/* * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ssl_locl.h" #include #include #define TLS13_MAX_LABEL_LEN 246 /* Always filled with zeros */ static const unsigned char default_zeros[EVP_MAX_MD_SIZE]; /* * Given a |secret|; a |label| of length |labellen|; and a |hash| of the * handshake messages, derive a new secret |outlen| bytes long and store it in * the location pointed to be |out|. The |hash| value may be NULL. Returns 1 on * success 0 on failure. */ static int tls13_hkdf_expand(SSL *s, const unsigned char *secret, const unsigned char *label, size_t labellen, const unsigned char *hash, unsigned char *out, size_t outlen) { const unsigned char label_prefix[] = "TLS 1.3, "; const EVP_MD *md = ssl_handshake_md(s); EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); int ret; size_t hkdflabellen; size_t hashlen; /* * 2 bytes for length of whole HkdfLabel + 1 byte for length of combined * prefix and label + bytes for the label itself + bytes for the hash */ unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) + + sizeof(label_prefix) + TLS13_MAX_LABEL_LEN + EVP_MAX_MD_SIZE]; WPACKET pkt; if (pctx == NULL) return 0; hashlen = EVP_MD_size(md); if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0) || !WPACKET_put_bytes_u16(&pkt, outlen) || !WPACKET_start_sub_packet_u8(&pkt) || !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1) || !WPACKET_memcpy(&pkt, label, labellen) || !WPACKET_close(&pkt) || !WPACKET_sub_memcpy_u8(&pkt, hash, (hash == NULL) ? 0 : hashlen) || !WPACKET_get_total_written(&pkt, &hkdflabellen) || !WPACKET_finish(&pkt)) { WPACKET_cleanup(&pkt); return 0; } ret = EVP_PKEY_derive_init(pctx) <= 0 || EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 || EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0 || EVP_PKEY_CTX_set1_hkdf_key(pctx, secret, hashlen) <= 0 || EVP_PKEY_CTX_add1_hkdf_info(pctx, hkdflabel, hkdflabellen) <= 0 || EVP_PKEY_derive(pctx, out, &outlen) <= 0; EVP_PKEY_CTX_free(pctx); return ret == 0; } /* * Given a input secret |insecret| and a |label| of length |labellen|, derive a * new |secret|. This will be the length of the current hash output size and * will be based on the current state of the handshake hashes. Returns 1 on * success 0 on failure. */ int tls13_derive_secret(SSL *s, const unsigned char *insecret, const unsigned char *label, size_t labellen, unsigned char *secret) { unsigned char hash[EVP_MAX_MD_SIZE]; size_t hashlen; if (!ssl3_digest_cached_records(s, 1)) return 0; if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) return 0; return tls13_hkdf_expand(s, insecret, label, labellen, hash, secret, hashlen); } /* * Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on * success 0 on failure. */ int tls13_derive_key(SSL *s, const unsigned char *secret, unsigned char *key, size_t keylen) { static const unsigned char keylabel[] = "key"; return tls13_hkdf_expand(s, secret, keylabel, sizeof(keylabel) - 1, NULL, key, keylen); } /* * Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on * success 0 on failure. */ int tls13_derive_iv(SSL *s, const unsigned char *secret, unsigned char *iv, size_t ivlen) { static const unsigned char ivlabel[] = "iv"; return tls13_hkdf_expand(s, secret, ivlabel, sizeof(ivlabel) - 1, NULL, iv, ivlen); } static int tls13_derive_finishedkey(SSL *s, const unsigned char *secret, unsigned char *fin, size_t finlen) { static const unsigned char finishedlabel[] = "finished"; return tls13_hkdf_expand(s, secret, finishedlabel, sizeof(finishedlabel) - 1, NULL, fin, finlen); } /* * Given the previous secret |prevsecret| and a new input secret |insecret| of * length |insecretlen|, generate a new secret and store it in the location * pointed to by |outsecret|. Returns 1 on success 0 on failure. */ static int tls13_generate_secret(SSL *s, const unsigned char *prevsecret, const unsigned char *insecret, size_t insecretlen, unsigned char *outsecret) { const EVP_MD *md = ssl_handshake_md(s); size_t