openssl/crypto/rand/rand_vms.c
Pauli 678d2681b2 Clear seed source structures.
If the structures have empty padding bytes, ensure they are zeroed.
These structures are added to seed pools as complete blocks including
any padding and alignment bytes.

Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8610)
2019-03-29 20:11:41 +10:00

538 lines
16 KiB
C

/*
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "e_os.h"
#if defined(OPENSSL_SYS_VMS)
# define __NEW_STARLET 1 /* New starlet definitions since VMS 7.0 */
# include <unistd.h>
# include "internal/cryptlib.h"
# include <openssl/rand.h>
# include "internal/rand_int.h"
# include "rand_lcl.h"
# include <descrip.h>
# include <dvidef.h>
# include <jpidef.h>
# include <rmidef.h>
# include <syidef.h>
# include <ssdef.h>
# include <starlet.h>
# include <efndef.h>
# include <gen64def.h>
# include <iosbdef.h>
# include <iledef.h>
# include <lib$routines.h>
# ifdef __DECC
# pragma message disable DOLLARID
# endif
# ifndef OPENSSL_RAND_SEED_OS
# error "Unsupported seeding method configured; must be os"
# endif
/* We need to make sure we have the right size pointer in some cases */
# if __INITIAL_POINTER_SIZE == 64
# pragma pointer_size save
# pragma pointer_size 32
# endif
typedef uint32_t *uint32_t__ptr32;
# if __INITIAL_POINTER_SIZE == 64
# pragma pointer_size restore
# endif
struct item_st {
short length, code; /* length is number of bytes */
};
static const struct item_st DVI_item_data[] = {
{4, DVI$_ERRCNT},
{4, DVI$_REFCNT},
};
static const struct item_st JPI_item_data[] = {
{4, JPI$_BUFIO},
{4, JPI$_CPUTIM},
{4, JPI$_DIRIO},
{4, JPI$_IMAGECOUNT},
{4, JPI$_PAGEFLTS},
{4, JPI$_PID},
{4, JPI$_PPGCNT},
{4, JPI$_WSPEAK},
/*
* Note: the direct result is just a 32-bit address. However, it points
* to a list of 4 32-bit words, so we make extra space for them so we can
* do in-place replacement of values
*/
{16, JPI$_FINALEXC},
};
static const struct item_st JPI_item_data_64bit[] = {
{8, JPI$_LAST_LOGIN_I},
{8, JPI$_LOGINTIM},
};
static const struct item_st RMI_item_data[] = {
{4, RMI$_COLPG},
{4, RMI$_MWAIT},
{4, RMI$_CEF},
{4, RMI$_PFW},
{4, RMI$_LEF},
{4, RMI$_LEFO},
{4, RMI$_HIB},
{4, RMI$_HIBO},
{4, RMI$_SUSP},
{4, RMI$_SUSPO},
{4, RMI$_FPG},
{4, RMI$_COM},
{4, RMI$_COMO},
{4, RMI$_CUR},
#if defined __alpha
{4, RMI$_FRLIST},
{4, RMI$_MODLIST},
#endif
{4, RMI$_FAULTS},
{4, RMI$_PREADS},
{4, RMI$_PWRITES},
{4, RMI$_PWRITIO},
{4, RMI$_PREADIO},
{4, RMI$_GVALFLTS},
{4, RMI$_WRTINPROG},
{4, RMI$_FREFLTS},
{4, RMI$_DZROFLTS},
{4, RMI$_SYSFAULTS},
{4, RMI$_ISWPCNT},
{4, RMI$_DIRIO},
{4, RMI$_BUFIO},
{4, RMI$_MBREADS},
{4, RMI$_MBWRITES},
{4, RMI$_LOGNAM},
{4, RMI$_FCPCALLS},
{4, RMI$_FCPREAD},
{4, RMI$_FCPWRITE},
{4, RMI$_FCPCACHE},
{4, RMI$_FCPCPU},
{4, RMI$_FCPHIT},
{4, RMI$_FCPSPLIT},
{4, RMI$_FCPFAULT},
{4, RMI$_ENQNEW},
{4, RMI$_ENQCVT},
{4, RMI$_DEQ},
{4, RMI$_BLKAST},
{4, RMI$_ENQWAIT},
{4, RMI$_ENQNOTQD},
{4, RMI$_DLCKSRCH},
{4, RMI$_DLCKFND},
{4, RMI$_NUMLOCKS},
{4, RMI$_NUMRES},
{4, RMI$_ARRLOCPK},
{4, RMI$_DEPLOCPK},
{4, RMI$_ARRTRAPK},
{4, RMI$_TRCNGLOS},
{4, RMI$_RCVBUFFL},
{4, RMI$_ENQNEWLOC},
{4, RMI$_ENQNEWIN},
{4, RMI$_ENQNEWOUT},
{4, RMI$_ENQCVTLOC},
{4, RMI$_ENQCVTIN},
{4, RMI$_ENQCVTOUT},
{4, RMI$_DEQLOC},
{4, RMI$_DEQIN},
{4, RMI$_DEQOUT},
{4, RMI$_BLKLOC},
{4, RMI$_BLKIN},
{4, RMI$_BLKOUT},
{4, RMI$_DIRIN},
{4, RMI$_DIROUT},
/* We currently get a fault when trying these. TODO: To be figured out. */
#if 0
{140, RMI$_MSCP_EVERYTHING}, /* 35 32-bit words */
{152, RMI$_DDTM_ALL}, /* 38 32-bit words */
{80, RMI$_TMSCP_EVERYTHING} /* 20 32-bit words */
#endif
{4, RMI$_LPZ_PAGCNT},
{4, RMI$_LPZ_HITS},
{4, RMI$_LPZ_MISSES},
{4, RMI$_LPZ_EXPCNT},
{4, RMI$_LPZ_ALLOCF},
{4, RMI$_LPZ_ALLOC2},
{4, RMI$_ACCESS},
{4, RMI$_ALLOC},
{4, RMI$_FCPCREATE},
{4, RMI$_VOLWAIT},
{4, RMI$_FCPTURN},
{4, RMI$_FCPERASE},
{4, RMI$_OPENS},
{4, RMI$_FIDHIT},
{4, RMI$_FIDMISS},
{4, RMI$_FILHDR_HIT},
{4, RMI$_DIRFCB_HIT},
{4, RMI$_DIRFCB_MISS},
{4, RMI$_DIRDATA_HIT},
{4, RMI$_EXTHIT},
{4, RMI$_EXTMISS},
{4, RMI$_QUOHIT},
{4, RMI$_QUOMISS},
{4, RMI$_STORAGMAP_HIT},
{4, RMI$_VOLLCK},
{4, RMI$_SYNCHLCK},
{4, RMI$_SYNCHWAIT},
{4, RMI$_ACCLCK},
{4, RMI$_XQPCACHEWAIT},
{4, RMI$_DIRDATA_MISS},
{4, RMI$_FILHDR_MISS},
{4, RMI$_STORAGMAP_MISS},
{4, RMI$_PROCCNTMAX},
{4, RMI$_PROCBATCNT},
{4, RMI$_PROCINTCNT},
{4, RMI$_PROCNETCNT},
{4, RMI$_PROCSWITCHCNT},
{4, RMI$_PROCBALSETCNT},
{4, RMI$_PROCLOADCNT},
{4, RMI$_BADFLTS},
{4, RMI$_EXEFAULTS},
{4, RMI$_HDRINSWAPS},
{4, RMI$_HDROUTSWAPS},
{4, RMI$_IOPAGCNT},
{4, RMI$_ISWPCNTPG},
{4, RMI$_OSWPCNT},
{4, RMI$_OSWPCNTPG},
{4, RMI$_RDFAULTS},
{4, RMI$_TRANSFLTS},
{4, RMI$_WRTFAULTS},
#if defined __alpha
{4, RMI$_USERPAGES},
#endif
{4, RMI$_VMSPAGES},
{4, RMI$_TTWRITES},
{4, RMI$_BUFOBJPAG},
{4, RMI$_BUFOBJPAGPEAK},
{4, RMI$_BUFOBJPAGS01},
{4, RMI$_BUFOBJPAGS2},
{4, RMI$_BUFOBJPAGMAXS01},
{4, RMI$_BUFOBJPAGMAXS2},
{4, RMI$_BUFOBJPAGPEAKS01},
{4, RMI$_BUFOBJPAGPEAKS2},
{4, RMI$_BUFOBJPGLTMAXS01},
