num(EVP_CIPHER_CTX *ctx, int num) { ctx->num = num; } int EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { return cipher->key_len; } int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { return ctx->key_len; } int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->nid; } int EVP_MD_block_size(const EVP_MD *md) { return md->block_size; } int EVP_MD_type(const EVP_MD *md) { return md->type; } int EVP_MD_pkey_type(const EVP_MD *md) { return md->pkey_type; } int EVP_MD_size(const EVP_MD *md) { if (!md) { EVPerr(EVP_F_EVP_MD_SIZE, EVP_R_MESSAGE_DIGEST_IS_NULL); return -1; } return md->md_size; } unsigned long EVP_MD_flags(const EVP_MD *md) { return md->flags; } EVP_MD *EVP_MD_meth_new(int md_type, int pkey_type) { EVP_MD *md = OPENSSL_zalloc(sizeof(*md)); if (md != NULL) { md->type = md_type; md->pkey_type = pkey_type; } return md; } EVP_MD *EVP_MD_meth_dup(const EVP_MD *md) { EVP_MD *to = EVP_MD_meth_new(md->type, md->pkey_type); if (to != NULL) memcpy(to, md, sizeof(*to)); return to; } void EVP_MD_meth_free(EVP_MD *md) { OPENSSL_free(md); } int EVP_MD_meth_set_input_blocksize(EVP_MD *md, int blocksize) { md->block_size = blocksize; return 1; } int EVP_MD_meth_set_result_size(EVP_MD *md, int resultsize) { md->md_size = resultsize; return 1; } int EVP_MD_meth_set_app_datasize(EVP_MD *md, int datasize) { md->ctx_size = datasize; return 1; } int EVP_MD_meth_set_flags(EVP_MD *md, unsigned long flags) { md->flags = flags; return 1; } int EVP_MD_meth_set_init(EVP_MD *md, int (*init)(EVP_MD_CTX *ctx)) { md->init = init; return 1; } int EVP_MD_meth_set_update(EVP_MD *md, int (*update)(EVP_MD_CTX *ctx, const void *data, size_t count)) { md->update = update; return 1; } int EVP_MD_meth_set_final(EVP_MD *md, int (*final)(EVP_MD_CTX *ctx, unsigned char *md)) { md->final = final; return 1; } int EVP_MD_meth_set_copy(EVP_MD *md, int (*copy)(EVP_MD_CTX *to, const EVP_MD_CTX *from)) { md->copy = copy; return 1; } int EVP_MD_meth_set_cleanup(EVP_MD *md, int (*cleanup)(EVP_MD_CTX *ctx)) { md->cleanup = cleanup; return 1; } int EVP_MD_meth_set_ctrl(EVP_MD *md, int (*ctrl)(EVP_MD_CTX *ctx, int cmd, int p1, void *p2)) { md->md_ctrl = ctrl; return 1; } int EVP_MD_meth_get_input_blocksize(const EVP_MD *md) { return md->block_size; } int EVP_MD_meth_get_result_size(const EVP_MD *md) { return md->md_size; } int EVP_MD_meth_get_app_datasize(const EVP_MD *md) { return md->ctx_size; } unsigned long EVP_MD_meth_get_flags(const EVP_MD *md) { return md->flags; } int (*EVP_MD_meth_get_init(const EVP_MD *md))(EVP_MD_CTX *ctx) { return md->init; } int (*EVP_MD_meth_get_update(const EVP_MD *md))(EVP_MD_CTX *ctx, const void *data, size_t count) { return md->update; } int (*EVP_MD_meth_get_final(const EVP_MD *md))(EVP_MD_CTX *ctx, unsigned char *md) { return md->final; } int (*EVP_MD_meth_get_copy(const EVP_MD *md))(EVP_MD_CTX *to, const EVP_MD_CTX *from) { return md->copy; } int (*EVP_MD_meth_get_cleanup(const EVP_MD *md))(EVP_MD_CTX *ctx) { return md->cleanup; } int (*EVP_MD_meth_get_ctrl(const EVP_MD *md))(EVP_MD_CTX *ctx, int cmd, int p1, void *p2) { return md->md_ctrl; } const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx) { if (!ctx) return NULL; return ctx->digest; } EVP_PKEY_CTX *EVP_MD_CTX_pkey_ctx(const EVP_MD_CTX *ctx) { return ctx->pctx; } void EVP_MD_CTX_set_pkey_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pctx) { /* * it's reasonable to set NULL pctx (a.k.a clear the ctx->pctx), so * we have to deal with the cleanup job here. */ if (!EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX)) EVP_PKEY_CTX_free(ctx->pctx); ctx->pctx = pctx; if (pctx != NULL) { /* make sure pctx is not freed when destroying EVP_MD_CTX */ EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX); } else { EVP_MD_CTX_clear_flags(ctx, EVP_MD_CTX_FLAG_KEEP_PKEY_CTX); } } void *EVP_MD_CTX_md_data(const EVP_MD_CTX *ctx) { return ctx->md_data; } int (*EVP_MD_CTX_update_fn(EVP_MD_CTX *ctx))(EVP_MD_CTX *ctx, const void *data, size_t count) { return ctx->update; } void EVP_MD_CTX_set_update_fn(EVP_MD_CTX *ctx, int (*update) (EVP_MD_CTX *ctx, const void *data, size_t count)) { ctx->update = update; } void EVP_MD_CTX_set_flags(EVP_MD_CTX *ctx, int flags) { ctx->flags |= flags; } void EVP_MD_CTX_clear_flags(EVP_MD_CTX *ctx, int flags) { ctx->flags &= ~flags; } int EVP_MD_CTX_test_flags(const EVP_MD_CTX *ctx, int flags) { return (ctx->flags & flags); } void EVP_CIPHER_CTX_set_flags(EVP_CIPHER_CTX *ctx, int flags) { ctx->flags |= flags; } void EVP_CIPHER_CTX_clear_flags(EVP_CIPHER_CTX *ctx, int flags) { ctx->flags &= ~flags; } int EVP_CIPHER_CTX_test_flags(const EVP_CIPHER_CTX *ctx, int flags) { return (ctx->flags & flags); }