#! /usr/bin/env perl # Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # [Re]written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # "[Re]written" was achieved in two major overhauls. In 2004 BODY_* # functions were re-implemented to address P4 performance issue [see # commentary below], and in 2006 the rest was rewritten in order to # gain freedom to liberate licensing terms. # January, September 2004. # # It was noted that Intel IA-32 C compiler generates code which # performs ~30% *faster* on P4 CPU than original *hand-coded* # SHA1 assembler implementation. To address this problem (and # prove that humans are still better than machines:-), the # original code was overhauled, which resulted in following # performance changes: # # compared with original compared with Intel cc # assembler impl. generated code # Pentium -16% +48% # PIII/AMD +8% +16% # P4 +85%(!) +45% # # As you can see Pentium came out as looser:-( Yet I reckoned that # improvement on P4 outweights the loss and incorporate this # re-tuned code to 0.9.7 and later. # ---------------------------------------------------------------- # # August 2009. # # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as # '(c&d) + (b&(c^d))', which allows to accumulate partial results # and lighten "pressure" on scratch registers. This resulted in # >12% performance improvement on contemporary AMD cores (with no # degradation on other CPUs:-). Also, the code was revised to maximize # "distance" between instructions producing input to 'lea' instruction # and the 'lea' instruction itself, which is essential for Intel Atom # core and resulted in ~15% improvement. # October 2010. # # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it # is to offload message schedule denoted by Wt in NIST specification, # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel, # and in SSE2 context was first explored by Dean Gaudet in 2004, see # http://arctic.org/~dean/crypto/sha1.html. Since then several things # have changed that made it interesting again: # # a) XMM units became faster and wider; # b) instruction set became more versatile; # c) an important observation was made by Max Locktykhin, which made # it possible to reduce amount of instructions required to perform # the operation in question, for further details see # http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/. # April 2011. # # Add AVX code path, probably most controversial... The thing is that # switch to AVX alone improves performance by as little as 4% in # comparison to SSSE3 code path. But below result doesn't look like # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as # pair of µ-ops, and it's the additional µ-ops, two per round, that # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with # equivalent 'sh[rl]d' that is responsible for the impressive 5.1 # cycles per processed byte. But 'sh[rl]d' is not something that used # to be fast, nor does it appear to be fast in upcoming Bulldozer # [according to its optimization manual]. Which is why AVX code path # is guarded by *both* AVX and synthetic bit denoting Intel CPUs. # One can argue that it's unfair to AMD, but without 'sh[rl]d' it # makes no sense to keep the AVX code path. If somebody feels that # strongly, it's probably more appropriate to discuss possibility of # using vector rotate XOP on AMD... # March 2014. # # Add support for Intel SHA Extensions. ###################################################################### # Current performance is summarized in following table. Numbers are # CPU clock cycles spent to process single byte (less is better). # # x86 SSSE3 AVX # Pentium 15.7 - # PIII 11.5 - # P4 10.6 - # AMD K8 7.1 - # Core2 7.3 6.0/+22% - # Westmere 7.3 5.5/+33% - # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73% # Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53% # Haswell 6.5 4.3/+51% 4.1(**)/+58% # Skylake 6.4 4.1/+55% 4.1(**)/+55% # Bulldozer 11.6 6.0/+92% # VIA Nano 10.6 7.5/+41% # Atom 12.5 9.3(*)/+35% # Silvermont 14.5 9.9(*)/+46% # Goldmont 8.8 6.7/+30% 1.7(***)/+415% # # (*) Loop is 1056 instructions long and