/* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "ec_local.h" /* functions for EC_GROUP objects */ EC_GROUP *EC_GROUP_new(const EC_METHOD *meth) { EC_GROUP *ret; if (meth == NULL) { ECerr(EC_F_EC_GROUP_NEW, EC_R_SLOT_FULL); return NULL; } if (meth->group_init == 0) { ECerr(EC_F_EC_GROUP_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return NULL; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_EC_GROUP_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = meth; if ((ret->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) { ret->order = BN_new(); if (ret->order == NULL) goto err; ret->cofactor = BN_new(); if (ret->cofactor == NULL) goto err; } ret->asn1_flag = OPENSSL_EC_NAMED_CURVE; ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED; if (!meth->group_init(ret)) goto err; return ret; err: BN_free(ret->order); BN_free(ret->cofactor); OPENSSL_free(ret); return NULL; } void EC_pre_comp_free(EC_GROUP *group) { switch (group->pre_comp_type) { case PCT_none: break; case PCT_nistz256: #ifdef ECP_NISTZ256_ASM EC_nistz256_pre_comp_free(group->pre_comp.nistz256); #endif break; #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 case PCT_nistp224: EC_nistp224_pre_comp_free(group->pre_comp.nistp224); break; case PCT_nistp256: EC_nistp256_pre_comp_free(group->pre_comp.nistp256); break; case PCT_nistp521: EC_nistp521_pre_comp_free(group->pre_comp.nistp521); break; #else case PCT_nistp224: case PCT_nistp256: case PCT_nistp521: break; #endif case PCT_ec: EC_ec_pre_comp_free(group->pre_comp.ec); break; } group->pre_comp.ec = NULL; } void EC_GROUP_free(EC_GROUP *group) { if (!group) return; if (group->meth->group_finish != 0) group->meth->group_finish(group); EC_pre_comp_free(group); BN_MONT_CTX_free(group->mont_data); EC_POINT_free(group->generator); BN_free(group->order); BN_free(group->cofactor); OPENSSL_free(group->seed); OPENSSL_free(group); } void EC_GROUP_clear_free(EC_GROUP *group) { if (!group) return; if (group->meth->group_clear_finish != 0) group->meth->group_clear_finish(group); else if (group->meth->group_finish != 0) group->meth->group_finish(group); EC_pre_comp_free(group); BN_MONT_CTX_free(group->mont_data); EC_POINT_clear_free(group->generator); BN_clear_free(group->order); BN_clear_free(group->cofactor); OPENSSL_clear_free(group->seed, group->seed_len); OPENSSL_clear_free(group, sizeof(*group)); } int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src) { if (dest->meth->group_copy == 0) { ECerr(EC_F_EC_GROUP_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth) { ECerr(EC_F_EC_GROUP_COPY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; dest->curve_name = src->curve_name; /* Copy precomputed */ dest->pre_comp_type = src->pre_comp_type; switch (src->pre_comp_type) { case PCT_none: dest->pre_comp.ec = NULL; break; case PCT_nistz256: #ifdef ECP_NISTZ256_ASM dest->pre_comp.nistz256 = EC_nistz256_pre_comp_dup(src->pre_comp.nistz256); #endif break; #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 case PCT_nistp224: dest->pre_comp.nistp224 = EC_nistp224_pre_comp_dup(src->pre_comp.nistp224); break; case PCT_nistp256: dest->pre_comp.nistp256 = EC_nistp256_pre_comp_dup(src->pre_comp.nistp256); break; case PCT_nistp521: dest->pre_comp.nistp521 = EC_nistp521_pre_comp_dup(src->pre_comp.nistp521); break; #else case PCT_nistp224: case PCT_nistp256: case PCT_nistp521: break; #endif case PCT_ec: dest->pre_comp.ec = EC_ec_pre_comp_dup(src->pre_comp.ec); break; } if (src->mont_data != NULL) { if (dest->mont_data == NULL) { dest->mont_data = BN_MONT_CTX_new(); if (dest->mont_data == NULL) return 0; } if (!BN_MONT_CTX_copy(dest->mont_data, src->mont_data)) return 0; } else { /* src->generator == NULL */ BN_MONT_CTX_free(dest->mont_data); dest->mont_data = NULL; } if (src->generator != NULL) { if (dest->generator == NULL) { dest->generator = EC_POINT_new(dest); if (dest->generator == NULL) return 0; } if (!EC_POINT_copy(dest->generator, src->generator)) return 0; } else { /* src->generator == NULL */ EC_POINT_clear_free(dest->generator); dest->generator = NULL; } if ((src->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) { if (!BN_copy(dest->order, src->order)) return 0; if (!BN_copy(dest->cofactor, src->cofactor)) return 0; } dest->asn1_flag = src->asn1_flag; dest->asn1_form = src->asn1_form; if (src->seed) { OPENSSL_free(dest->seed); if ((dest->seed = OPENSSL_malloc(src->seed_len)) == NULL) { ECerr(EC_F_EC_GROUP_COPY, ERR_R_MALLOC_FAILURE); return 0; } if (!memcpy(dest->seed, src->seed, src->seed_len)) return 0; dest->seed_len = src->seed_len; } else { OPENSSL_free(dest->seed); dest->seed = NULL; dest->seed_len = 0; } return dest->meth->group_copy(dest, src); } EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { EC_GROUP *t = NULL; int ok = 0; if (a == NULL) return