/* * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #ifndef OPENSSL_NO_SRP #include #endif #include "../ssl/ssl_locl.h" #include "internal/sockets.h" #include "internal/nelem.h" #include "handshake_helper.h" #include "testutil.h" #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) #include #endif HANDSHAKE_RESULT *HANDSHAKE_RESULT_new(void) { HANDSHAKE_RESULT *ret; TEST_ptr(ret = OPENSSL_zalloc(sizeof(*ret))); return ret; } void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result) { if (result == NULL) return; OPENSSL_free(result->client_npn_negotiated); OPENSSL_free(result->server_npn_negotiated); OPENSSL_free(result->client_alpn_negotiated); OPENSSL_free(result->server_alpn_negotiated); OPENSSL_free(result->result_session_ticket_app_data); sk_X509_NAME_pop_free(result->server_ca_names, X509_NAME_free); sk_X509_NAME_pop_free(result->client_ca_names, X509_NAME_free); OPENSSL_free(result->cipher); OPENSSL_free(result); } /* * Since there appears to be no way to extract the sent/received alert * from the SSL object directly, we use the info callback and stash * the result in ex_data. */ typedef struct handshake_ex_data_st { int alert_sent; int num_fatal_alerts_sent; int alert_received; int session_ticket_do_not_call; ssl_servername_t servername; } HANDSHAKE_EX_DATA; typedef struct ctx_data_st { unsigned char *npn_protocols; size_t npn_protocols_len; unsigned char *alpn_protocols; size_t alpn_protocols_len; char *srp_user; char *srp_password; char *session_ticket_app_data; } CTX_DATA; /* |ctx_data| itself is stack-allocated. */ static void ctx_data_free_data(CTX_DATA *ctx_data) { OPENSSL_free(ctx_data->npn_protocols); ctx_data->npn_protocols = NULL; OPENSSL_free(ctx_data->alpn_protocols); ctx_data->alpn_protocols = NULL; OPENSSL_free(ctx_data->srp_user); ctx_data->srp_user = NULL; OPENSSL_free(ctx_data->srp_password); ctx_data->srp_password = NULL; OPENSSL_free(ctx_data->session_ticket_app_data); ctx_data->session_ticket_app_data = NULL; } static int ex_data_idx; static void info_cb(const SSL *s, int where, int ret) { if (where & SSL_CB_ALERT) { HANDSHAKE_EX_DATA *ex_data = (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); if (where & SSL_CB_WRITE) { ex_data->alert_sent = ret; if (strcmp(SSL_alert_type_string(ret), "F") == 0 || strcmp(SSL_alert_desc_string(ret), "CN") == 0) ex_data->num_fatal_alerts_sent++; } else { ex_data->alert_received = ret; } } } /* Select the appropriate server CTX. * Returns SSL_TLSEXT_ERR_OK if a match was found. * If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch. * Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch. * An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK. */ static int select_server_ctx(SSL *s, void *arg, int ignore) { const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); HANDSHAKE_EX_DATA *ex_data = (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); if (servername == NULL) { ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; return SSL_TLSEXT_ERR_NOACK; } if (strcmp(servername, "server2") == 0) { SSL_CTX *new_ctx = (SSL_CTX*)arg; SSL_set_SSL_CTX(s, new_ctx); /* * Copy over all the SSL_CTX options - reasonable behavior * allows testing of cases where the options between two * contexts differ/conflict */ SSL_clear_options(s, 0xFFFFFFFFL); SSL_set_options(s, SSL_CTX_get_options(new_ctx)); ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; return SSL_TLSEXT_ERR_OK; } else if (strcmp(servername, "server1") == 0) { ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; return SSL_TLSEXT_ERR_OK; } else if (ignore) { ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; return SSL_TLSEXT_ERR_NOACK; } else { /* Don't set an explicit alert, to test library defaults. */ return SSL_TLSEXT_ERR_ALERT_FATAL; } } static int client_hello_select_server_ctx(SSL *s, void *arg, int ignore) { const char *servername; const unsigned char *p; size_t len, remaining; HANDSHAKE_EX_DATA *ex_data = (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); /* * The server_name extension was given too much extensibility when it * was written, so parsing the normal case is a bit complex. */ if (!SSL_client_hello_get0_ext(s, TLSEXT_TYPE_server_name, &p, &remaining) || remaining <= 2) return 0; /* Extract the length of the supplied list of names. */ len = (*(p++) << 8); len += *(p++); if (len + 2 != remaining) return 0; remaining = len; /* * The list in practice only has a single element, so we only consider * the first one. */ if (remaining == 0 || *p++ != TLSEXT_NAMETYPE_host_name) return 0; remaining--; /* Now we can finally pull out the byte array with the actual hostname. */ if (remaining <= 2) return 0; len = (*(p++) << 8); len += *(p++); if (len + 2 > remaining) return 0; remaining = len; servername = (const char *)p; if (len == strlen("server2") && strncmp(servername, "server2", len) == 0) { SSL_CTX *new_ctx = arg; SSL_set_SSL_CTX(s, new_ctx); /* * Copy over all the SSL_CTX options - reasonable behavior * allows testing of cases where the options between two * contexts differ/conflict */ SSL_clear_options(s, 0xFFFFFFFFL); SSL_set_options(s, SSL_CTX_get_options(new_ctx)); ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; return 1; } else if (len == strlen("server1") && strncmp(servername, "server1", len) == 0) { ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; return 1; } else if (ignore) { ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; return 1; } return 0; } /* * (RFC 6066): * If the server understood the ClientHello extension but * does not recognize the server name, the server SHOULD take one of two * actions: either abort the handshake by sending a fatal-level * unrecognized_name(112) alert or continue the handshake. * * This behaviour is up to the application to configure; we test both * configurations to ensure the state machine propagates the result * correctly. */ static int servername_ignore_cb(SSL *s, int *ad, void *arg) { return select_server_ctx(s, arg, 1); } static int servername_reject_cb(SSL *s, int *ad, void *arg) { return select_server_ctx(s, arg, 0); } static int client_hello_ignore_cb(SSL *s, int *al, void *arg) { if (!client_hello_select_server_ctx(s, arg, 1)) { *al = SSL_AD_UNRECOGNIZED_NAME; return SSL_CLIENT_HELLO_ERROR; } return SSL_CLIENT_HELLO_SUCCESS; } static int client_hello_reject_cb(SSL *s, int *al, void *arg) { if (!client_hello_select_server_ctx(s, arg, 0)) { *al = SSL_AD_UNRECOGNIZED_NAME; return SSL_CLIENT_HELLO_ERROR; } return SSL_CLIENT_HELLO_SUCCESS; } static int client_hello_nov12_cb(SSL *s, int *al, void *arg) { int ret; unsigned int v; const unsigned char *p; v = SSL_client_hello_get0_legacy_version(s); if (v > TLS1_2_VERSION || v < SSL3_VERSION) { *al = SSL_AD_PROTOCOL_VERSION; return SSL_CLIENT_HELLO_ERROR; } (void)SSL_client_hello_get0_session_id(s, &p); if (p == NULL || SSL_client_hello_get0_random(s, &p) == 0 || SSL_client_hello_get0_ciphers(s, &p) == 0 || SSL_client_hello_get0_compression_methods(s, &p) == 0) { *al = SSL_AD_INTERNAL_ERROR; return SSL_CLIENT_HELLO_ERROR; } ret = client_hello_select_server_ctx(s, arg, 0); SSL_set_max_proto_version(s, TLS1_1_VERSION); if (!ret) { *al = SSL_AD_UNRECOGNIZED_NAME; return SSL_CLIENT_HELLO_ERROR; } return SSL_CLIENT_HELLO_SUCCESS; } static unsigned char dummy_ocsp_resp_good_val = 0xff; static unsigned char dummy_ocsp_resp_bad_val = 0xfe; static int server_ocsp_cb(SSL *s, void *arg) { unsigned char *resp; resp = OPENSSL_malloc(1); if (resp == NULL) return SSL_TLSEXT_ERR_ALERT_FATAL; /* * For the purposes of testing we just send back a dummy OCSP response */ *resp = *(unsigned char *)arg; if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1)) return SSL_TLSEXT_ERR_ALERT_FATAL; return SSL_TLSEXT_ERR_OK; } static int client_ocsp_cb(SSL *s, void *arg) { const unsigned char *resp; int len; len = SSL_get_tlsext_status_ocsp_resp(s, &resp); if (len != 1 || *resp != dummy_ocsp_resp_good_val) return 0; return 1; } static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) { X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION); return 0; } static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) { return 1; } static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) { return 0; } static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) { HANDSHAKE_EX_DATA *ex_data = (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); ex_data->session_ticket_do_not_call = 1; return 0; } /* Parse the comma-separated list into TLS format. */ static int parse_protos(const char *protos, unsigned char **out, size_t *outlen) { size_t len, i, prefix; len = strlen(protos); /* Should never have reuse. */ if (!TEST_ptr_null(*out) /* Test values are small, so we omit length limit checks. */ || !TEST_ptr(*out = OPENSSL_malloc(len + 1))) return 0; *outlen = len + 1; /* * foo => '3', 'f', 'o', 'o' * foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r' */ memcpy(*out + 1, protos, len); prefix = 0; i = prefix + 1; while (i <= len) { if ((*out)[i] == ',') { if (!TEST_int_gt(i - 1, prefix)) goto err; (*out)[prefix] = (unsigned char)(i - 1 - prefix); prefix = i; } i++; } if (!TEST_int_gt(len, prefix)) goto err; (*out)[prefix] = (unsigned char)(len - prefix); return 1; err: OPENSSL_free(*out); *out = NULL; return 0; } #ifndef OPENSSL_NO_NEXTPROTONEG /* * The client SHOULD select the first protocol advertised by the server that it * also supports. In the event that the client doesn't support any of server's * protocols, or the server doesn't advertise any, it SHOULD select the first * protocol that it supports. */ static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { CTX_DATA *ctx_data = (CTX_DATA*)(arg); int ret; ret = SSL_select_next_proto(out, outlen, in, inlen, ctx_data->npn_protocols, ctx_data->npn_protocols_len); /* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */ return TEST_true(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP) ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_ALERT_FATAL; } static int server_npn_cb(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { CTX_DATA *ctx_data = (CTX_DATA*)(arg); *data = ctx_data->npn_protocols; *len = ctx_data->npn_protocols_len; return SSL_TLSEXT_ERR_OK; } #endif /* * The server SHOULD select the most highly preferred protocol that it supports * and that is also advertised by the client. In the event that the server * supports no protocols that the client advertises, then the server SHALL * respond with a fatal "no_application_protocol" alert. */ static int server_alpn_cb(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { CTX_DATA *ctx_data = (CTX_DATA*)(arg); int ret; /* SSL_select_next_proto isn't const-correct... */ unsigned char *tmp_out; /* * The result points either to |in| or to |ctx_data->alpn_protocols|. * The callback is allowed to point to |in| or to a long-lived buffer, * so we can return directly without storing a copy. */ ret = SSL_select_next_proto(&tmp_out, outlen, ctx_data->alpn_protocols, ctx_data->alpn_protocols_len, in, inlen); *out = tmp_out; /* Unlike NPN, we don't tolerate a mismatch. */ return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_ALERT_FATAL; } #ifndef OPENSSL_NO_SRP static char *client_srp_cb(SSL *s, void *arg) { CTX_DATA *ctx_data = (CTX_DATA*)(arg); return OPENSSL_strdup(ctx_data->srp_password); } static int server_srp_cb(SSL *s, int *ad, void *arg) { CTX_DATA *ctx_data = (CTX_DATA*)(arg); if (strcmp(ctx_data->srp_user, SSL_get_srp_username(s)) != 0) return SSL3_AL_FATAL; if (SSL_set_srp_server_param_pw(s, ctx_data->srp_user, ctx_data->srp_password, "2048" /* known group */) < 0) { *ad = SSL_AD_INTERNAL_ERROR; return SSL3_AL_FATAL; } return SSL_ERROR_NONE; } #endif /* !OPENSSL_NO_SRP */ static int generate_session_ticket_cb(SSL *s, void *arg) { CTX_DATA *server_ctx_data = arg; SSL_SESSION *ss = SSL_get_session(s); char *app_data = server_ctx_data->session_ticket_app_data; if (ss == NULL || app_data == NULL) return 0; return SSL_SESSION_set1_ticket_appdata(ss, app_data, strlen(app_data)); } static int decrypt_session_ticket_cb(SSL *s, SSL_SESSION *ss, const unsigned char *keyname, size_t keyname_len, SSL_TICKET_STATUS status, void *arg) { switch (status) { case SSL_TICKET_EMPTY: case SSL_TICKET_NO_DECRYPT: return SSL_TICKET_RETURN_IGNORE_RENEW; case SSL_TICKET_SUCCESS: return SSL_TICKET_RETURN_USE; case SSL_TICKET_SUCCESS_RENEW: return SSL_TICKET_RETURN_USE_RENEW; default: break; } return SSL_TICKET_RETURN_ABORT; } /* * Configure callbacks and other properties that can't be set directly * in the server/client CONF. */ static int configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, const SSL_TEST_CTX *test, const SSL_TEST_EXTRA_CONF *extra, CTX_DATA *server_ctx_data, CTX_DATA *server2_ctx_data, CTX_DATA *client_ctx_data) { unsigned char *ticket_keys; size_t ticket_key_len; if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server_ctx, test->max_fragment_size), 1)) goto err; if (server2_ctx != NULL) { if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server2_ctx, test->max_fragment_size), 1)) goto err; } if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(client_ctx, test->max_fragment_size), 1)) goto err; switch (extra->client.verify_callback) { case SSL_TEST_VERIFY_ACCEPT_ALL: SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb, NULL); break; case SSL_TEST_VERIFY_REJECT_ALL: SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb, NULL); break; case SSL_TEST_VERIFY_NONE: break; } switch (extra->client.max_fragment_len_mode) { case TLSEXT_max_fragment_length_512: case TLSEXT_max_fragment_length_1024: case TLSEXT_max_fragment_length_2048: case TLSEXT_max_fragment_length_4096: case TLSEXT_max_fragment_length_DISABLED: SSL_CTX_set_tlsext_max_fragment_length( client_ctx, extra->client.max_fragment_len_mode); break; } /* * Link the two contexts for SNI purposes. * Also do ClientHello callbacks here, as setting both ClientHello and SNI * is bad. */ switch (extra->server.servername_callback) { case SSL_TEST_SERVERNAME_IGNORE_MISMATCH: SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb); SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); break; case SSL_TEST_SERVERNAME_REJECT_MISMATCH: SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb); SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); break; case SSL_TEST_SERVERNAME_CB_NONE: break; case SSL_TEST_SERVERNAME_CLIENT_HELLO_IGNORE_MISMATCH: SSL_CTX_set_client_hello_cb(server_ctx, client_hello_ignore_cb, server2_ctx); break; case SSL_TEST_SERVERNAME_CLIENT_HELLO_REJECT_MISMATCH: SSL_CTX_set_client_hello_cb(server_ctx, client_hello_reject_cb, server2_ctx); break; case SSL_TEST_SERVERNAME_CLIENT_HELLO_NO_V12: SSL_CTX_set_client_hello_cb(server_ctx, client_hello_nov12_cb, server2_ctx); } if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) { SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp); SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb); SSL_CTX_set_tlsext_status_arg(client_ctx, NULL); SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb); SSL_CTX_set_tlsext_status_arg(server_ctx, ((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE) ? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val)); } /* * The initial_ctx/session_ctx always handles the encrypt/decrypt of the * session ticket. This ticket_key callback is assigned to the second * session (assigned via SNI), and should never be invoked */ if (server2_ctx != NULL) SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx, do_not_call_session_ticket_cb); if (extra->server.broken_session_ticket) { SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb); } #ifndef OPENSSL_NO_NEXTPROTONEG if (extra->server.npn_protocols != NULL) { if (!TEST_true(parse_protos(extra->server.npn_protocols, &server_ctx_data->npn_protocols, &server_ctx_data->npn_protocols_len))) goto err; SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb, server_ctx_data); } if (extra->server2.npn_protocols != NULL) { if (!TEST_true(parse_protos(extra->server2.npn_protocols, &server2_ctx_data->npn_protocols, &server2_ctx_data->npn_protocols_len)) || !TEST_ptr(server2_ctx)) goto err; SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb, server2_ctx_data); } if (extra->client.npn_protocols != NULL) { if (!TEST_true(parse_protos(extra->client.npn_protocols, &client_ctx_data->npn_protocols, &client_ctx_data->npn_protocols_len))) goto err; SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb, client_ctx_data); } #endif if (extra->server.alpn_protocols != NULL) { if (!TEST_true(parse_protos(extra->server.alpn_protocols, &server_ctx_data->alpn_protocols, &server_ctx_data->alpn_protocols_len))) goto err; SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data); } if (extra->server2.alpn_protocols != NULL) { if (!TEST_ptr(server2_ctx) || !TEST_true(parse_protos(extra->server2.alpn_protocols, &server2_ctx_data->alpn_protocols, &server2_ctx_data->alpn_protocols_len ))) goto err; SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, server2_ctx_data); } if (extra->client.alpn_protocols != NULL) { unsigned char *alpn_protos = NULL; size_t alpn_protos_len; if (!TEST_true(parse_protos(extra->client.alpn_protocols, &alpn_protos, &alpn_protos_len)) /* Reversed return value convention... */ || !TEST_int_eq(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos, alpn_protos_len), 0)) goto err; OPENSSL_free(alpn_protos); } if (extra->server.session_ticket_app_data != NULL) { server_ctx_data->session_ticket_app_data = OPENSSL_strdup(extra->server.session_ticket_app_data); SSL_CTX_set_session_ticket_cb(server_ctx, generate_session_ticket_cb, decrypt_session_ticket_cb, server_ctx_data); } if (extra->server2.session_ticket_app_data != NULL) { if (!TEST_ptr(server2_ctx)) goto err; server2_ctx_data->session_ticket_app_data = OPENSSL_strdup(extra->server2.session_ticket_app_data); SSL_CTX_set_session_ticket_cb(server2_ctx, NULL, decrypt_session_ticket_cb, server2_ctx_data); } /* * Use fixed session ticket keys so that we can decrypt a ticket created with * one CTX in another CTX. Don't address server2 for the moment. */ ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0); if (!TEST_ptr(ticket_keys = OPENSSL_zalloc(ticket_key_len)) || !TEST_int_eq(SSL_CTX_set_tlsext_ticket_keys(server_ctx, ticket_keys, ticket_key_len), 1)) { OPENSSL_free(ticket_keys); goto err; } OPENSSL_free(ticket_keys); /* The default log list includes EC keys, so CT can't work without EC. */ #if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC) if (!TEST_true(SSL_CTX_set_default_ctlog_list_file(client_ctx))) goto err; switch (extra->client.ct_validation) { case SSL_TEST_CT_VALIDATION_PERMISSIVE: if (!TEST_true(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_PERMISSIVE))) goto err; break; case SSL_TEST_CT_VALIDATION_STRICT: if (!TEST_true(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT))) goto err; break; case SSL_TEST_CT_VALIDATION_NONE: break; } #endif #ifndef OPENSSL_NO_SRP if (extra->server.srp_user != NULL) { SSL_CTX_set_srp_username_callback(server_ctx, server_srp_cb); server_ctx_data->srp_user = OPENSSL_strdup(extra->server.srp_user); server_ctx_data->srp_password = OPENSSL_strdup(extra->server.srp_password); SSL_CTX_set_srp_cb_arg(server_ctx, server_ctx_data); } if (extra->server2.srp_user != NULL) { if (!TEST_ptr(server2_ctx)) goto err; SSL_CTX_set_srp_username_callback(server2_ctx, server_srp_cb); server2_ctx_data->srp_user = OPENSSL_strdup(extra->server2.srp_user); server2_ctx_data->srp_password = OPENSSL_strdup(extra->server2.srp_password); SSL_CTX_set_srp_cb_arg(server2_ctx, server2_ctx_data); } if (extra->client.srp_user != NULL) { if (!TEST_true(SSL_CTX_set_srp_username(client_ctx, extra->client.srp_user))) goto err; SSL_CTX_set_srp_client_pwd_callback(client_ctx, client_srp_cb); client_ctx_data->srp_password = OPENSSL_strdup(extra->client.srp_password); SSL_CTX_set_srp_cb_arg(client_ctx, client_ctx_data); } #endif /* !OPENSSL_NO_SRP */ return 1; err: return 0; } /* Configure per-SSL callbacks and other properties. */ static void configure_handshake_ssl(SSL *server, SSL *client, const SSL_TEST_EXTRA_CONF *extra) { if (extra->client.servername != SSL_TEST_SERVERNAME_NONE) SSL_set_tlsext_host_name(client, ssl_servername_name(extra->client.servername)); if (extra->client.enable_pha) SSL_set_post_handshake_auth(client, 1); } /* The status for each connection phase. */ typedef enum { PEER_SUCCESS, PEER_RETRY, PEER_ERROR, PEER_WAITING, PEER_TEST_FAILURE } peer_status_t; /* An SSL object and associated read-write buffers. */ typedef struct peer_st { SSL *ssl; /* Buffer lengths are int to match the SSL read/write API. */ unsigned char *write_buf; int write_buf_len; unsigned char *read_buf; int read_buf_len; int bytes_to_write; int bytes_to_read; peer_status_t status; } PEER; static int create_peer(PEER *peer, SSL_CTX *ctx) { static const int peer_buffer_size = 64 * 1024; SSL *ssl = NULL; unsigned char *read_buf = NULL, *write_buf = NULL; if (!TEST_ptr(ssl = SSL_new(ctx)) || !TEST_ptr(write_buf = OPENSSL_zalloc(peer_buffer_size)) || !TEST_ptr(read_buf = OPENSSL_zalloc(peer_buffer_size))) goto err; peer->ssl = ssl; peer->write_buf = write_buf; peer->read_buf = read_buf; peer->write_buf_len = peer->read_buf_len = peer_buffer_size; return 1; err: SSL_free(ssl); OPENSSL_free(write_buf); OPENSSL_free(read_buf); return 0; } static void peer_free_data(PEER *peer) { SSL_free(peer->ssl); OPENSSL_free(peer->write_buf); OPENSSL_free(peer->read_buf); } /* * Note that we could do the handshake transparently under an SSL_write, * but separating the steps is more helpful for debugging test failures. */ static void do_handshake_step(PEER *peer) { if (!TEST_int_eq(peer->status, PEER_RETRY)) { peer->status = PEER_TEST_FAILURE; } else { int ret = SSL_do_handshake(peer->ssl); if (ret == 1) { peer->status = PEER_SUCCESS; } else if (ret == 0) { peer->status = PEER_ERROR; } else { int error = SSL_get_error(peer->ssl, ret); /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */ if (error != SSL_ERROR_WANT_READ) peer->status = PEER_ERROR; } } } /*- * Send/receive some application data. The read-write sequence is * Peer A: (R) W - first read will yield no data * Peer B: R W * ... * Peer A: R W * Peer B: R W * Peer A: R */ static void do_app_data_step(PEER *peer) { int ret = 1, write_bytes; if (!TEST_int_eq(peer->status, PEER_RETRY)) { peer->status = PEER_TEST_FAILURE; return; } /* We read everything available... */ while (ret > 0 && peer->bytes_to_read) { ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len); if (ret > 0) { if (!TEST_int_le(ret, peer->bytes_to_read)) { peer->status = PEER_TEST_FAILURE; return; } peer->bytes_to_read -= ret; } else if (ret == 0) { peer->status = PEER_ERROR; return; } else { int error = SSL_get_error(peer->ssl, ret); if (error != SSL_ERROR_WANT_READ) { peer->status = PEER_ERROR; return; } /* Else continue with write. */ } } /* ... but we only write one write-buffer-full of data. */ write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write : peer->write_buf_len; if (write_bytes) { ret = SSL_write(peer->ssl, peer->write_buf, write_bytes); if (ret > 0) { /* SSL_write will only succeed with a complete write. */ if (!TEST_int_eq(ret, write_bytes)) { peer->status = PEER_TEST_FAILURE; return; } peer->bytes_to_write -= ret; } else { /* * We should perhaps check for SSL_ERROR_WANT_READ/WRITE here * but this doesn't yet occur with current app data sizes. */ peer->status = PEER_ERROR; return; } } /* * We could simply finish when there was nothing to read, and we have * nothing left to write. But keeping track of the expected number of