#include #include #include #include "bn_lcl.h" /* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calulate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ void bn_mul_recursive(r,a,b,n2,t) BN_ULONG *r,*a,*b; int n2; BN_ULONG *t; { int n=n2/2; int neg,zero,c1,c2; BN_ULONG ln,lo,*p; #ifdef BN_COUNT printf(" bn_mul_recursive %d * %d\n",n2,n2); #endif if (n2 <= 8) { if (n2 == 8) bn_mul_comba8(r,a,b); else bn_mul_normal(r,a,n2,b,n2); return; } if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { /* This should not happen */ /*abort(); */ bn_mul_normal(r,a,n2,b,n2); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1=bn_cmp_words(a,&(a[n]),n); c2=bn_cmp_words(&(b[n]),b,n); zero=neg=0; switch (c1*3+c2) { case -4: bn_sub_words(t, &(a[n]),a, n); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ break; case -3: zero=1; break; case -2: bn_sub_words(t, &(a[n]),a, n); /* - */ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ neg=1; break; case -1: case 0: case 1: zero=1; break; case 2: bn_sub_words(t, a, &(a[n]),n); /* + */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ neg=1; break; case 3: zero=1; break; case 4: bn_sub_words(t, a, &(a[n]),n); bn_sub_words(&(t[n]),&(b[n]),b, n); break; } if (n == 8) { if (!zero) bn_mul_comba8(&(t[n2]),t,&(t[n])); else memset(&(t[n2]),0,8*sizeof(BN_ULONG)); bn_mul_comba8(r,a,b); bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); } else { p= &(t[n2*2]); if (!zero) bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); else memset(&(t[n2]),0,n*sizeof(BN_ULONG)); bn_mul_recursive(r,a,b,n,p); bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1=bn_add_words(t,r,&(r[n2]),n2); if (neg) /* if t[32] is negative */ { c1-=bn_sub_words(&(t[n2]),t,&(t[n2]),n2); } else { /* Might have a carry */ c1+=bn_add_words(&(t[n2]),&(t[n2]),t,n2); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1+=bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2); if (c1) { p= &(r[n+n2]); lo= *p; ln=(lo+c1)&BN_MASK2; *p=ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < c1) { do { p++; lo= *p; ln=(lo+1)&BN_MASK2; *p=ln; } while (ln == 0); } } } /* n+tn is the word length * t needs to be n*4 is size, as does r */ void bn_mul_part_recursive(r,a,b,tn,n,t) BN_ULONG *r,*a,*b; int tn,n; BN_ULONG *t; { int n2=n*2,i,j; int c1; BN_ULONG ln,lo,*p; #ifdef BN_COUNT printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); #endif if (n < 8) { i=tn+n; bn_mul_normal(r,a,i,b,i); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ bn_sub_words(t, a, &(a[n]),n); /* + */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ if (n == 8) { bn_mul_comba8(&(t[n2]),t,&(t[n])); bn_mul_comba8(r,a,b); bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); } else { p= &(t[n2*2]); bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); bn_mul_recursive(r,a,b,n,p); i=n/2; /* If there is only a bottom half to the number, * just do it */ j=tn-i; if (j == 0) { bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); } else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ { bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), j,i,p); memset(&(r[n2+tn*2]),0, sizeof(BN_ULONG)*(n2-tn*2)); } else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ { memset(&(r[n2]),0,sizeof(BN_ULONG)*(tn*2)); for (;;) { i/=2; if (i < tn) { bn_mul_part_recursive(&(r[n2]), &(a[n]),&(b[n]), tn-i,i,p); break; } else if (i == tn) { bn_mul_recursive(&(r[n2]), &(a[n]),&(b[n]), i,p); break; } } } } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1=bn_add_words(t,r,&(r[n2]),n2); c1-=bn_sub_words(&(t[n2]),t,&(t[n2]),n2); /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1+=bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2); if (c1) { p= &(r[n+n2]); lo= *p; ln=(lo+c1)&BN_MASK2; *p=ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < c1) { do { p++; lo= *p; ln=(lo+1)&BN_MASK2; *p=ln; } while (ln == 0); } } } /* r is 2*n words in size, * a and b are both n words in size. * n must be a power of 2. * We