mdlen, prevsecretlen; int ret; EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); if (pctx == NULL) return 0; mdlen = EVP_MD_size(md); if (insecret == NULL) { insecret = default_zeros; insecretlen = mdlen; } if (prevsecret == NULL) { prevsecret = default_zeros; prevsecretlen = 0; } else { prevsecretlen = mdlen; } ret = EVP_PKEY_derive_init(pctx) <= 0 || EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 || EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0 || EVP_PKEY_CTX_set1_hkdf_key(pctx, insecret, insecretlen) <= 0 || EVP_PKEY_CTX_set1_hkdf_salt(pctx, prevsecret, prevsecretlen) <= 0 || EVP_PKEY_derive(pctx, outsecret, &mdlen) <= 0; EVP_PKEY_CTX_free(pctx); return ret == 0; } /* * Given an input secret |insecret| of length |insecretlen| generate the early * secret. Returns 1 on success 0 on failure. */ int tls13_generate_early_secret(SSL *s, const unsigned char *insecret, size_t insecretlen) { return tls13_generate_secret(s, NULL, insecret, insecretlen, (unsigned char *)&s->early_secret); } /* * Given an input secret |insecret| of length |insecretlen| generate the * handshake secret. This requires the early secret to already have been * generated. Returns 1 on success 0 on failure. */ int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret, size_t insecretlen) { return tls13_generate_secret(s, s->early_secret, insecret, insecretlen, (unsigned char *)&s->handshake_secret); } /* * Given the handshake secret |prev| of length |prevlen| generate the master * secret and store its length in |*secret_size|. Returns 1 on success 0 on * failure. */ int tls13_generate_master_secret(SSL *s, unsigned char *out, unsigned char *prev, size_t prevlen, size_t *secret_size) { *secret_size = EVP_MD_size(ssl_handshake_md(s)); return tls13_generate_secret(s, prev, NULL, 0, out); } /* * Generates the mac for the Finished message. Returns the length of the MAC or * 0 on error. */ size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen, unsigned char *out) { const EVP_MD *md = ssl_handshake_md(s); unsigned char hash[EVP_MAX_MD_SIZE]; size_t hashlen, ret = 0; EVP_PKEY *key = NULL; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) goto err; if (str == s->method->ssl3_enc->server_finished_label) key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, s->server_finished_secret, hashlen); else key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, s->client_finished_secret, hashlen); if (key == NULL || ctx == NULL || EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0 || EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0 || EVP_DigestSignFinal(ctx, out, &hashlen) <= 0) goto err; ret = hashlen; err: EVP_PKEY_free(key); EVP_MD_CTX_free(ctx); return ret; } /* * There isn't really a key block in TLSv1.3, but we still need this function * for initialising the cipher and hash. Returns 1 on success or 0 on failure. */ int tls13_setup_key_block(SSL *s) { const EVP_CIPHER *c; const EVP_MD *hash; int mac_type = NID_undef; s->session->cipher = s->s3->tmp.new_cipher; if (!ssl_cipher_get_evp (s->session, &c, &hash, &mac_type, NULL, NULL, 0)) { SSLerr(SSL_F_TLS13_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); return 0; } s->s3->tmp.new_sym_enc = c; s->s3->tmp.new_hash = hash; return 1; } int tls13_change_cipher_state(SSL *s, int which) { static const unsigned char client_handshake_traffic[] = "client handshake traffic secret"; static const unsigned char client_application_traffic[] = "client application traffic secret"; static const unsigned char server_handshake_traffic[] = "server handshake traffic secret"; static const unsigned char server_application_traffic[] = "server application traffic secret"; unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; unsigned char secret[EVP_MAX_MD_SIZE]; unsigned char *insecret; unsigned char *finsecret = NULL; EVP_CIPHER_CTX *ciph_ctx; const EVP_CIPHER *ciph = s->s3->tmp.new_sym_enc;; size_t ivlen, keylen, finsecretlen; const