bytes * to read gives us somewhat better guarantees that all data sent is in fact * received. */ if (!peer->bytes_to_write && !peer->bytes_to_read) { peer->status = PEER_SUCCESS; } } static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer) { int ret; char buf; if (peer->status == PEER_SUCCESS) { /* * We are a client that succeeded this step previously, but the server * wanted to retry. Probably there is a no_renegotiation warning alert * waiting for us. Attempt to continue the handshake. */ peer->status = PEER_RETRY; do_handshake_step(peer); return; } if (!TEST_int_eq(peer->status, PEER_RETRY) || !TEST_true(test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH)) { peer->status = PEER_TEST_FAILURE; return; } /* Reset the count of the amount of app data we need to read/write */ peer->bytes_to_write = peer->bytes_to_read = test_ctx->app_data_size; /* Check if we are the peer that is going to initiate */ if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER && SSL_is_server(peer->ssl)) || (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT && !SSL_is_server(peer->ssl))) { /* * If we already asked for a renegotiation then fall through to the * SSL_read() below. */ if (!SSL_renegotiate_pending(peer->ssl)) { /* * If we are the client we will always attempt to resume the * session. The server may or may not resume dependent on the * setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION */ if (SSL_is_server(peer->ssl)) { ret = SSL_renegotiate(peer->ssl); } else { if (test_ctx->extra.client.reneg_ciphers != NULL) { if (!SSL_set_cipher_list(peer->ssl, test_ctx->extra.client.reneg_ciphers)) { peer->status = PEER_ERROR; return; } ret = SSL_renegotiate(peer->ssl); } else { ret = SSL_renegotiate_abbreviated(peer->ssl); } } if (!ret) { peer->status = PEER_ERROR; return; } do_handshake_step(peer); /* * If status is PEER_RETRY it means we're waiting on the peer to * continue the handshake. As far as setting up the renegotiation is * concerned that is a success. The next step will continue the * handshake to its conclusion. * * If status is PEER_SUCCESS then we are the server and we have * successfully sent the HelloRequest. We need to continue to wait * until the handshake arrives from the client. */ if (peer->status == PEER_RETRY) peer->status = PEER_SUCCESS; else if (peer->status == PEER_SUCCESS) peer->status = PEER_RETRY; return; } } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) { if (SSL_is_server(peer->ssl) != (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)) { peer->status = PEER_SUCCESS; return; } ret = SSL_key_update(peer->ssl, test_ctx->key_update_type); if (!ret) { peer->status = PEER_ERROR; return; } do_handshake_step(peer); /* * This is a one step handshake. We shouldn't get anything other than * PEER_SUCCESS */ if (peer->status != PEER_SUCCESS) peer->status = PEER_ERROR; return; } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH) { if (SSL_is_server(peer->ssl)) { /* Make the server believe it's received the extension */ if (test_ctx->extra.server.force_pha) peer->ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; ret = SSL_verify_client_post_handshake(peer->ssl); if (!ret) { peer->status = PEER_ERROR; return; } } do_handshake_step(peer); /* * This is a one step handshake. We shouldn't get anything other than * PEER_SUCCESS */ if (peer->status != PEER_SUCCESS) peer->status = PEER_ERROR; return; } /* * The SSL object is still expecting app data, even though it's going to * get a handshake message. We try to read, and it should fail - after which * we should be in a handshake */ ret = SSL_read(peer->ssl, &buf, sizeof(buf)); if (ret >= 0) { /* * We're not actually expecting data - we're expecting a reneg to * start */ peer->status = PEER_ERROR; return; } else { int error = SSL_get_error(peer->ssl, ret); if (error != SSL_ERROR_WANT_READ) { peer->status = PEER_ERROR; return; } /* If we're not in init yet then we're not done with setup yet */ if (!SSL_in_init(peer->ssl)) return; } peer->status = PEER_SUCCESS; } /* * RFC 5246 says: * * Note that as of TLS 1.1, * failure to properly close a connection no longer requires that a * session not be resumed. This is a change from TLS 1.0 to conform * with widespread implementation practice. * * However, * (a) OpenSSL requires that a connection be shutdown for all protocol versions. * (b) We test lower versions, too. * So we just implement shutdown. We do a full bidirectional shutdown so that we * can compare sent and received close_notify alerts and get some test coverage * for SSL_shutdown as a bonus. */ static void do_shutdown_step(PEER *peer) { int ret; if (!TEST_int_eq(peer->status, PEER_RETRY)) { peer->status = PEER_TEST_FAILURE; return; } ret = SSL_shutdown(peer->ssl); if (ret == 1) { peer->status = PEER_SUCCESS; } else if (ret < 0) { /* On 0, we retry. */ int error = SSL_get_error(peer->ssl, ret); if (error != SSL_ERROR_WANT_READ && error != SSL_ERROR_WANT_WRITE) peer->status = PEER_ERROR; } } typedef enum { HANDSHAKE, RENEG_APPLICATION_DATA, RENEG_SETUP, RENEG_HANDSHAKE, APPLICATION_DATA, SHUTDOWN, CONNECTION_DONE } connect_phase_t; static int renegotiate_op(const SSL_TEST_CTX *test_ctx) { switch (test_ctx->handshake_mode) { case SSL_TEST_HANDSHAKE_RENEG_SERVER: case SSL_TEST_HANDSHAKE_RENEG_CLIENT: return 1; default: return 0; } } static int post_handshake_op(const SSL_TEST_CTX *test_ctx) { switch (test_ctx->handshake_mode) { case SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT: case SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER: case SSL_TEST_HANDSHAKE_POST_HANDSHAKE_AUTH: return 1; default: return 0; } } static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx, connect_phase_t phase) { switch (phase) { case HANDSHAKE: if (renegotiate_op(test_ctx) || post_handshake_op(test_ctx)) return RENEG_APPLICATION_DATA; return APPLICATION_DATA; case RENEG_APPLICATION_DATA: return RENEG_SETUP; case