1aec7716c1
Move the KDF code for CMS DH key agreement into an EVP_KDF object. There are 2 specifications for X9.42 KDF. This implementation uses DER for otherinfo which embeds the KDF loop counter inside the DER object. Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/8898)
407 lines
12 KiB
C
407 lines
12 KiB
C
/*
|
|
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "e_os.h"
|
|
|
|
#ifndef OPENSSL_NO_CMS
|
|
|
|
# include <stdlib.h>
|
|
# include <stdarg.h>
|
|
# include <string.h>
|
|
# include <openssl/hmac.h>
|
|
# include <openssl/cms.h>
|
|
# include <openssl/evp.h>
|
|
# include <openssl/kdf.h>
|
|
# include <openssl/x509.h>
|
|
# include <openssl/obj_mac.h>
|
|
# include "internal/cryptlib.h"
|
|
# include "internal/evp_int.h"
|
|
# include "kdf_local.h"
|
|
|
|
# define X942KDF_MAX_INLEN (1 << 30)
|
|
|
|
struct evp_kdf_impl_st {
|
|
const EVP_MD *md;
|
|
unsigned char *secret;
|
|
size_t secret_len;
|
|
int cek_nid;
|
|
unsigned char *ukm;
|
|
size_t ukm_len;
|
|
size_t dkm_len;
|
|
};
|
|
|
|
/* A table of allowed wrapping algorithms and the associated output lengths */
|
|
static const struct {
|
|
int nid;
|
|
size_t keklen; /* size in bytes */
|
|
} kek_algs[] = {
|
|
{ NID_id_smime_alg_CMS3DESwrap, 24 },
|
|
{ NID_id_smime_alg_CMSRC2wrap, 16 },
|
|
{ NID_id_aes128_wrap, 16 },
|
|
{ NID_id_aes192_wrap, 24 },
|
|
{ NID_id_aes256_wrap, 32 },
|
|
{ NID_id_camellia128_wrap, 16 },
|
|
{ NID_id_camellia192_wrap, 24 },
|
|
{ NID_id_camellia256_wrap, 32 }
|
|
};
|
|
|
|
/* Skip past an ASN1 structure: for OBJECT skip content octets too */
|
|
static int skip_asn1(unsigned char **pp, long *plen, int exptag)
|
|
{
|
|
int i, tag, xclass;
|
|
long tmplen;
|
|
const unsigned char *q = *pp;
|
|
|
|
i = ASN1_get_object(&q, &tmplen, &tag, &xclass, *plen);
|
|
if ((i & 0x80) != 0 || tag != exptag || xclass != V_ASN1_UNIVERSAL)
|
|
return 0;
|
|
if (tag == V_ASN1_OBJECT)
|
|
q += tmplen;
|
|
*pp = (unsigned char *)q;
|
|
*plen -= q - *pp;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Encode the other info structure.
|
|
*
|
|
* RFC2631 Section 2.1.2 Contains the following definition for otherinfo
|
|
*
|
|
* OtherInfo ::= SEQUENCE {
|
|
* keyInfo KeySpecificInfo,
|
|
* partyAInfo [0] OCTET STRING OPTIONAL,
|
|
* suppPubInfo [2] OCTET STRING
|
|
* }
|
|
*
|
|
* KeySpecificInfo ::= SEQUENCE {
|
|
* algorithm OBJECT IDENTIFIER,
|
|
* counter OCTET STRING SIZE (4..4)
|
|
* }
|
|
*
|
|
* |nid| is the algorithm object identifier.
|
|
* |keylen| is the length (in bytes) of the generated KEK. It is stored into
|
|
* suppPubInfo (in bits).
|
|
* |ukm| is the optional user keying material that is stored into partyAInfo. It
|
|
* can be NULL.
|
|
* |ukmlen| is the user keying material length (in bytes).
|
|
* |der| is the returned encoded data. It must be freed by the caller.
|
|
* |der_len| is the returned size of the encoded data.
|
|
* |out_ctr| returns a pointer to the counter data which is embedded inside the
|
|
* encoded data. This allows the counter bytes to be updated without re-encoding.