expected result is ~8.25. # The discrepancy is because of front-end limitations, so # called MS-ROM penalties, and on Silvermont even rotate's # limited parallelism. # # (**) As per above comment, the result is for AVX *plus* sh[rl]d. # # (***) SHAEXT result $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); $xmm=$ymm=0; for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } $ymm=1 if ($xmm && `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/ && $1>=2.19); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && $1>=2.03); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" && `ml 2>&1` =~ /Version ([0-9]+)\./ && $1>=10); # first version supporting AVX $ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/ && $2>=3.0); # first version supporting AVX $shaext=$xmm; ### set to zero if compiling for 1.0.1 &external_label("OPENSSL_ia32cap_P") if ($xmm); $A="eax"; $B="ebx"; $C="ecx"; $D="edx"; $E="edi"; $T="esi"; $tmp1="ebp"; @V=($A,$B,$C,$D,$E,$T); $alt=0; # 1 denotes alternative IALU implementation, which performs # 8% *worse* on P4, same on Westmere and Atom, 2% better on # Sandy Bridge... sub BODY_00_15 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("00_15 $n"); &mov($f,$c); # f to hold F_00_19(b,c,d) if ($n==0) { &mov($tmp1,$a); } else { &mov($a,$tmp1); } &rotl($tmp1,5); # tmp1=ROTATE(a,5) &xor($f,$d); &add($tmp1,$e); # tmp1+=e; &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded # with xi, also note that e becomes # f in next round... &and($f,$b); &rotr($b,2); # b=ROTATE(b,30) &xor($f,$d); # f holds F_00_19(b,c,d) &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round &add($f,$tmp1); } # f+=tmp1 else { &add($tmp1,$f); } # f becomes a in next round &mov($tmp1,$a) if ($alt && $n==15); } sub BODY_16_19 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("16_19 $n"); if ($alt) { &xor($c,$d); &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d &xor($f,&swtmp(($n+8)%16)); &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($e,$tmp1); # e+=F_00_19(b,c,d) &xor($c,$d); # restore $c &mov($tmp1,$a); # b in next round &rotr($b,$n==16?2:7); # b=ROTATE(b,30) &mov(&swtmp($n%16),$f); # xi=f &rotl($a,5); # ROTATE(a,5) &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$a); # f+=ROTATE(a,5) } else { &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &and($tmp1,$b); &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) &add($e,$tmp1); # e+=F_00_19(b,c,d) &mov($tmp1,$a); &rotr($b,2); # b=ROTATE(b,30) &mov(&swtmp($n%16),$f); # xi=f &rotl($tmp1,5); # ROTATE(a,5) &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$tmp1); # f+=ROTATE(a,5) } } sub BODY_20_39 { local($n,$a,$b,$c,$d,$e,$f)=@_; local $K=($n<40)?0x6ed9eba1:0xca62c1d6; &comment("20_39 $n"); if ($alt) { &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) &xor($f,&swtmp(($n+8)%16)); &add($e,$tmp1); # e+=F_20_39(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &mov($tmp1,$a); # b in next round &rotr($b,7); # b=ROTATE(b,30) &mov(&swtmp($n%16),$f) if($n<77);# xi=f &rotl($a,5); # ROTATE(a,5) &xor($b,$c) if($n==39);# warm up for BODY_40_59 &and($tmp1,$b) if($n==39); &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round &add($f,$a); # f+=ROTATE(a,5) &rotr($a,5) if ($n==79); } else { &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$c); &xor($f,&swtmp(($n+8)%16)); &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($e,$tmp1); # e+=F_20_39(b,c,d) &rotr($b,2); # b=ROTATE(b,30) &mov($tmp1,$a); &rotl($tmp1,5); # ROTATE(a,5) &mov(&swtmp($n%16),$f) if($n<77);# xi=f &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round &add($f,$tmp1); # f+=ROTATE(a,5) } } sub BODY_40_59 { local($n,$a,$b,$c,$d,$e,$f)=@_; &comment("40_59 $n"); if ($alt) { &add($e,$tmp1); # e+=b&(c^d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &mov($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &xor($c,$d); # restore $c &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &and($tmp1,$c); &rotr($b,7); # b=ROTATE(b,30) &add($e,$tmp1); # e+=c&d &mov($tmp1,$a); # b in next round &mov(&swtmp($n%16),$f); # xi=f &rotl($a,5); # ROTATE(a,5) &xor($b,$c) if ($n<59); &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d) &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d)) &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$a); # f+=ROTATE(a,5) } else { &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d) &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) &xor($tmp1,$d); &xor($f,&swtmp(($n+8)%16)); &and($tmp1,$b); &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd &rotl($f,1); # f=ROTATE(f,1) &add($tmp1,$e); # b&(c^d)+=e &rotr($b,2); # b=ROTATE(b,30) &mov($e,$a); # e becomes volatile &rotl($e,5); # ROTATE(a,5) &mov(&swtmp($n%16),$f); # xi=f &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d)) &mov($tmp1,$c); &add($f,$e); # f+=ROTATE(a,5) &and($tmp1,$d); &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round &add($f,$tmp1); # f+=c&d } } &function_begin("sha1_block_data_order"); if ($xmm) { &static_label("shaext_shortcut") if ($shaext); &static_label("ssse3_shortcut"); &static_label("avx_shortcut") if ($ymm); &static_label("K_XX_XX"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point")); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &mov ($A,&DWP(0,$T)); &mov ($D,&DWP(4,$T)); &test ($D,1<<9); # check SSSE3 bit &jz (&label("x86")); &mov ($C,&DWP(8,$T)); &test ($A,1<<24); # check FXSR bit &jz (&label("x86")); if ($shaext) { &test ($C,1<<29); # check SHA bit &jnz (&label("shaext_shortcut")); } if ($ymm) { &and ($D,1<<28); # mask AVX bit &and ($A,1<<30); # mask "Intel CPU" bit &or ($A,$D); &cmp ($A,1<<28|1<<30); &je (&label("avx_shortcut")); } &jmp (&label("ssse3_shortcut")); &set_label("x86",16); } &mov($tmp1,&wparam(0)); # SHA_CTX *c &mov($T,&wparam(1)); # const void *input &mov($A,&wparam(2)); # size_t num &stack_push(16+3); # allocate X[16] &shl($A,6); &add($A,$T); &mov(&wparam(2),$A); # pointer beyond the end of input &mov($E,&DWP(16,$tmp1));# pre-load E &jmp(&label("loop")); &set_label("loop",16); # copy input chunk to X, but reversing byte order! for ($i=0; $i<16; $i+=4) { &mov($A,&DWP(4*($i+0),$T)); &mov($B,&DWP(4*($i+1),$T)); &mov($C,&DWP(4*($i+2),$T)); &mov($D,&DWP(4*($i+3),$T)); &bswap($A); &bswap($B); &bswap($C); &bswap($D); &mov(&swtmp($i+0),$A); &mov(&swtmp($i+1),$B); &mov(&swtmp($i+2),$C); &mov(&swtmp($i+3),$D); } &mov(&wparam(1),$T); # redundant in 1st spin &mov($A,&DWP(0,$tmp1)); # load SHA_CTX &mov($B,&DWP(4,$tmp1)); &mov($C,&DWP(8,$tmp1)); &mov($D,&DWP(12,$tmp1)); # E is pre-loaded for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check &mov($tmp1,&wparam(0)); # re-load SHA_CTX* &mov($D,&wparam(1)); # D is last "T" and is discarded &add($E,&DWP(0,$tmp1)); # E is last "A"... &add($T,&DWP(4,$tmp1)); &add($A,&DWP(8,$tmp1)); &add($B,&DWP(12,$tmp1)); &add($C,&DWP(16,$tmp1)); &mov(&DWP(0,$tmp1),$E); # update SHA_CTX &add($D,64); # advance input pointer &mov(&DWP(4,$tmp1),$T); &cmp($D,&wparam(2)); # have we reached the end yet? &mov(&DWP(8,$tmp1),$A); &mov($E,$C); # C is last "E" which needs to be "pre-loaded" &mov(&DWP(12,$tmp1),$B); &mov($T,$D); # input pointer &mov(&DWP(16,$tmp1),$C); &jb(&label("loop")); &stack_pop(16+3); &function_end("sha1_block_data_order"); if ($xmm) { if ($shaext) { ###################################################################### # Intel SHA Extensions implementation of SHA1 update function. # my ($ctx,$inp,$num)=("edi","esi","ecx"); my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3)); my @MSG=map("xmm$_",(4..7)); sub sha1rnds4 { my ($dst,$src,$imm)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm); } } sub sha1op38 { my ($opcodelet,$dst,$src)=@_; if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) { &data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2); } } sub sha1nexte { sha1op38(0xc8,@_); } sub sha1msg1 { sha1op38(0xc9,@_); } sub sha1msg2 { sha1op38(0xca,@_); } &function_begin("_sha1_block_data_order_shaext"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &set_label("shaext_shortcut"); &mov ($ctx,&wparam(0)); &mov ("ebx","esp"); &mov ($inp,&wparam(1)); &mov ($num,&wparam(2)); &sub ("esp",32); &movdqu ($ABCD,&QWP(0,$ctx)); &movd ($E,&DWP(16,$ctx)); &and ("esp",-32); &movdqa ($BSWAP,&QWP(0x50,$tmp1)); # byte-n-word swap &movdqu (@MSG[0],&QWP(0,$inp)); &pshufd ($ABCD,$ABCD,0b00011011); # flip word order &movdqu (@MSG[1],&QWP(0x10,$inp)); &pshufd ($E,$E,0b00011011); # flip word order &movdqu (@MSG[2],&QWP(0x20,$inp)); &pshufb (@MSG[0],$BSWAP); &movdqu (@MSG[3],&QWP(0x30,$inp)); &pshufb (@MSG[1],$BSWAP); &pshufb (@MSG[2],$BSWAP); &pshufb (@MSG[3],$BSWAP); &jmp (&label("loop_shaext")); &set_label("loop_shaext",16); &dec ($num); &lea ("eax",&DWP(0x40,$inp)); &movdqa (&QWP(0,"esp"),$E); # offload $E &paddd ($E,@MSG[0]); &cmovne ($inp,"eax"); &movdqa (&QWP(16,"esp"),$ABCD); # offload $ABCD for($i=0;$i<20-4;$i+=2) { &sha1msg1 (@MSG[0],@MSG[1]); &movdqa ($E_,$ABCD); &sha1rnds4 ($ABCD,$E,int($i/5)); # 0-3... &sha1nexte ($E_,@MSG[1]); &pxor (@MSG[0],@MSG[2]); &sha1msg1 (@MSG[1],@MSG[2]); &sha1msg2 (@MSG[0],@MSG[3]); &movdqa ($E,$ABCD); &sha1rnds4 ($ABCD,$E_,int(($i+1)/5)); &sha1nexte ($E,@MSG[2]); &pxor (@MSG[1],@MSG[3]); &sha1msg2 (@MSG[1],@MSG[0]); push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG)); } &movdqu (@MSG[0],&QWP(0,$inp)); &movdqa ($E_,$ABCD); &sha1rnds4 ($ABCD,$E,3); # 64-67 &sha1nexte ($E_,@MSG[1]); &movdqu (@MSG[1],&QWP(0x10,$inp)); &pshufb (@MSG[0],$BSWAP); &movdqa ($E,$ABCD); &sha1rnds4 ($ABCD,$E_,3); # 68-71 &sha1nexte ($E,@MSG[2]); &movdqu (@MSG[2],&QWP(0x20,$inp)); &pshufb (@MSG[1],$BSWAP); &movdqa ($E_,$ABCD); &sha1rnds4 ($ABCD,$E,3); # 72-75 &sha1nexte ($E_,@MSG[3]); &movdqu (@MSG[3],&QWP(0x30,$inp)); &pshufb (@MSG[2],$BSWAP); &movdqa ($E,$ABCD); &sha1rnds4 ($ABCD,$E_,3); # 76-79 &movdqa ($E_,&QWP(0,"esp")); &pshufb (@MSG[3],$BSWAP); &sha1nexte ($E,$E_); &paddd ($ABCD,&QWP(16,"esp")); &jnz (&label("loop_shaext")); &pshufd ($ABCD,$ABCD,0b00011011); &pshufd ($E,$E,0b00011011); &movdqu (&QWP(0,$ctx),$ABCD) &movd (&DWP(16,$ctx),$E); &mov ("esp","ebx"); &function_end("_sha1_block_data_order_shaext"); } ###################################################################### # The SSSE3 implementation. # # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last # 32 elements of the message schedule or Xupdate outputs. First 4 # quadruples are simply byte-swapped input, next 4 are calculated # according to method originally suggested by Dean Gaudet (modulo # being implemented in SSSE3). Once 8 quadruples or 32 elements are # collected, it switches to routine proposed by Max Locktyukhin. # # Calculations inevitably require temporary reqisters, and there are # no %xmm registers left to spare. For this reason part of the ring # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] - # X[-5], and X[4] - X[-4]... # # Another notable optimization is aggressive stack frame compression # aiming to minimize amount of 9-byte instructions... # # Yet another notable optimization is "jumping" $B variable. It means # that there is no register permanently allocated for $B value. This # allowed to eliminate one instruction from body_20_39... # my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 my @V=($A,$B,$C,$D,$E); my $j=0; # hash round my $rx=0; my @T=($T,$tmp1); my $inp; my $_rol=sub { &rol(@_) }; my $_ror=sub { &ror(@_) }; &function_begin("_sha1_block_data_order_ssse3"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &set_label("ssse3_shortcut"); &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask &mov ($E,&wparam(0)); # load argument block &mov ($inp=@T[1],&wparam(1)); &mov ($D,&wparam(2)); &mov (@T[0],"esp"); # stack frame layout # # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area # X[4]+K X[5]+K X[6]+K X[7]+K # X[8]+K X[9]+K X[10]+K X[11]+K # X[12]+K X[13]+K X[14]+K X[15]+K # # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area # X[4] X[5] X[6] X[7] # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 # # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants # K_40_59 K_40_59 K_40_59 K_40_59 # K_60_79 K_60_79 K_60_79 K_60_79 # K_00_19 K_00_19 K_00_19 K_00_19 # pbswap mask # # +192 ctx # argument block # +196 inp # +200 end # +204 esp &sub ("esp",208); &and ("esp",-64); &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants &movdqa (&QWP(112+16,"esp"),@X[5]); &movdqa (&QWP(112+32,"esp"),@X[6]); &shl ($D,6); # len*64 &movdqa (&QWP(112+48,"esp"),@X[3]); &add ($D,$inp); # end of input &movdqa (&QWP(112+64,"esp"),@X[2]); &add ($inp,64); &mov (&DWP(192+0,"esp"),$E); # save argument block &mov (&DWP(192+4,"esp"),$inp); &mov (&DWP(192+8,"esp"),$D); &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp &mov ($A,&DWP(0,$E)); # load context &mov ($B,&DWP(4,$E)); &mov ($C,&DWP(8,$E)); &mov ($D,&DWP(12,$E)); &mov ($E,&DWP(16,$E)); &mov (@T[0],$B); # magic seed &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] &movdqu (@X[-3&7],&QWP(-48,$inp)); &movdqu (@X[-2&7],&QWP(-32,$inp)); &movdqu (@X[-1&7],&QWP(-16,$inp)); &pshufb (@X[-4&7],@X[2]); # byte swap &pshufb (@X[-3&7],@X[2]); &pshufb (@X[-2&7],@X[2]); &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot &pshufb (@X[-1&7],@X[2]); &paddd (@X[-4&7],@X[3]); # add K_00_19 &paddd (@X[-3&7],@X[3]); &paddd (@X[-2&7],@X[3]); &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU &psubd (@X[-4&7],@X[3]); # restore X[] &movdqa (&QWP(0+16,"esp"),@X[-3&7]); &psubd (@X[-3&7],@X[3]); &movdqa (&QWP(0+32,"esp"),@X[-2&7]); &mov (@T[1],$C); &psubd (@X[-2&7],@X[3]); &xor (@T[1],$D); &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); &and (@T[0],@T[1]); &jmp (&label("loop")); ###################################################################### # SSE instruction sequence is first broken to groups of independent # instructions, independent in respect to their inputs and shifter # (not all architectures have more than one). Then IALU instructions # are "knitted in" between the SSE groups. Distance is maintained for # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer # [which allegedly also implements SSSE3]... # # Temporary registers usage. X[2] is volatile at the entry and at the # end is restored from backtrace ring buffer. X[3] is expected to # contain current K_XX_XX constant and is used to calculate X[-1]+K # from previous round, it becomes volatile the moment the value is # saved to stack for transfer to IALU. X[4] becomes volatile whenever # X[-4] is accumulated and offloaded to backtrace ring buffer, at the # end it is loaded with next K_XX_XX [which becomes X[3] in next # round]... # sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)); &punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); &movdqa (@X[2],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[3],@X[-1&7]); &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer eval(shift(@insns)); # rol eval(shift(@insns)); &psrldq (@X[2],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); # ror &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &movdqa (@X[4],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &movdqa (@X[2],@X[0]); eval(shift(@insns)); &pslldq (@X[4],12); # "X[0]"<<96, extract one dword &paddd (@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); &psrld (@X[2],31); eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (@X[3],@X[4]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psrld (@X[4],30); eval(shift(@insns)); eval(shift(@insns)); # ror &por (@X[0],@X[2]); # "X[0]"<<<=1 eval(shift(@insns)); &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); &pslld (@X[3],2); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[4]); &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2 &pshufd (@X[1],@X[-3&7],0xee) if ($Xi<7); # was &movdqa (@X[1],@X[-2&7]) &pshufd (@X[3],@X[-1&7],0xee) if ($Xi==7); eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_ssse3_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); # body_20_39 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" &punpcklqdq(@X[2],@X[-1&7]); # compose "X[-6]", was &palignr(@X[2],@X[-2&7],8) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] =~ /_rol/); if ($Xi%5) { &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... } else { # ... or load next one &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); } eval(shift(@insns)); # ror &paddd (@X[3],@X[-1&7]); eval(shift(@insns)); &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &movdqa (@X[2],@X[0]); &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &pslld (@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); &psrld (@X[2],30); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); eval(shift(@insns)) if (@insns[1] =~ /_rol/); eval(shift(@insns)) if (@insns[0] =~ /_rol/); &por (@X[0],@X[2]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror &pshufd (@X[3],@X[-1],0xee) if ($Xi<19); # was &movdqa (@X[3],@X[0]) eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_ssse3_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[3],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &mov ($inp=@T[1],&DWP(192+4,"esp")); &cmp ($inp,&DWP(192+8,"esp")); &je (&label("done")); &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask &movdqu (@X[-4&7],&QWP(0,$inp)); # load input &movdqu (@X[-3&7],&QWP(16,$inp)); &movdqu (@X[-2&7],&QWP(32,$inp)); &movdqu (@X[-1&7],&QWP(48,$inp)); &add ($inp,64); &pshufb (@X[-4&7],@X[2]); # byte swap &mov (&DWP(192+4,"esp"),$inp); &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot $Xi=0; } sub Xloop_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &pshufb (@X[($Xi-3)&7],@X[2]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddd (@X[($Xi-4)&7],@X[3]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &psubd (@X[($Xi-4)&7],@X[3]); foreach (@insns) { eval; } $Xi++; } sub Xtail_ssse3() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } sub body_00_19 () { # ((c^d)&b)^d # on start @T[0]=(c^d)&b return &body_20_39() if ($rx==19); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&$_ror ($b,$j?7:2);', # $b>>>2 '&xor (@T[0],$d);', '&mov (@T[1],$a);', # $b in next round '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer '&xor ($b,$c);', # $c^$d for next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&and (@T[1],$b);', # ($b&($c^$d)) for next round '&xor ($b,$c);', # restore $b '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub body_20_39 () { # b^d^c # on entry @T[0]=b^d return &body_40_59() if ($rx==39); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer '&xor (@T[0],$d) if($j==19);'. '&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c) '&mov (@T[1],$a);', # $b in next round '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round '&$_ror ($b,7);', # $b>>>2 '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub body_40_59 () { # ((b^c)&(c^d))^c # on entry @T[0]=(b^c), (c^=d) $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer '&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d) '&xor ($c,$d) if ($j>=40);', # restore $c '&$_ror ($b,7);', # $b>>>2 '&mov (@T[1],$a);', # $b for next round '&xor (@T[0],$c);', '&$_rol ($a,5);', '&add ($e,@T[0]);', '&xor (@T[1],$c) if ($j==59);'. '&xor (@T[1],$b) if ($j< 59);', # b^c for next round '&xor ($b,$c) if ($j< 59);', # c^d for next round '&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } ###### sub bodyx_00_19 () { # ((c^d)&b)^d # on start @T[0]=(b&c)^(~b&d), $e+=X[]+K return &bodyx_20_39() if ($rx==19); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&rorx ($b,$b,2) if ($j==0);'. # $b>>>2 '&rorx ($b,@T[1],7) if ($j!=0);', # $b>>>2 '&lea ($e,&DWP(0,$e,@T[0]));', '&rorx (@T[0],$a,5);', '&andn (@T[1],$a,$c);', '&and ($a,$b)', '&add ($d,&DWP(4*(($j+1)&15),"esp"));', # X[]+K xfer '&xor (@T[1],$a)', '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub bodyx_20_39 () { # b^d^c # on start $b=b^c^d return &bodyx_40_59() if ($rx==39); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&add ($e,($j==19?@T[0]:$b))', '&rorx ($b,@T[1],7);', # $b>>>2 '&rorx (@T[0],$a,5);', '&xor ($a,$b) if ($j<79);', '&add ($d,&DWP(4*(($j+1)&15),"esp")) if ($j<79);', # X[]+K xfer '&xor ($a,$c) if ($j<79);', '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } sub bodyx_40_59 () { # ((b^c)&(c^d))^c # on start $b=((b^c)&(c^d))^c return &bodyx_20_39() if ($rx==59); $rx++; ( '($a,$b,$c,$d,$e)=@V;'. '&rorx (@T[0],$a,5)', '&lea ($e,&DWP(0,$e,$b))', '&rorx ($b,@T[1],7)', # $b>>>2 '&add ($d,&DWP(4*(($j+1)&15),"esp"))', # X[]+K xfer '&mov (@T[1],$c)', '&xor ($a,$b)', # b^c for next round '&xor (@T[1],$b)', # c^d for next round '&and ($a,@T[1])', '&add ($e,@T[0])', '&xor ($a,$b)' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' ); } &set_label("loop",16); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_16_31(\&body_00_19); &Xupdate_ssse3_32_79(\&body_00_19); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_20_39); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_40_59); &Xupdate_ssse3_32_79(\&body_20_39); &Xuplast_ssse3_80(\&body_20_39); # can jump to "done" $saved_j=$j; @saved_V=@V; &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &Xloop_ssse3(\&body_20_39); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov (&DWP(8,@T[1]),$C); &mov ($B,$C); &mov (&DWP(12,@T[1]),$D); &xor ($B,$D); &mov (&DWP(16,@T[1]),$E); &mov (@T[1],@T[0]); &pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]); &and (@T[0],$B); &mov ($B,$T[1]); &jmp (&label("loop")); &set_label("done",16); $j=$saved_j; @V=@saved_V; &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &Xtail_ssse3(\&body_20_39); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &mov ("esp",&DWP(192+12,"esp")); # restore %esp &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov (&DWP(8,@T[1]),$C); &mov (&DWP(12,@T[1]),$D); &mov (&DWP(16,@T[1]),$E); &function_end("_sha1_block_data_order_ssse3"); $rx=0; # reset if ($ymm) { my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 my @V=($A,$B,$C,$D,$E); my $j=0; # hash round my @T=($T,$tmp1); my $inp; my $_rol=sub { &shld(@_[0],@_) }; my $_ror=sub { &shrd(@_[0],@_) }; &function_begin("_sha1_block_data_order_avx"); &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($tmp1); &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); &set_label("avx_shortcut"); &vzeroall(); &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask &mov ($E,&wparam(0)); # load argument block &mov ($inp=@T[1],&wparam(1)); &mov ($D,&wparam(2)); &mov (@T[0],"esp"); # stack frame layout # # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area # X[4]+K X[5]+K X[6]+K X[7]+K # X[8]+K X[9]+K X[10]+K X[11]+K # X[12]+K X[13]+K X[14]+K X[15]+K # # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area # X[4] X[5] X[6] X[7] # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 # # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants # K_40_59 K_40_59 K_40_59 K_40_59 # K_60_79 K_60_79 K_60_79 K_60_79 # K_00_19 K_00_19 K_00_19 K_00_19 # pbswap mask # # +192 ctx # argument block # +196 inp # +200 end # +204 esp &sub ("esp",208); &and ("esp",-64); &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants &vmovdqa(&QWP(112+16,"esp"),@X[5]); &vmovdqa(&QWP(112+32,"esp"),@X[6]); &shl ($D,6); # len*64 &vmovdqa(&QWP(112+48,"esp"),@X[3]); &add ($D,$inp); # end of input &vmovdqa(&QWP(112+64,"esp"),@X[2]); &add ($inp,64); &mov (&DWP(192+0,"esp"),$E); # save argument block &mov (&DWP(192+4,"esp"),$inp); &mov (&DWP(192+8,"esp"),$D); &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp &mov ($A,&DWP(0,$E)); # load context &mov ($B,&DWP(4,$E)); &mov ($C,&DWP(8,$E)); &mov ($D,&DWP(12,$E)); &mov ($E,&DWP(16,$E)); &mov (@T[0],$B); # magic seed &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] &vmovdqu(@X[-3&7],&QWP(-48,$inp)); &vmovdqu(@X[-2&7],&QWP(-32,$inp)); &vmovdqu(@X[-1&7],&QWP(-16,$inp)); &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap &vpshufb(@X[-3&7],@X[-3&7],@X[2]); &vpshufb(@X[-2&7],@X[-2&7],@X[2]); &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot &vpshufb(@X[-1&7],@X[-1&7],@X[2]); &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19 &vpaddd (@X[1],@X[-3&7],@X[3]); &vpaddd (@X[2],@X[-2&7],@X[3]); &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU &mov (@T[1],$C); &vmovdqa(&QWP(0+16,"esp"),@X[1]); &xor (@T[1],$D); &vmovdqa(&QWP(0+32,"esp"),@X[2]); &and (@T[0],@T[1]); &jmp (&label("loop")); sub Xupdate_avx_16_31() # recall that $Xi starts with 4 { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 40 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[3],@X[3],@X[-1&7]); &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer eval(shift(@insns)); eval(shift(@insns)); &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@X[2],@X[0],31); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword &vpaddd (@X[0],@X[0],@X[0]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpsrld (@X[3],@X[4],30); &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpslld (@X[4],@X[4],2); &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[3]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2 eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions [if any] $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xupdate_avx_32_79() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions my ($a,$b,$c,$d,$e); &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]" &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer eval(shift(@insns)); eval(shift(@insns)); if ($Xi%5) { &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... } else { # ... or load next one &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); } &vpaddd (@X[3],@X[3],@X[-1&7]); eval(shift(@insns)); # ror eval(shift(@insns)); &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]" eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol &vpsrld (@X[2],@X[0],30); &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpslld (@X[0],@X[0],2); eval(shift(@insns)); # body_20_39 eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2 eval(shift(@insns)); # body_20_39 eval(shift(@insns)); &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer eval(shift(@insns)); eval(shift(@insns)); # rol eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); # ror eval(shift(@insns)); foreach (@insns) { eval; } # remaining instructions $Xi++; push(@X,shift(@X)); # "rotate" X[] } sub Xuplast_avx_80() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); &vpaddd (@X[3],@X[3],@X[-1&7]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU foreach (@insns) { eval; } # remaining instructions &mov ($inp=@T[1],&DWP(192+4,"esp")); &cmp ($inp,&DWP(192+8,"esp")); &je (&label("done")); &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input &vmovdqu(@X[-3&7],&QWP(16,$inp)); &vmovdqu(@X[-2&7],&QWP(32,$inp)); &vmovdqu(@X[-1&7],&QWP(48,$inp)); &add ($inp,64); &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap &mov (&DWP(192+4,"esp"),$inp); &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot $Xi=0; } sub Xloop_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); eval(shift(@insns)); eval(shift(@insns)); &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); eval(shift(@insns)); eval(shift(@insns)); &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU eval(shift(@insns)); eval(shift(@insns)); foreach (@insns) { eval; } $Xi++; } sub Xtail_avx() { use integer; my $body = shift; my @insns = (&$body,&$body,&$body,&$body); # 32 instructions my ($a,$b,$c,$d,$e); foreach (@insns) { eval; } } &set_label("loop",16); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_16_31(\&body_00_19); &Xupdate_avx_32_79(\&body_00_19); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_20_39); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_40_59); &Xupdate_avx_32_79(\&body_20_39); &Xuplast_avx_80(\&body_20_39); # can jump to "done" $saved_j=$j; @saved_V=@V; &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &Xloop_avx(\&body_20_39); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov ($B,$C); &mov (&DWP(8,@T[1]),$C); &xor ($B,$D); &mov (&DWP(12,@T[1]),$D); &mov (&DWP(16,@T[1]),$E); &mov (@T[1],@T[0]); &and (@T[0],$B); &mov ($B,@T[1]); &jmp (&label("loop")); &set_label("done",16); $j=$saved_j; @V=@saved_V; &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &Xtail_avx(\&body_20_39); &vzeroall(); &mov (@T[1],&DWP(192,"esp")); # update context &add ($A,&DWP(0,@T[1])); &mov ("esp",&DWP(192+12,"esp")); # restore %esp &add (@T[0],&DWP(4,@T[1])); # $b &add ($C,&DWP(8,@T[1])); &mov (&DWP(0,@T[1]),$A); &add ($D,&DWP(12,@T[1])); &mov (&DWP(4,@T[1]),@T[0]); &add ($E,&DWP(16,@T[1])); &mov (&DWP(8,@T[1]),$C); &mov (&DWP(12,@T[1]),$D); &mov (&DWP(16,@T[1]),$E); &function_end("_sha1_block_data_order_avx"); } &set_label("K_XX_XX",64); &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0); } &asciz("SHA1 block transform for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT;