/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "rsa_locl.h" /* X9.31 RSA key derivation and generation */ int RSA_X931_derive_ex(RSA *rsa, BIGNUM *p1, BIGNUM *p2, BIGNUM *q1, BIGNUM *q2, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *Xq1, const BIGNUM *Xq2, const BIGNUM *Xq, const BIGNUM *e, BN_GENCB *cb) { BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL; BN_CTX *ctx = NULL, *ctx2 = NULL; int ret = 0; if (!rsa) goto err; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); r0 = BN_CTX_get(ctx); r1 = BN_CTX_get(ctx); r2 = BN_CTX_get(ctx); r3 = BN_CTX_get(ctx); if (r3 == NULL) goto err; if (!rsa->e) { rsa->e = BN_dup(e); if (!rsa->e) goto err; } else { e = rsa->e; } /* * If not all parameters present only calculate what we can. This allows * test programs to output selective parameters. */ if (Xp && rsa->p == NULL) { rsa->p = BN_new(); if (rsa->p == NULL) goto err; if (!BN_X931_derive_prime_ex(rsa->p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) goto err; } if (Xq && rsa->q == NULL) { rsa->q = BN_new(); if (rsa->q == NULL) goto err; if (!BN_X931_derive_prime_ex(rsa->q, q1, q2, Xq, Xq1, Xq2, e, ctx, cb)) goto err; } if (rsa->p == NULL || rsa->q == NULL) { BN_CTX_end(ctx); BN_CTX_free(ctx); return 2; } /* * Since both primes are set we can now calculate all remaining * components. */ /* calculate n */ rsa->n = BN_new(); if (rsa->n == NULL) goto err; if (!BN_mul(rsa->n, rsa->p, rsa->q, ctx)) goto err; /* calculate d */ if (!BN_sub(r1, rsa->p, BN_value_one())) goto err; /* p-1 */ if (!BN_sub(r2, rsa->q, BN_value_one())) goto err; /* q-1 */ if (!BN_mul(r0, r1, r2, ctx)) goto err; /* (p-1)(q-1) */ if (!BN_gcd(r3, r1, r2, ctx)) goto err; if (!BN_div(r0, NULL, r0, r3, ctx)) goto err; /* LCM((p-1)(q-1)) */ ctx2 = BN_CTX_new(); if (ctx2 == NULL) goto err; rsa->d = BN_mod_inverse(NULL, rsa->e, r0, ctx2); /* d */ if (rsa->d == NULL) goto err; /* calculate d mod (p-1) */ rsa->dmp1 = BN_new(); if (rsa->dmp1 == NULL) goto err; if (!BN_mod(rsa->dmp1, rsa->d, r1, ctx)) goto err; /* calculate d mod (q-1) */ rsa->dmq1 = BN_new(); if (rsa->dmq1 == NULL) goto err; if (!BN_mod(rsa->dmq1, rsa->d, r2, ctx)) goto err; /* calculate inverse of q mod p */ rsa->iqmp = BN_mod_inverse(NULL, rsa->q, rsa->p, ctx2); if (rsa->iqmp == NULL) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); BN_CTX_free(ctx2); return ret; } int RSA_X931_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e, BN_GENCB *cb) { int ok = 0; BIGNUM *Xp = NULL, *Xq = NULL; BN_CTX *ctx = NULL; ctx = BN_CTX_new(); if (ctx == NULL) goto error; BN_CTX_start(ctx); Xp = BN_CTX_get(ctx); Xq = BN_CTX_get(ctx); if (Xq == NULL) goto error; if (!BN_X931_generate_Xpq(Xp, Xq, bits, ctx)) goto error; rsa->p = BN_new(); rsa->q = BN_new(); if (rsa->p == NULL || rsa->q == NULL) goto error; /* Generate two primes from Xp, Xq */ if (!BN_X931_generate_prime_ex(rsa->p, NULL, NULL, NULL, NULL, Xp, e, ctx, cb)) goto error; if (!BN_X931_generate_prime_ex(rsa->q, NULL, NULL, NULL, NULL, Xq, e, ctx, cb)) goto error; /* * Since rsa->p and rsa->q are valid this call will just derive remaining * RSA components. */ if (!RSA_X931_derive_ex(rsa, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, e, cb)) goto error; ok = 1; error: BN_CTX_end(ctx); BN_CTX_free(ctx); if (ok) return 1; return 0; }