|
|
*
|
|
* Returns: 1 if successfully encoded, or 0 otherwise.
|
|
* Assumptions: |der|, |der_len| & |out_ctr| are not NULL.
|
|
*/
|
|
static int x942_encode_otherinfo(int nid, size_t keylen,
|
|
const unsigned char *ukm, size_t ukmlen,
|
|
unsigned char **der, size_t *der_len,
|
|
unsigned char **out_ctr)
|
|
{
|
|
unsigned char *p, *encoded = NULL;
|
|
int ret = 0, encoded_len;
|
|
long tlen;
|
|
/* "magic" value to check offset is sane */
|
|
static unsigned char ctr[4] = { 0x00, 0x00, 0x00, 0x01 };
|
|
X509_ALGOR *ksi = NULL;
|
|
ASN1_OBJECT *alg_oid = NULL;
|
|
ASN1_OCTET_STRING *ctr_oct = NULL, *ukm_oct = NULL;
|
|
|
|
/* set the KeySpecificInfo - which contains an algorithm oid and counter */
|
|
ksi = X509_ALGOR_new();
|
|
alg_oid = OBJ_dup(OBJ_nid2obj(nid));
|
|
ctr_oct = ASN1_OCTET_STRING_new();
|
|
if (ksi == NULL
|
|
|| alg_oid == NULL
|
|
|| ctr_oct == NULL
|
|
|| !ASN1_OCTET_STRING_set(ctr_oct, ctr, sizeof(ctr))
|
|
|| !X509_ALGOR_set0(ksi, alg_oid, V_ASN1_OCTET_STRING, ctr_oct))
|
|
goto err;
|
|
/* NULL these as they now belong to ksi */
|
|
alg_oid = NULL;
|
|
ctr_oct = NULL;
|
|
|
|
/* Set the optional partyAInfo */
|
|
if (ukm != NULL) {
|
|
ukm_oct = ASN1_OCTET_STRING_new();
|
|
if (ukm_oct == NULL)
|
|
goto err;
|
|
ASN1_OCTET_STRING_set(ukm_oct, (unsigned char *)ukm, ukmlen);
|
|
}
|
|
/* Generate the OtherInfo DER data */
|
|
encoded_len = CMS_SharedInfo_encode(&encoded, ksi, ukm_oct, keylen);
|
|
if (encoded_len <= 0)
|
|
goto err;
|
|
|
|
/* Parse the encoded data to find the offset of the counter data */
|
|
p = encoded;
|
|
tlen = (long)encoded_len;
|
|
if (skip_asn1(&p, &tlen, V_ASN1_SEQUENCE)
|
|
&& skip_asn1(&p, &tlen, V_ASN1_SEQUENCE)
|
|
&& skip_asn1(&p, &tlen, V_ASN1_OBJECT)
|
|
&& skip_asn1(&p, &tlen, V_ASN1_OCTET_STRING)
|
|
&& CRYPTO_memcmp(p, ctr, 4) == 0) {
|
|
*out_ctr = p;
|
|
*der = encoded;
|
|
*der_len = (size_t)encoded_len;
|
|
ret = 1;
|
|
}
|
|
err:
|
|
if (ret != 1)
|
|
OPENSSL_free(encoded);
|
|
ASN1_OCTET_STRING_free(ctr_oct);
|
|
ASN1_OCTET_STRING_free(ukm_oct);
|
|
ASN1_OBJECT_free(alg_oid);
|
|
X509_ALGOR_free(ksi);
|
|
return ret;
|
|
}
|
|
|
|
static int x942kdf_hash_kdm(const EVP_MD *kdf_md,
|
|
const unsigned char *z, size_t z_len,
|
|
const unsigned char *other, size_t other_len,
|
|
unsigned char *ctr,
|
|
unsigned char *derived_key, size_t derived_key_len)
|
|
{
|
|
int ret = 0, hlen;
|
|
size_t counter, out_len, len = derived_key_len;
|
|
unsigned char mac[EVP_MAX_MD_SIZE];
|
|
unsigned char *out = derived_key;
|
|
EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;
|
|
|
|
if (z_len > X942KDF_MAX_INLEN || other_len > X942KDF_MAX_INLEN
|
|
|| derived_key_len > X942KDF_MAX_INLEN
|
|
|| derived_key_len == 0) {
|
|
KDFerr(KDF_F_X942KDF_HASH_KDM, KDF_R_BAD_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
hlen = EVP_MD_size(kdf_md);
|
|
if (hlen <= 0)
|
|
return 0;
|