RENEG_SETUP: if (post_handshake_op(test_ctx)) return APPLICATION_DATA; return RENEG_HANDSHAKE; case RENEG_HANDSHAKE: return APPLICATION_DATA; case APPLICATION_DATA: return SHUTDOWN; case SHUTDOWN: return CONNECTION_DONE; case CONNECTION_DONE: TEST_error("Trying to progress after connection done"); break; } return -1; } static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer, connect_phase_t phase) { switch (phase) { case HANDSHAKE: do_handshake_step(peer); break; case RENEG_APPLICATION_DATA: do_app_data_step(peer); break; case RENEG_SETUP: do_reneg_setup_step(test_ctx, peer); break; case RENEG_HANDSHAKE: do_handshake_step(peer); break; case APPLICATION_DATA: do_app_data_step(peer); break; case SHUTDOWN: do_shutdown_step(peer); break; case CONNECTION_DONE: TEST_error("Action after connection done"); break; } } typedef enum { /* Both parties succeeded. */ HANDSHAKE_SUCCESS, /* Client errored. */ CLIENT_ERROR, /* Server errored. */ SERVER_ERROR, /* Peers are in inconsistent state. */ INTERNAL_ERROR, /* One or both peers not done. */ HANDSHAKE_RETRY } handshake_status_t; /* * Determine the handshake outcome. * last_status: the status of the peer to have acted last. * previous_status: the status of the peer that didn't act last. * client_spoke_last: 1 if the client went last. */ static handshake_status_t handshake_status(peer_status_t last_status, peer_status_t previous_status, int client_spoke_last) { switch (last_status) { case PEER_TEST_FAILURE: return INTERNAL_ERROR; case PEER_WAITING: /* Shouldn't ever happen */ return INTERNAL_ERROR; case PEER_SUCCESS: switch (previous_status) { case PEER_TEST_FAILURE: return INTERNAL_ERROR; case PEER_SUCCESS: /* Both succeeded. */ return HANDSHAKE_SUCCESS; case PEER_WAITING: case PEER_RETRY: /* Let the first peer finish. */ return HANDSHAKE_RETRY; case PEER_ERROR: /* * Second peer succeeded despite the fact that the first peer * already errored. This shouldn't happen. */ return INTERNAL_ERROR; } break; case PEER_RETRY: return HANDSHAKE_RETRY; case PEER_ERROR: switch (previous_status) { case PEER_TEST_FAILURE: return INTERNAL_ERROR; case PEER_WAITING: /* The client failed immediately before sending the ClientHello */ return client_spoke_last ? CLIENT_ERROR : INTERNAL_ERROR; case PEER_SUCCESS: /* * First peer succeeded but second peer errored. * TODO(emilia): we should be able to continue here (with some * application data?) to ensure the first peer receives the * alert / close_notify. * (No tests currently exercise this branch.) */ return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR; case PEER_RETRY: /* We errored; let the peer finish. */ return HANDSHAKE_RETRY; case PEER_ERROR: /* Both peers errored. Return the one that errored first. */ return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR; } } /* Control should never reach here. */ return INTERNAL_ERROR; } /* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */ static char *dup_str(const unsigned char *in, size_t len) { char *ret = NULL; if (len == 0) return NULL; /* Assert that the string does not contain NUL-bytes. */ if (TEST_size_t_eq(OPENSSL_strnlen((const char*)(in), len), len)) TEST_ptr(ret = OPENSSL_strndup((const char*)(in), len)); return ret; } static int pkey_type(EVP_PKEY *pkey) { int nid = EVP_PKEY_id(pkey); #ifndef OPENSSL_NO_EC if (nid == EVP_PKEY_EC) { const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); } #endif return nid; } static int peer_pkey_type(SSL *s) { X509 *x = SSL_get_peer_certificate(s); if (x != NULL) { int nid = pkey_type(X509_get0_pubkey(x)); X509_free(x); return nid; } return NID_undef; } #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) static int set_sock_as_sctp(int sock) { struct sctp_assocparams assocparams; struct sctp_rtoinfo rto_info; BIO *tmpbio; /* * To allow tests to fail fast (within a second or so), reduce the * retransmission timeouts and the number of retransmissions. */ memset(&rto_info, 0, sizeof(struct sctp_rtoinfo)); rto_info.srto_initial = 100; rto_info.srto_max = 200; rto_info.srto_min = 50; (void)setsockopt(sock, IPPROTO_SCTP, SCTP_RTOINFO, (const void *)&rto_info, sizeof(struct sctp_rtoinfo)); memset(&assocparams, 0, sizeof(struct sctp_assocparams)); assocparams.sasoc_asocmaxrxt = 2; (void)setsockopt(sock, IPPROTO_SCTP, SCTP_ASSOCINFO, (const void *)&assocparams, sizeof(struct sctp_assocparams)); /* * For SCTP we have to set various options on the socket prior to * connecting. This is done automatically by BIO_new_dgram_sctp(). * We don't actually need the created BIO though so we free it again * immediately. */ tmpbio = BIO_new_dgram_sctp(sock, BIO_NOCLOSE); if (tmpbio == NULL) return 0; BIO_free(tmpbio); return 1; } static int create_sctp_socks(int *ssock, int *csock) { BIO_ADDRINFO *res = NULL; const BIO_ADDRINFO *ai = NULL; int lsock = INVALID_SOCKET, asock = INVALID_SOCKET; int consock = INVALID_SOCKET; int ret = 0; int family = 0; if (BIO_sock_init() != 1) return 0; /* * Port is 4463. It could be anything. It will fail if it's already being * used for some other SCTP service. It seems unlikely though so we don't * worry about it here. */ if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_SERVER, family, SOCK_STREAM, IPPROTO_SCTP, &res)) return 0; for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) { family = BIO_ADDRINFO_family(ai); lsock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); if (lsock == INVALID_SOCKET) { /* Maybe the kernel doesn't support the socket family, even if * BIO_lookup() added it in the returned result... */ continue; } if (!set_sock_as_sctp(lsock) || !BIO_listen(lsock, BIO_ADDRINFO_address(ai), BIO_SOCK_REUSEADDR)) { BIO_closesocket(lsock); lsock = INVALID_SOCKET; continue; } /* Success, don't try any more addresses */ break; } if (lsock == INVALID_SOCKET) goto err; BIO_ADDRINFO_free(res); res = NULL; if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_CLIENT, family, SOCK_STREAM, IPPROTO_SCTP, &res)) goto