multiply and return the result. * t must be 2*n words in size * We calulate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ void bn_sqr_recursive(r,a,n2,t) BN_ULONG *r,*a; int n2; BN_ULONG *t; { int n=n2/2; int zero,c1; BN_ULONG ln,lo,*p; #ifdef BN_COUNT printf(" bn_sqr_recursive %d * %d\n",n2,n2); #endif if (n2 == 4) { bn_sqr_comba4(r,a); return; } else if (n2 == 8) { bn_sqr_comba8(r,a); return; } if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { bn_sqr_normal(r,a,n2,t); return; abort(); } /* r=(a[0]-a[1])*(a[1]-a[0]) */ c1=bn_cmp_words(a,&(a[n]),n); zero=0; if (c1 > 0) bn_sub_words(t,a,&(a[n]),n); else if (c1 < 0) bn_sub_words(t,&(a[n]),a,n); else zero=1; /* The result will always be negative unless it is zero */ if (n == 8) { if (!zero) bn_sqr_comba8(&(t[n2]),t); else memset(&(t[n2]),0,8*sizeof(BN_ULONG)); bn_sqr_comba8(r,a); bn_sqr_comba8(&(r[n2]),&(a[n])); } else { p= &(t[n2*2]); if (!zero) bn_sqr_recursive(&(t[n2]),t,n,p); else memset(&(t[n2]),0,n*sizeof(BN_ULONG)); bn_sqr_recursive(r,a,n,p); bn_sqr_recursive(&(r[n2]),&(a[n]),n,p); } /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1=bn_add_words(t,r,&(r[n2]),n2); /* t[32] is negative */ c1-=bn_sub_words(&(t[n2]),t,&(t[n2]),n2); /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) * r[10] holds (a[0]*a[0]) * r[32] holds (a[1]*a[1]) * c1 holds the carry bits */ c1+=bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2); if (c1) { p= &(r[n+n2]); lo= *p; ln=(lo+c1)&BN_MASK2; *p=ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < c1) { do { p++; lo= *p; ln=(lo+1)&BN_MASK2; *p=ln; } while (ln == 0); } } } #if 1 /* a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */ void bn_mul_low_recursive(r,a,b,n2,t) BN_ULONG *r,*a,*b; int n2; BN_ULONG *t; { int n=n2/2; #ifdef BN_COUNT printf(" bn_mul_low_recursive %d * %d\n",n2,n2); #endif bn_mul_recursive(r,a,b,n,&(t[0])); if (n > BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); } else { bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); } } /* a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 * l is the low words of the output. * t needs to be n2*3 */ void bn_mul_high(r,a,b,l,n2,t) BN_ULONG *r,*a,*b,*l; int n2; BN_ULONG *t; { int j,i,n,c1,c2; int neg,oneg,zero; BN_ULONG ll,lc,*lp,*mp; #ifdef BN_COUNT printf(" bn_mul_high %d * %d\n",n2,n2); #endif n=(n2+1)/2; /* Calculate (al-ah)*(bh-bl) */ neg=zero=0; c1=bn_cmp_words(&(a[0]),&(a[n]),n); c2=bn_cmp_words(&(b[n]),&(b[0]),n); switch (c1*3+c2) { case -4: bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); break; case -3: zero=1; break; case -2: bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); neg=1; break; case -1: case 0: case 1: zero=1; break; case 2: bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); neg=1; break; case 3: zero=1; break; case 4: bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); break; } oneg=neg; /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); /* r[10] = (a[1]*b[1]) */ bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); /* s0 == low(al*bl) * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) * We know s0 and s1 so the only unknown is high(al*bl) * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) * high(al*bl) == s1 - (r[0]+l[0]+t[0]) */ if (l != NULL) { lp= &(t[n2+n]); c1=bn_add_words(lp,&(r[0]),&(l[0]),n); } else { c1=0; lp= &(r[0]); } if (neg) neg=bn_sub_words(&(t[n2]),lp,&(t[0]),n); else { bn_add_words(&(t[n2]),lp,&(t[0]),n); neg=0; } if (l != NULL) { bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); } else { lp= &(t[n2+n]); mp= &(t[n2]); for (i=0; i 0) { lc=c1; do { ll=(r[i]+lc)&BN_MASK2; r[i++]=ll; lc=(lc > ll); } while (lc); } else { lc= -c1; do { ll=r[i]; r[i++]=(ll-lc)&BN_MASK2; lc=(lc > ll); } while (lc); } } if (c2 != 0) /* Add starting at r[1] */ { i=n; if (c2 > 0) { lc=c2; do { ll=(r[i]+lc)&BN_MASK2; r[i++]=ll; lc=(lc > ll); } while (lc); } else { lc= -c2; do { ll=r[i]; r[i++]=(ll-lc)&BN_MASK2; lc=(lc > ll); } while (lc); } } } #endif