|
out_len = (size_t)hlen;
|
|
|
|
ctx = EVP_MD_CTX_create();
|
|
ctx_init = EVP_MD_CTX_create();
|
|
if (ctx == NULL || ctx_init == NULL)
|
|
goto end;
|
|
|
|
if (!EVP_DigestInit(ctx_init, kdf_md))
|
|
goto end;
|
|
|
|
for (counter = 1;; counter++) {
|
|
/* updating the ctr modifies 4 bytes in the 'other' buffer */
|
|
ctr[0] = (unsigned char)((counter >> 24) & 0xff);
|
|
ctr[1] = (unsigned char)((counter >> 16) & 0xff);
|
|
ctr[2] = (unsigned char)((counter >> 8) & 0xff);
|
|
ctr[3] = (unsigned char)(counter & 0xff);
|
|
|
|
if (!EVP_MD_CTX_copy_ex(ctx, ctx_init)
|
|
|| !EVP_DigestUpdate(ctx, z, z_len)
|
|
|| !EVP_DigestUpdate(ctx, other, other_len))
|
|
goto end;
|
|
if (len >= out_len) {
|
|
if (!EVP_DigestFinal_ex(ctx, out, NULL))
|
|
goto end;
|
|
out += out_len;
|
|
len -= out_len;
|
|
if (len == 0)
|
|
break;
|
|
} else {
|
|
if (!EVP_DigestFinal_ex(ctx, mac, NULL))
|
|
goto end;
|
|
memcpy(out, mac, len);
|
|
break;
|
|
}
|
|
}
|
|
ret = 1;
|
|
end:
|
|
EVP_MD_CTX_free(ctx);
|
|
EVP_MD_CTX_free(ctx_init);
|
|
OPENSSL_cleanse(mac, sizeof(mac));
|
|
return ret;
|
|
}
|
|
|
|
static EVP_KDF_IMPL *x942kdf_new(void)
|
|
{
|
|
EVP_KDF_IMPL *impl;
|
|
|
|
if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
|
|
KDFerr(KDF_F_X942KDF_NEW, ERR_R_MALLOC_FAILURE);
|
|
return impl;
|
|
}
|
|
|
|
static void x942kdf_reset(EVP_KDF_IMPL *impl)
|
|
{
|
|
OPENSSL_clear_free(impl->secret, impl->secret_len);
|
|
OPENSSL_clear_free(impl->ukm, impl->ukm_len);
|
|
memset(impl, 0, sizeof(*impl));
|
|
}
|
|
|
|
static void x942kdf_free(EVP_KDF_IMPL *impl)
|
|
{
|
|
x942kdf_reset(impl);
|
|
OPENSSL_free(impl);
|
|
}
|
|
|
|
static int x942kdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
|
|
{
|
|
const unsigned char *p;
|
|
size_t len;
|
|
|
|
p = va_arg(args, const unsigned char *);
|
|
len = va_arg(args, size_t);
|
|
if (len == 0 || p == NULL)
|
|
return 1;
|
|
|
|
OPENSSL_free(*out);
|
|
*out = OPENSSL_memdup(p, len);
|
|
if (*out == NULL)
|
|
return 0;
|
|
|
|
*out_len = len;
|
|
return 1;
|
|
}
|
|
|
|
static int x942kdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
|
|
{
|
|
const EVP_MD *md;
|
|
char *alg_str = NULL;
|
|
size_t i;
|
|
|
|
switch (cmd) {
|
|
case EVP_KDF_CTRL_SET_MD:
|
|
md = va_arg(args, const EVP_MD *);
|
|
if (md == NULL)
|
|
return 0;
|
|
|
|
impl->md = md;
|
|
return 1;
|
|
|
|
case EVP_KDF_CTRL_SET_KEY:
|
|
return x942kdf_set_buffer(args, &impl->secret, &impl->secret_len);
|
|
|
|
case EVP_KDF_CTRL_SET_UKM:
|
|
return x942kdf_set_buffer(args, &impl->ukm, &impl->ukm_len);
|
|
|
|
case EVP_KDF_CTRL_SET_CEK_ALG:
|
|
alg_str = va_arg(args, char *);
|
|
if (alg_str == NULL)
|
|
return 0;
|
|
impl->cek_nid = OBJ_sn2nid(alg_str);
|
|
for (i = 0; i < (size_t)OSSL_NELEM(kek_algs); ++i) {
|
|
if (kek_algs[i].nid == impl->cek_nid) {
|
|
impl->dkm_len = kek_algs[i].keklen;
|
|
return 1;
|
|
}
|
|
}
|
|