err; consock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); if (consock == INVALID_SOCKET) goto err; if (!set_sock_as_sctp(consock) || !BIO_connect(consock, BIO_ADDRINFO_address(res), 0) || !BIO_socket_nbio(consock, 1)) goto err; asock = BIO_accept_ex(lsock, NULL, BIO_SOCK_NONBLOCK); if (asock == INVALID_SOCKET) goto err; *csock = consock; *ssock = asock; consock = asock = INVALID_SOCKET; ret = 1; err: BIO_ADDRINFO_free(res); if (consock != INVALID_SOCKET) BIO_closesocket(consock); if (lsock != INVALID_SOCKET) BIO_closesocket(lsock); if (asock != INVALID_SOCKET) BIO_closesocket(asock); return ret; } #endif /* * Note that |extra| points to the correct client/server configuration * within |test_ctx|. When configuring the handshake, general mode settings * are taken from |test_ctx|, and client/server-specific settings should be * taken from |extra|. * * The configuration code should never reach into |test_ctx->extra| or * |test_ctx->resume_extra| directly. * * (We could refactor test mode settings into a substructure. This would result * in cleaner argument passing but would complicate the test configuration * parsing.) */ static HANDSHAKE_RESULT *do_handshake_internal( SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra, SSL_SESSION *session_in, SSL_SESSION *serv_sess_in, SSL_SESSION **session_out, SSL_SESSION **serv_sess_out) { PEER server, client; BIO *client_to_server = NULL, *server_to_client = NULL; HANDSHAKE_EX_DATA server_ex_data, client_ex_data; CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data; HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new(); int client_turn = 1, client_turn_count = 0, client_wait_count = 0; connect_phase_t phase = HANDSHAKE; handshake_status_t status = HANDSHAKE_RETRY; const unsigned char* tick = NULL; size_t tick_len = 0; const unsigned char* sess_id = NULL; unsigned int sess_id_len = 0; SSL_SESSION* sess = NULL; const unsigned char *proto = NULL; /* API dictates unsigned int rather than size_t. */ unsigned int proto_len = 0; EVP_PKEY *tmp_key; const STACK_OF(X509_NAME) *names; time_t start; const char* cipher; if (ret == NULL) return NULL; memset(&server_ctx_data, 0, sizeof(server_ctx_data)); memset(&server2_ctx_data, 0, sizeof(server2_ctx_data)); memset(&client_ctx_data, 0, sizeof(client_ctx_data)); memset(&server, 0, sizeof(server)); memset(&client, 0, sizeof(client)); memset(&server_ex_data, 0, sizeof(server_ex_data)); memset(&client_ex_data, 0, sizeof(client_ex_data)); if (!configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, test_ctx, extra, &server_ctx_data, &server2_ctx_data, &client_ctx_data)) { TEST_note("configure_handshake_ctx"); return NULL; } #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) if (test_ctx->enable_client_sctp_label_bug) SSL_CTX_set_mode(client_ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); if (test_ctx->enable_server_sctp_label_bug) SSL_CTX_set_mode(server_ctx, SSL_MODE_DTLS_SCTP_LABEL_LENGTH_BUG); #endif /* Setup SSL and buffers; additional configuration happens below. */ if (!create_peer(&server, server_ctx)) { TEST_note("creating server context"); goto err; } if (!create_peer(&client, client_ctx)) { TEST_note("creating client context"); goto err; } server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size; client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size; configure_handshake_ssl(server.ssl, client.ssl, extra); if (session_in != NULL) { SSL_SESSION_get_id(serv_sess_in, &sess_id_len); /* In case we're testing resumption without tickets. */ if ((sess_id_len > 0 && !TEST_true(SSL_CTX_add_session(server_ctx, serv_sess_in))) || !TEST_true(SSL_set_session(client.ssl, session_in))) goto err; sess_id_len = 0; } ret->result = SSL_TEST_INTERNAL_ERROR; if (test_ctx->use_sctp) { #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) int csock, ssock; if (create_sctp_socks(&ssock, &csock)) { client_to_server = BIO_new_dgram_sctp(csock, BIO_CLOSE); server_to_client = BIO_new_dgram_sctp(ssock, BIO_CLOSE); } #endif } else { client_to_server = BIO_new(BIO_s_mem()); server_to_client = BIO_new(BIO_s_mem()); } if (!TEST_ptr(client_to_server) || !TEST_ptr(server_to_client)) goto err; /* Non-blocking bio. */ BIO_set_nbio(client_to_server, 1); BIO_set_nbio(server_to_client, 1); SSL_set_connect_state(client.ssl); SSL_set_accept_state(server.ssl); /* The bios are now owned by the SSL object. */ if (test_ctx->use_sctp) { SSL_set_bio(client.ssl, client_to_server, client_to_server); SSL_set_bio(server.ssl, server_to_client, server_to_client); } else { SSL_set_bio(client.ssl, server_to_client, client_to_server); if (!TEST_int_gt(BIO_up_ref(server_to_client), 0) || !TEST_int_gt(BIO_up_ref(client_to_server), 0)) goto err; SSL_set_bio(server.ssl, client_to_server, server_to_client); } ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL); if (!TEST_int_ge(ex_data_idx, 0) || !TEST_int_eq(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data), 1) || !TEST_int_eq(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data), 1)) goto err; SSL_set_info_callback(server.ssl, &info_cb); SSL_set_info_callback(client.ssl, &info_cb); client.status = PEER_RETRY; server.status = PEER_WAITING; start = time(NULL); /* * Half-duplex handshake loop. * Client and server speak to each other synchronously in the same process. * We use non-blocking BIOs, so whenever one peer blocks for read, it * returns PEER_RETRY to indicate that it's the other peer's turn to write. * The handshake succeeds once both peers have succeeded. If one peer * errors out, we also let the other peer retry (and presumably fail). */ for(;;) { if (client_turn) { do_connect_step(test_ctx, &client, phase); status = handshake_status(client.status, server.status, 1 /* client went last */); if (server.status == PEER_WAITING) server.status = PEER_RETRY; } else { do_connect_step(test_ctx, &server, phase); status = handshake_status(server.status, client.status, 0 /* server went last */); } switch (status) { case HANDSHAKE_SUCCESS: client_turn_count = 0; phase = next_phase(test_ctx, phase); if (phase == CONNECTION_DONE) { ret->result = SSL_TEST_SUCCESS; goto err; } else { client.status = server.status = PEER_RETRY; /* * For now, client starts each phase. Since each phase is * started separately, we can later control this more * precisely, for example, to test client-initiated and * server-initiated shutdown. */ client_turn = 1; break; } case CLIENT_ERROR: ret->result = SSL_TEST_CLIENT_FAIL; goto err; case SERVER_ERROR: ret->result = SSL_TEST_SERVER_FAIL; goto err; case INTERNAL_ERROR: ret->result = SSL_TEST_INTERNAL_ERROR; goto err; case HANDSHAKE_RETRY: if (test_ctx->use_sctp) { if (time(NULL) - start > 3) { /* * We've waited for too long. Give up. */ ret->result = SSL_TEST_INTERNAL_ERROR; goto err; } /* * With "real" sockets we only swap to processing the peer * if they are expecting to retry. Otherwise we just retry the * same endpoint again. */ if ((client_turn && server.status == PEER_RETRY) || (!client_turn && client.status == PEER_RETRY)) client_turn ^= 1; } else { if (client_turn_count++ >= 2000) { /* * At this point, there's been so many PEER_RETRY in a row * that it's likely both sides are stuck waiting for a read. * It's time to give up. */ ret->result = SSL_TEST_INTERNAL_ERROR; goto err; } if (client_turn && server.status == PEER_SUCCESS) { /* * The server may finish before the client because the * client spends some turns processing NewSessionTickets. */ if (client_wait_count++ >= 2) { ret->result = SSL_TEST_INTERNAL_ERROR; goto err; } } else { /* Continue. */ client_turn ^= 1; } } break; } } err: ret->server_alert_sent = server_ex_data.alert_sent; ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent; ret->server_alert_received = client_ex_data.alert_received; ret->client_alert_sent = client_ex_data.alert_sent; ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent; ret->client_alert_received = server_ex_data.alert_received; ret->server_protocol = SSL_version(server.ssl); ret->client_protocol = SSL_version(client.ssl); ret->servername = server_ex_data.servername; if ((sess = SSL_get0_session(client.ssl)) != NULL) { SSL_SESSION_get0_ticket(sess, &tick, &tick_len); sess_id = SSL_SESSION_get_id(sess, &sess_id_len); } if (tick == NULL || tick_len == 0) ret->session_ticket = SSL_TEST_SESSION_TICKET_NO; else ret->session_ticket = SSL_TEST_SESSION_TICKET_YES; ret->compression = (SSL_get_current_compression(client.ssl) == NULL) ? SSL_TEST_COMPRESSION_NO : SSL_TEST_COMPRESSION_YES; if (sess_id == NULL || sess_id_len == 0) ret->session_id = SSL_TEST_SESSION_ID_NO; else ret->session_id = SSL_TEST_SESSION_ID_YES; ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call; #ifndef OPENSSL_NO_NEXTPROTONEG SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len); ret->client_npn_negotiated = dup_str(proto, proto_len); SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len); ret->server_npn_negotiated = dup_str(proto, proto_len); #endif SSL_get0_alpn_selected(client.ssl, &proto, &proto_len); ret->client_alpn_negotiated = dup_str(proto, proto_len); SSL_get0_alpn_selected(server.ssl, &proto, &proto_len); ret->server_alpn_negotiated = dup_str(proto, proto_len); if ((sess = SSL_get0_session(server.ssl)) != NULL) { SSL_SESSION_get0_ticket_appdata(sess, (void**)&tick, &tick_len); ret->result_session_ticket_app_data = OPENSSL_strndup((const char*)tick, tick_len); } ret->client_resumed = SSL_session_reused(client.ssl); ret->server_resumed = SSL_session_reused(server.ssl); cipher = SSL_CIPHER_get_name(SSL_get_current_cipher(client.ssl)); ret->cipher = dup_str((const unsigned char*)cipher, strlen(cipher)); if (session_out != NULL) *session_out = SSL_get1_session(client.ssl); if (serv_sess_out != NULL) { SSL_SESSION *tmp = SSL_get_session(server.ssl); /* * We create a fresh copy that is not in the server session ctx linked * list. */ if (tmp != NULL) *serv_sess_out = SSL_SESSION_dup(tmp); } if (SSL_get_peer_tmp_key(client.ssl, &tmp_key)) { ret->tmp_key_type = pkey_type(tmp_key); EVP_PKEY_free(tmp_key); } SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash); SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash); SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type); SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type); names = SSL_get0_peer_CA_list(client.ssl); if (names == NULL) ret->client_ca_names = NULL; else ret->client_ca_names = SSL_dup_CA_list(names); names = SSL_get0_peer_CA_list(server.ssl); if (names == NULL) ret->server_ca_names = NULL; else ret->server_ca_names = SSL_dup_CA_list(names); ret->server_cert_type = peer_pkey_type(client.ssl); ret->client_cert_type = peer_pkey_type(server.ssl); ctx_data_free_data(&server_ctx_data); ctx_data_free_data(&server2_ctx_data); ctx_data_free_data(&client_ctx_data); peer_free_data(&server); peer_free_data(&client); return ret; } HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx, SSL_CTX *resume_client_ctx, const SSL_TEST_CTX *test_ctx) { HANDSHAKE_RESULT *result; SSL_SESSION *session = NULL, *serv_sess = NULL; result = do_handshake_internal(server_ctx, server2_ctx, client_ctx, test_ctx, &test_ctx->extra, NULL, NULL, &session, &serv_sess); if (result == NULL || test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME || result->result == SSL_TEST_INTERNAL_ERROR) goto end; if (result->result != SSL_TEST_SUCCESS) { result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED; goto end; } HANDSHAKE_RESULT_free(result); /* We don't support SNI on second handshake yet, so server2_ctx is NULL. */ result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx, test_ctx, &test_ctx->resume_extra, session, serv_sess, NULL, NULL); end: SSL_SESSION_free(session); SSL_SESSION_free(serv_sess); return result; }