unsigned char *label; size_t labellen; if (which & SSL3_CC_READ) { if (s->enc_read_ctx != NULL) { EVP_CIPHER_CTX_reset(s->enc_read_ctx); } else { s->enc_read_ctx = EVP_CIPHER_CTX_new(); if (s->enc_read_ctx == NULL) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); goto err; } } ciph_ctx = s->enc_read_ctx; RECORD_LAYER_reset_read_sequence(&s->rlayer); } else { if (s->enc_write_ctx != NULL) { EVP_CIPHER_CTX_reset(s->enc_write_ctx); } else { s->enc_write_ctx = EVP_CIPHER_CTX_new(); if (s->enc_write_ctx == NULL) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); goto err; } } ciph_ctx = s->enc_write_ctx; RECORD_LAYER_reset_write_sequence(&s->rlayer); } if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE)) || ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) { if (which & SSL3_CC_HANDSHAKE) { insecret = s->handshake_secret; finsecret = s->client_finished_secret; finsecretlen = sizeof(s->client_finished_secret); label = client_handshake_traffic; labellen = sizeof(client_handshake_traffic) - 1; } else { insecret = s->session->master_key; label = client_application_traffic; labellen = sizeof(client_application_traffic) - 1; } } else { if (which & SSL3_CC_HANDSHAKE) { insecret = s->handshake_secret; finsecret = s->server_finished_secret; finsecretlen = sizeof(s->server_finished_secret); label = server_handshake_traffic; labellen = sizeof(server_handshake_traffic) - 1; } else { insecret = s->session->master_key; label = server_application_traffic; labellen = sizeof(server_application_traffic) - 1; } } if (!tls13_derive_secret(s, insecret, label, labellen, secret)) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err; } /* TODO(size_t): convert me */ keylen = EVP_CIPHER_key_length(ciph); if (EVP_CIPHER_mode(ciph) == EVP_CIPH_GCM_MODE) ivlen = EVP_GCM_TLS_FIXED_IV_LEN; else if (EVP_CIPHER_mode(ciph) == EVP_CIPH_CCM_MODE) ivlen = EVP_CCM_TLS_FIXED_IV_LEN; else ivlen = EVP_CIPHER_iv_length(ciph); if (!tls13_derive_key(s, secret, key, keylen) || !tls13_derive_iv(s, secret, iv, ivlen) || (finsecret != NULL && !tls13_derive_finishedkey(s, secret, finsecret, finsecretlen))) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); goto err; } if (EVP_CIPHER_mode(ciph) == EVP_CIPH_GCM_MODE) { if (!EVP_CipherInit_ex(ciph_ctx, ciph, NULL, key, NULL, (which & SSL3_CC_WRITE)) || !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_GCM_SET_IV_FIXED, (int)ivlen, iv)) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB); goto err; } } else if (EVP_CIPHER_mode(ciph) == EVP_CIPH_CCM_MODE) { int taglen; if (s->s3->tmp.new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) taglen = 8; else taglen = 16; if (!EVP_CipherInit_ex(ciph_ctx, ciph, NULL, NULL, NULL, (which & SSL3_CC_WRITE)) || !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL) || !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_TAG, taglen, NULL) || !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_CCM_SET_IV_FIXED, (int)ivlen, iv) || !EVP_CipherInit_ex(ciph_ctx, NULL, NULL, key, NULL, -1)) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB); goto err; } } else { if (!EVP_CipherInit_ex(ciph_ctx, ciph, NULL, key, iv, (which & SSL3_CC_WRITE))) { SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB); goto err; } } #ifdef OPENSSL_SSL_TRACE_CRYPTO if (s->msg_callback) { int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0; if (ciph->key_len) s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY, key, ciph->key_len, s, s->msg_callback_arg); if (ivlen) { if (EVP_CIPHER_mode(ciph) == EVP_CIPH_GCM_MODE) wh |= TLS1_RT_CRYPTO_FIXED_IV; else wh |= TLS1_RT_CRYPTO_IV; s->msg_callback(2, s->version, wh, iv, ivlen, s, s->msg_callback_arg); } } #endif OPENSSL_cleanse(secret, sizeof(secret)); OPENSSL_cleanse(key, sizeof(key)); OPENSSL_cleanse(iv, sizeof(iv)); return 1; err: OPENSSL_cleanse(secret, sizeof(secret)); OPENSSL_cleanse(key, sizeof(key)); OPENSSL_cleanse(iv, sizeof(iv)); return 0; }