{4, RMI$_BUFOBJPGLTMAXS2},
{4, RMI$_DLCK_INCMPLT},
{4, RMI$_DLCKMSGS_IN},
{4, RMI$_DLCKMSGS_OUT},
{4, RMI$_MCHKERRS},
{4, RMI$_MEMERRS},
};
static const struct item_st RMI_item_data_64bit[] = {
#if defined __ia64
{8, RMI$_FRLIST},
{8, RMI$_MODLIST},
#endif
{8, RMI$_LCKMGR_REQCNT},
{8, RMI$_LCKMGR_REQTIME},
{8, RMI$_LCKMGR_SPINCNT},
{8, RMI$_LCKMGR_SPINTIME},
{8, RMI$_CPUINTSTK},
{8, RMI$_CPUMPSYNCH},
{8, RMI$_CPUKERNEL},
{8, RMI$_CPUEXEC},
{8, RMI$_CPUSUPER},
{8, RMI$_CPUUSER},
#if defined __ia64
{8, RMI$_USERPAGES},
#endif
{8, RMI$_TQETOTAL},
{8, RMI$_TQESYSUB},
{8, RMI$_TQEUSRTIMR},
{8, RMI$_TQEUSRWAKE},
};
static const struct item_st SYI_item_data[] = {
{4, SYI$_PAGEFILE_FREE},
};
/*
* Input:
* items_data - an array of lengths and codes
* items_data_num - number of elements in that array
*
* Output:
* items - pre-allocated ILE3 array to be filled.
* It's assumed to have items_data_num elements plus
* one extra for the terminating NULL element
* databuffer - pre-allocated 32-bit word array.
*
* Returns the number of elements used in databuffer
*/
static size_t prepare_item_list(const struct item_st *items_input,
size_t items_input_num,
ILE3 *items,
uint32_t__ptr32 databuffer)
{
size_t data_sz = 0;
for (; items_input_num-- > 0; items_input++, items++) {
items->ile3$w_code = items_input->code;
/* Special treatment of JPI$_FINALEXC */
if (items->ile3$w_code == JPI$_FINALEXC)
items->ile3$w_length = 4;
else
items->ile3$w_length = items_input->length;
items->ile3$ps_bufaddr = databuffer;
items->ile3$ps_retlen_addr = 0;
databuffer += items_input->length / sizeof(databuffer[0]);
data_sz += items_input->length;
}
/* Terminating NULL entry */
items->ile3$w_length = items->ile3$w_code = 0;
items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL;
return data_sz / sizeof(databuffer[0]);
}
static void massage_JPI(ILE3 *items)
{
/*
* Special treatment of JPI$_FINALEXC
* The result of that item's data buffer is a 32-bit address to a list of
* 4 32-bit words.
*/
for (; items->ile3$w_length != 0; items++) {
if (items->ile3$w_code == JPI$_FINALEXC) {
uint32_t *data = items->ile3$ps_bufaddr;
uint32_t *ptr = (uint32_t *)*data;
size_t j;
/*
* We know we made space for 4 32-bit words, so we can do in-place
* replacement.
*/
for (j = 0; j < 4; j++)
data[j] = ptr[j];
break;
}
}
}
/*
* This number expresses how many bits of data contain 1 bit of entropy.
*
* For the moment, we assume about 0.05 entropy bits per data bit, or 1
* bit of entropy per 20 data bits.