NULL; if ((t = EC_GROUP_new(a->meth)) == NULL) return NULL; if (!EC_GROUP_copy(t, a)) goto err; ok = 1; err: if (!ok) { EC_GROUP_free(t); return NULL; } return t; } const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { return group->meth; } int EC_METHOD_get_field_type(const EC_METHOD *meth) { return meth->field_type; } static int ec_precompute_mont_data(EC_GROUP *); /*- * Try computing cofactor from the generator order (n) and field cardinality (q). * This works for all curves of cryptographic interest. * * Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q) * h_min = (q + 1 - 2*sqrt(q))/n * h_max = (q + 1 + 2*sqrt(q))/n * h_max - h_min = 4*sqrt(q)/n * So if n > 4*sqrt(q) holds, there is only one possible value for h: * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil * * Otherwise, zero cofactor and return success. */ static int ec_guess_cofactor(EC_GROUP *group) { int ret = 0; BN_CTX *ctx = NULL; BIGNUM *q = NULL; /*- * If the cofactor is too large, we cannot guess it. * The RHS of below is a strict overestimate of lg(4 * sqrt(q)) */ if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) { /* default to 0 */ BN_zero(group->cofactor); /* return success */ return 1; } if ((ctx = BN_CTX_new()) == NULL) return 0; BN_CTX_start(ctx); if ((q = BN_CTX_get(ctx)) == NULL) goto err; /* set q = 2**m for binary fields; q = p otherwise */ if (group->meth->field_type == NID_X9_62_characteristic_two_field) { BN_zero(q); if (!BN_set_bit(q, BN_num_bits(group->field) - 1)) goto err; } else { if (!BN_copy(q, group->field)) goto err; } /* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */ if (!BN_rshift1(group->cofactor, group->order) /* n/2 */ || !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */ /* q + 1 + n/2 */ || !BN_add(group->cofactor, group->cofactor, BN_value_one()) /* (q + 1 + n/2)/n */ || !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor) { if (generator == NULL) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, ERR_R_PASSED_NULL_PARAMETER); return 0; } /* require group->field >= 1 */ if (group->field == NULL || BN_is_zero(group->field) || BN_is_negative(group->field)) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD); return 0; } /*- * - require order >= 1 * - enforce upper bound due to Hasse thm: order can be no more than one bit * longer than field cardinality */ if (order == NULL || BN_is_zero(order) || BN_is_negative(order) || BN_num_bits(order) > BN_num_bits(group->field) + 1) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER); return 0; } /*- * Unfortunately the cofactor is an optional field in many standards. * Internally, the lib uses 0 cofactor as a marker for "unknown cofactor". * So accept cofactor == NULL or cofactor >= 0. */ if (cofactor != NULL && BN_is_negative(cofactor)) { ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR); return 0; } if (group->generator == NULL) { group->generator = EC_POINT_new(group); if (group->generator == NULL) return 0; } if (!EC_POINT_copy(group->generator, generator)) return 0; if (!BN_copy(group->order, order)) return 0; /* Either take the provided positive cofactor, or try to compute it */ if (cofactor != NULL && !BN_is_zero(cofactor)) { if (!BN_copy(group->cofactor, cofactor)) return 0; } else if (!ec_guess_cofactor(group)) { BN_zero(group->cofactor); return 0; } /* * Some groups have an order with * factors of two, which makes the Montgomery setup fail. * |group->mont_data| will be NULL in this case. */ if (BN_is_odd(group->order)) { return ec_precompute_mont_data(group); } BN_MONT_CTX_free(group->mont_data); group->mont_data = NULL; return 1; } const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { return group->generator; } BN_MONT_CTX *EC_GROUP_get_mont_data(const EC_GROUP *group) { return group->mont_data; } int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { if (group->order == NULL) return 0; if (!BN_copy(order, group->order)) return 0; return !BN_is_zero(order); } const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { return group->order; } int EC_GROUP_order_bits(const EC_GROUP *group) { return group->meth->group_order_bits(group); } int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) { if (group->cofactor == NULL) return 0; if (!BN_copy(cofactor, group->cofactor)) return 0; return !BN_is_zero(group->cofactor); } const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group) { return group->cofactor; } void EC_GROUP_set_curve_name(EC_GROUP *group, int nid) { group->curve_name = nid; } int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) { group->asn1_flag = flag; } int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { return group->asn1_flag; } void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form) { group->asn1_form = form; } point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *group) { return group->asn1_form; } size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *p, size_t len) { OPENSSL_free(group->seed); group->seed = NULL; group->seed_len = 0; if (!len || !p) return 1; if ((group->seed = OPENSSL_malloc(len)) == NULL) { ECerr(EC_F_EC_GROUP_SET_SEED, ERR_R_MALLOC_FAILURE); return 0; } memcpy(group->seed, p, len); group->seed_len = len; return len; } unsigned char *EC_GROUP_get0_seed(const EC_GROUP *group) { return group->seed; } size_t EC_GROUP_get_seed_len(const EC_GROUP *group) { return group->seed_len; } int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { if (group->meth->group_set_curve == 0) { ECerr(EC_F_EC_GROUP_SET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { if (group->meth->group_get_curve == NULL) { ECerr(EC_F_EC_GROUP_GET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_curve(group, p, a, b, ctx); } #if OPENSSL_API_COMPAT < 0x10200000L int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } # ifndef OPENSSL_NO_EC2M int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } # endif #endif int EC_GROUP_get_degree(const EC_GROUP *group) { if (group->meth->group_get_degree == 0) { ECerr(EC_F_EC_GROUP_GET_DEGREE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_get_degree(group); } int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) { if (group->meth->group_check_discriminant == 0) { ECerr(EC_F_EC_GROUP_CHECK_DISCRIMINANT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } return group->meth->group_check_discriminant(group, ctx); } int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx) { int r = 0; BIGNUM *a1, *a2, *a3, *b1, *b2, *b3; BN_CTX *ctx_new = NULL; /* compare the field types */ if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) != EC_METHOD_get_field_type(EC_GROUP_method_of(b))) return 1; /* compare the curve name (if present in both) */ if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) && EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b)) return 1; if (a->meth->flags & EC_FLAGS_CUSTOM_CURVE) return 0; if (ctx == NULL) ctx_new = ctx = BN_CTX_new(); if (ctx == NULL) return -1; BN_CTX_start(ctx); a1 = BN_CTX_get(ctx); a2 = BN_CTX_get(ctx); a3 = BN_CTX_get(ctx); b1 = BN_CTX_get(ctx); b2 = BN_CTX_get(ctx); b3 = BN_CTX_get(ctx); if (b3 == NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx_new); return -1; } /* * XXX This approach assumes that the external representation of curves * over the same field type is the same. */ if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) || !b->meth->group_get_curve(b, b1, b2, b3, ctx)) r = 1; if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3)) r = 1; /* XXX EC_POINT_cmp() assumes that the methods are equal */ if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a), EC_GROUP_get0_generator(b), ctx)) r = 1; if (!r) { const BIGNUM *ao, *bo, *ac, *bc; /* compare the order and cofactor */ ao = EC_GROUP_get0_order(a); bo = EC_GROUP_get0_order(b); ac = EC_GROUP_get0_cofactor(a); bc = EC_GROUP_get0_cofactor(b); if (ao == NULL || bo == NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx_new); return -1; } if (BN_cmp(ao, bo) || BN_cmp(ac, bc)) r = 1; } BN_CTX_end(ctx); BN_CTX_free(ctx_new); return r; } /* functions for EC_POINT objects */ EC_POINT *EC_POINT_new(const EC_GROUP *group) { EC_POINT *ret; if (group == NULL) { ECerr(EC_F_EC_POINT_NEW, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (group->meth->point_init == NULL) { ECerr(EC_F_EC_POINT_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return NULL; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ECerr(EC_F_EC_POINT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } ret->meth = group->meth; ret->curve_name = group->curve_name; if (!ret->meth->point_init(ret)) { OPENSSL_free(ret); return NULL; } return ret; } void EC_POINT_free(EC_POINT *point) { if (!point) return; if (point->meth->point_finish != 0) point->meth->point_finish(point); OPENSSL_free(point); } void EC_POINT_clear_free(EC_POINT *point) { if (!point) return; if (point->meth->point_clear_finish != 0) point->meth->point_clear_finish(point); else if (point->meth->point_finish != 0) point->meth->point_finish(point); OPENSSL_clear_free(point, sizeof(*point)); } int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { if (dest->meth->point_copy == 0) { ECerr(EC_F_EC_POINT_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (dest->meth != src->meth || (dest->curve_name != src->curve_name && dest->curve_name != 0 && src->curve_name != 0)) { ECerr(EC_F_EC_POINT_COPY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dest == src) return 1; return dest->meth->point_copy(dest, src); } EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { EC_POINT *t; int r; if (a == NULL) return NULL; t = EC_POINT_new(group); if (t == NULL) return NULL; r = EC_POINT_copy(t, a); if (!r) { EC_POINT_free(t); return NULL; } return t; } const EC_METHOD *EC_POINT_method_of(const EC_POINT *point) { return point->meth; } int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { if (group->meth->point_set_to_infinity == 0) { ECerr(EC_F_EC_POINT_SET_TO_INFINITY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (group->meth != point->meth) { ECerr(EC_F_EC_POINT_SET_TO_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_to_infinity(group, point); } int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) { if (group->meth->point_set_Jprojective_coordinates_GFp == 0) { ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_set_Jprojective_coordinates_GFp(group, point, x, y, z, ctx); } int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) { if (group->meth->point_get_Jprojective_coordinates_GFp == 0) { ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->point_get_Jprojective_coordinates_GFp(group, point, x, y, z, ctx); } int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { if (group->meth->point_set_affine_coordinates == NULL) { ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) return 0; if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_POINT_IS_NOT_ON_CURVE); return 0; } return 1; } #if OPENSSL_API_COMPAT < 0x10200000L int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } # ifndef OPENSSL_NO_EC2M int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } # endif #endif int EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { if (group->meth->point_get_affine_coordinates == NULL) { ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (EC_POINT_is_at_infinity(group, point)) { ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); return 0; } return group->meth->point_get_affine_coordinates(group, point, x, y, ctx); } #if OPENSSL_API_COMPAT < 0x10200000L int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } # ifndef OPENSSL_NO_EC2M int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } # endif #endif int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { if (group->meth->add == 0) { ECerr(EC_F_EC_POINT_ADD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) { ECerr(EC_F_EC_POINT_ADD, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->add(group, r, a, b, ctx); } int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) { if (group->meth->dbl == 0) { ECerr(EC_F_EC_POINT_DBL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)) { ECerr(EC_F_EC_POINT_DBL, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->dbl(group, r, a, ctx); } int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { if (group->meth->invert == 0) { ECerr(EC_F_EC_POINT_INVERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(a, group)) { ECerr(EC_F_EC_POINT_INVERT, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->invert(group, a, ctx); } int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { if (group->meth->is_at_infinity == 0) { ECerr(EC_F_EC_POINT_IS_AT_INFINITY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_IS_AT_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_at_infinity(group, point); } /* * Check whether an EC_POINT is on the curve or not. Note that the return * value for this function should NOT be treated as a boolean. Return values: * 1: The point is on the curve * 0: The point is not on the curve * -1: An error occurred */ int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) { if (group->meth->is_on_curve == 0) { ECerr(EC_F_EC_POINT_IS_ON_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_IS_ON_CURVE, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->is_on_curve(group, point, ctx); } int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) { if (group->meth->point_cmp == 0) { ECerr(EC_F_EC_POINT_CMP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } if (!ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) { ECerr(EC_F_EC_POINT_CMP, EC_R_INCOMPATIBLE_OBJECTS); return -1; } return group->meth->point_cmp(group, a, b, ctx); } int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { if (group->meth->make_affine == 0) { ECerr(EC_F_EC_POINT_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } if (!ec_point_is_compat(point, group)) { ECerr(EC_F_EC_POINT_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); return 0; } return group->meth->make_affine(group, point, ctx); } int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) { size_t i; if (group->meth->points_make_affine == 0) { ECerr(EC_F_EC_POINTS_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } for (i = 0; i < num; i++) { if (!ec_point_is_compat(points[i], group)) { ECerr(EC_F_EC_POINTS_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); return 0; } } return