KDFerr(KDF_F_X942KDF_CTRL, KDF_R_UNSUPPORTED_CEK_ALG);
|
|
return 0;
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
static int x942kdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
|
|
const char *value)
|
|
{
|
|
if (strcmp(type, "digest") == 0)
|
|
return kdf_md2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
|
|
|
|
if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
|
|
return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_KEY,
|
|
value);
|
|
|
|
if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
|
|
return kdf_hex2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_KEY,
|
|
value);
|
|
|
|
if (strcmp(type, "ukm") == 0)
|
|
return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_UKM,
|
|
value);
|
|
|
|
if (strcmp(type, "hexukm") == 0)
|
|
return kdf_hex2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_UKM,
|
|
value);
|
|
|
|
if (strcmp(type, "cekalg") == 0)
|
|
return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_CEK_ALG,
|
|
value);
|
|
|
|
return -2;
|
|
}
|
|
|
|
static size_t x942kdf_size(EVP_KDF_IMPL *impl)
|
|
{
|
|
int len;
|
|
|
|
if (impl->md == NULL) {
|
|
KDFerr(KDF_F_X942KDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
|
|
return 0;
|
|
}
|
|
len = EVP_MD_size(impl->md);
|
|
return (len <= 0) ? 0 : (size_t)len;
|
|
}
|
|
|
|
static int x942kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
|
|
{
|
|
int ret = 0;
|
|
unsigned char *ctr;
|
|
unsigned char *der = NULL;
|
|
size_t der_len = 0;
|
|
|
|
if (impl->secret == NULL) {
|
|
KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_SECRET);
|
|
return 0;
|
|
}
|
|
if (impl->md == NULL) {
|
|
KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
|
return 0;
|
|
}
|
|
if (impl->cek_nid == NID_undef) {
|
|
KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_CEK_ALG);
|
|
return 0;
|
|
}
|
|
if (impl->ukm != NULL && impl->ukm_len >= X942KDF_MAX_INLEN) {
|
|
/*
|
|
* Note the ukm length MUST be 512 bits.
|
|
* For backwards compatibility the old check is being done.
|
|
*/
|
|
KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_INAVLID_UKM_LEN);
|
|
return 0;
|
|
}
|
|
if (keylen != impl->dkm_len) {
|
|
KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_CEK_ALG);
|
|
return 0;
|
|
}
|
|
/* generate the otherinfo der */
|
|
if (!x942_encode_otherinfo(impl->cek_nid, impl->dkm_len,
|
|
impl->ukm, impl->ukm_len,
|
|
&der, &der_len, &ctr)) {
|
|
KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_BAD_ENCODING);
|
|
return 0;
|
|
}
|
|
ret = x942kdf_hash_kdm(impl->md, impl->secret, impl->secret_len,
|
|
der, der_len, ctr, key, keylen);
|
|
OPENSSL_free(der);
|
|
return ret;
|
|
}
|
|
|
|
const EVP_KDF x942_kdf_meth = {
|
|
EVP_KDF_X942,
|
|
x942kdf_new,
|
|
x942kdf_free,
|
|
x942kdf_reset,
|
|
x942kdf_ctrl,
|
|
x942kdf_ctrl_str,
|
|
x942kdf_size,
|
|
x942kdf_derive
|
|
};
|
|
|
|
#endif /* OPENSSL_NO_CMS */
|