*/
#define ENTROPY_FACTOR 20
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1];
ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1];
ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1];
ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1];
ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1];
ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1];
union {
/* This ensures buffer starts at 64 bit boundary */
uint64_t dummy;
uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2
+ OSSL_NELEM(RMI_item_data_64bit) * 2
+ OSSL_NELEM(DVI_item_data)
+ OSSL_NELEM(JPI_item_data)
+ OSSL_NELEM(RMI_item_data)
+ OSSL_NELEM(SYI_item_data)
+ 4 /* For JPI$_FINALEXC */];
} data;
size_t total_elems = 0;
size_t total_length = 0;
size_t bytes_needed = rand_pool_bytes_needed(pool, ENTROPY_FACTOR);
size_t bytes_remaining = rand_pool_bytes_remaining(pool);
/* Take all the 64-bit items first, to ensure proper alignment of data */
total_elems +=
prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit),
JPI_items_64bit, &data.buffer[total_elems]);
total_elems +=
prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit),
RMI_items_64bit, &data.buffer[total_elems]);
/* Now the 32-bit items */
total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data),
DVI_items, &data.buffer[total_elems]);
total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data),
JPI_items, &data.buffer[total_elems]);
total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data),
RMI_items, &data.buffer[total_elems]);
total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data),
SYI_items, &data.buffer[total_elems]);
total_length = total_elems * sizeof(data.buffer[0]);
/* Fill data.buffer with various info bits from this process */
{
uint32_t status;
uint32_t efn;
IOSB iosb;
$DESCRIPTOR(SYSDEVICE,"SYS$SYSDEVICE:");
if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items,
0, 0, 0, 0, 0)) != SS$_NORMAL) {
lib$signal(status);
return 0;
}
if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0))
!= SS$_NORMAL) {
lib$signal(status);
return 0;
}
if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0))
!= SS$_NORMAL) {
lib$signal(status);
return 0;
}
if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0))
!= SS$_NORMAL) {
lib$signal(status);
return 0;
}
/*
* The RMI service is a bit special, as there is no synchronous
* variant, so we MUST create an event flag to synchronise on.
*/
if ((status = lib$get_ef(&efn)) != SS$_NORMAL) {
lib$signal(status);
return 0;
}
if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0))
!= SS$_NORMAL) {
lib$signal(status);
return 0;
}
if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
lib$signal(status);
return 0;
}
if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
lib$signal(iosb.iosb$l_getxxi_status);
return 0;
}
if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0))
!= SS$_NORMAL) {
lib$signal(status);
return 0;
}
if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
lib$signal(status);
return 0;
}
if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
lib$signal(iosb.iosb$l_getxxi_status);
return 0;
}
if ((status = lib$free_ef(&efn)) != SS$_NORMAL) {
lib$signal(status);
return 0;
}
}
massage_JPI(JPI_items);
/*
* If we can't feed the requirements from the caller, we're in deep trouble.
*/
if (!ossl_assert(total_length >= bytes_needed)) {
char neededstr[20];
char availablestr[20];
BIO_snprintf(neededstr, sizeof(neededstr), "%zu", bytes_needed);
BIO_snprintf(availablestr, sizeof(availablestr), "%zu", total_length);
RANDerr(RAND_F_RAND_POOL_ACQUIRE_ENTROPY,
RAND_R_RANDOM_POOL_UNDERFLOW);
ERR_add_error_data(4, "Needed: ", neededstr, ", Available: ",
availablestr);
return 0;
}
/*
* Try not to overfeed the pool
*/
if (total_length > bytes_remaining)
total_length = bytes_remaining;
/* We give the pessimistic value for the amount of entropy */
rand_pool_add(pool, (unsigned char *)data.buffer, total_length,
8 * total_length / ENTROPY_FACTOR);
return rand_pool_entropy_available(pool);
}
int rand_pool_add_nonce_data(RAND_POOL *pool)
{
struct {
pid_t pid;
CRYPTO_THREAD_ID tid;
uint64_t time;
} data;
/* Erase the entire structure including any padding */
memset(&data, 0, sizeof(data));
/*
* Add process id, thread id, and a high resolution timestamp
* (where available, which is OpenVMS v8.4 and up) to ensure that
* the nonce is unique whith high probability for different process
* instances.
*/
data.pid = getpid();
data.tid = CRYPTO_THREAD_get_current_id();
#if __CRTL_VER >= 80400000
sys$gettim_prec(&data.time);
#else
sys$gettim((void*)&data.time);
#endif
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}
int rand_pool_add_additional_data(RAND_POOL *pool)
{
struct {
CRYPTO_THREAD_ID tid;
uint64_t time;
} data;
/* Erase the entire structure including any padding */
memset(&data, 0, sizeof(data));
/*
* Add some noise from the thread id and a high resolution timer.
* The thread id adds a little randomness if the drbg is accessed
* concurrently (which is the case for the <master> drbg).
*/
data.tid = CRYPTO_THREAD_get_current_id();
#if __CRTL_VER >= 80400000
sys$gettim_prec(&data.time);
#else
sys$gettim((void*)&data.time);
#endif
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}
int rand_pool_init(void)
{
return 1;
}
void rand_pool_cleanup(void)
{
}
void rand_pool_keep_random_devices_open(int keep)
{
}
#endif