group->meth->points_make_affine(group, num, points, ctx); } /* * Functions for point multiplication. If group->meth->mul is 0, we use the * wNAF-based implementations in ec_mult.c; otherwise we dispatch through * methods. */ int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) { int ret = 0; size_t i = 0; BN_CTX *new_ctx = NULL; if ((scalar == NULL) && (num == 0)) { return EC_POINT_set_to_infinity(group, r); } if (!ec_point_is_compat(r, group)) { ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); return 0; } for (i = 0; i < num; i++) { if (!ec_point_is_compat(points[i], group)) { ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); return 0; } } if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) { ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR); return 0; } if (group->meth->mul != NULL) ret = group->meth->mul(group, r, scalar, num, points, scalars, ctx); else /* use default */ ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); BN_CTX_free(new_ctx); return ret; } int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) { /* just a convenient interface to EC_POINTs_mul() */ const EC_POINT *points[1]; const BIGNUM *scalars[1]; points[0] = point; scalars[0] = p_scalar; return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx); } int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx) { if (group->meth->mul == 0) /* use default */ return ec_wNAF_precompute_mult(group, ctx); if (group->meth->precompute_mult != 0) return group->meth->precompute_mult(group, ctx); else return 1; /* nothing to do, so report success */ } int EC_GROUP_have_precompute_mult(const EC_GROUP *group) { if (group->meth->mul == 0) /* use default */ return ec_wNAF_have_precompute_mult(group); if (group->meth->have_precompute_mult != 0) return group->meth->have_precompute_mult(group); else return 0; /* cannot tell whether precomputation has * been performed */ } /* * ec_precompute_mont_data sets |group->mont_data| from |group->order| and * returns one on success. On error it returns zero. */ static int ec_precompute_mont_data(EC_GROUP *group) { BN_CTX *ctx = BN_CTX_new(); int ret = 0; BN_MONT_CTX_free(group->mont_data); group->mont_data = NULL; if (ctx == NULL) goto err; group->mont_data = BN_MONT_CTX_new(); if (group->mont_data == NULL) goto err; if (!BN_MONT_CTX_set(group->mont_data, group->order, ctx)) { BN_MONT_CTX_free(group->mont_data); group->mont_data = NULL; goto err; } ret = 1; err: BN_CTX_free(ctx); return ret; } int EC_KEY_set_ex_data(EC_KEY *key, int idx, void *arg) { return CRYPTO_set_ex_data(&key->ex_data, idx, arg); } void *EC_KEY_get_ex_data(const EC_KEY *key, int idx) { return CRYPTO_get_ex_data(&key->ex_data, idx); } int ec_group_simple_order_bits(const EC_GROUP *group) { if (group->order == NULL) return 0; return BN_num_bits(group->order); } static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r, const BIGNUM *x, BN_CTX *ctx) { BIGNUM *e = NULL; BN_CTX *new_ctx = NULL; int ret = 0; if (group->mont_data == NULL) return 0; if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) return 0; BN_CTX_start(ctx); if ((e = BN_CTX_get(ctx)) == NULL) goto err; /*- * We want inverse in constant time, therefore we utilize the fact * order must be prime and use Fermats Little Theorem instead. */ if (!BN_set_word(e, 2)) goto err; if (!BN_sub(e, group->order, e)) goto err; /*- * Exponent e is public. * No need for scatter-gather or BN_FLG_CONSTTIME. */ if (!BN_mod_exp_mont(r, x, e, group->order, ctx, group->mont_data)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; } /*- * Default behavior, if group->meth->field_inverse_mod_ord is NULL: * - When group->order is even, this function returns an error. * - When group->order is otherwise composite, the correctness * of the output is not guaranteed. * - When x is outside the range [1, group->order), the correctness * of the output is not guaranteed. * - Otherwise, this function returns the multiplicative inverse in the * range [1, group->order). * * EC_METHODs must implement their own field_inverse_mod_ord for * other functionality. */ int ec_group_do_inverse_ord(const EC_GROUP *group, BIGNUM *res, const BIGNUM *x, BN_CTX *ctx) { if (group->meth->field_inverse_mod_ord != NULL) return group->meth->field_inverse_mod_ord(group, res, x, ctx); else return ec_field_inverse_mod_ord(group, res, x, ctx); } /*- * Coordinate blinding for EC_POINT. * * The underlying EC_METHOD can optionally implement this function: * underlying implementations should return 0 on errors, or 1 on * success. * * This wrapper returns 1 in case the underlying EC_METHOD does not * support coordinate blinding. */ int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) { if (group->meth->blind_coordinates == NULL) return 1; /* ignore if not implemented */ return group->meth->blind_coordinates(group, p, ctx); }