openssl/engines/e_cswift.c
Rich Salz 75ebbd9aa4 Use p==NULL not !p (in if statements, mainly)
Reviewed-by: Tim Hudson <tjh@openssl.org>
2015-05-11 10:06:38 -04:00

1081 lines
34 KiB
C

/* crypto/engine/hw_cswift.c */
/*
* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL project
* 2000.
*/
/* ====================================================================
* Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/buffer.h>
#include <openssl/dso.h>
#include <openssl/engine.h>
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
#endif
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
#endif
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include <openssl/rand.h>
#include <openssl/bn.h>
#ifndef OPENSSL_NO_HW
# ifndef OPENSSL_NO_HW_CSWIFT
/*
* Attribution notice: Rainbow have generously allowed me to reproduce the
* necessary definitions here from their API. This means the support can
* build independently of whether application builders have the API or
* hardware. This will allow developers to easily produce software that has
* latent hardware support for any users that have accelerators installed,
* without the developers themselves needing anything extra. I have only
* clipped the parts from the CryptoSwift header files that are (or seem)
* relevant to the CryptoSwift support code. This is simply to keep the file
* sizes reasonable. [Geoff]
*/
# ifdef FLAT_INC
# include "cswift.h"
# else
# include "vendor_defns/cswift.h"
# endif
# define CSWIFT_LIB_NAME "cswift engine"
# include "e_cswift_err.c"
# define DECIMAL_SIZE(type) ((sizeof(type)*8+2)/3+1)
static int cswift_destroy(ENGINE *e);
static int cswift_init(ENGINE *e);
static int cswift_finish(ENGINE *e);
static int cswift_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
# ifndef OPENSSL_NO_RSA
static int cswift_bn_32copy(SW_LARGENUMBER *out, const BIGNUM *in);
# endif
/* BIGNUM stuff */
static int cswift_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
# ifndef OPENSSL_NO_RSA
static int cswift_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *q, const BIGNUM *dmp1,
const BIGNUM *dmq1, const BIGNUM *iqmp,
BN_CTX *ctx);
# endif
# ifndef OPENSSL_NO_RSA
/* RSA stuff */
static int cswift_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx);
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int cswift_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
# endif
# ifndef OPENSSL_NO_DSA
/* DSA stuff */
static DSA_SIG *cswift_dsa_sign(const unsigned char *dgst, int dlen,
DSA *dsa);
static int cswift_dsa_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);
# endif
# ifndef OPENSSL_NO_DH
/* DH stuff */
/* This function is alised to mod_exp (with the DH and mont dropped). */
static int cswift_mod_exp_dh(const DH *dh, BIGNUM *r,
const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
# endif
/* RAND stuff */
static int cswift_rand_bytes(unsigned char *buf, int num);
static int cswift_rand_status(void);
/* The definitions for control commands specific to this engine */
# define CSWIFT_CMD_SO_PATH ENGINE_CMD_BASE
static const ENGINE_CMD_DEFN cswift_cmd_defns[] = {
{CSWIFT_CMD_SO_PATH,
"SO_PATH",
"Specifies the path to the 'cswift' shared library",
ENGINE_CMD_FLAG_STRING},
{0, NULL, NULL, 0}
};
# ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD cswift_rsa = {
"CryptoSwift RSA method",
NULL,
NULL,
NULL,
NULL,
cswift_rsa_mod_exp,
cswift_mod_exp_mont,
NULL,
NULL,
0,
NULL,
NULL,
NULL,
NULL
};
# endif
# ifndef OPENSSL_NO_DSA
/* Our internal DSA_METHOD that we provide pointers to */
static DSA_METHOD cswift_dsa = {
"CryptoSwift DSA method",
cswift_dsa_sign,
NULL, /* dsa_sign_setup */
cswift_dsa_verify,
NULL, /* dsa_mod_exp */
NULL, /* bn_mod_exp */
NULL, /* init */
NULL, /* finish */
0, /* flags */
NULL, /* app_data */
NULL, /* dsa_paramgen */
NULL /* dsa_keygen */
};
# endif
# ifndef OPENSSL_NO_DH
/* Our internal DH_METHOD that we provide pointers to */
static DH_METHOD cswift_dh = {
"CryptoSwift DH method",
NULL,
NULL,
cswift_mod_exp_dh,
NULL,
NULL,
0,
NULL,
NULL
};
# endif
static RAND_METHOD cswift_random = {
/* "CryptoSwift RAND method", */
NULL,
cswift_rand_bytes,
NULL,
NULL,
cswift_rand_bytes,
cswift_rand_status,
};
/* Constants used when creating the ENGINE */
static const char *engine_cswift_id = "cswift";
static const char *engine_cswift_name = "CryptoSwift hardware engine support";
/*
* This internal function is used by ENGINE_cswift() and possibly by the
* "dynamic" ENGINE support too
*/
static int bind_helper(ENGINE *e)
{
# ifndef OPENSSL_NO_RSA
const RSA_METHOD *meth1;
# endif
# ifndef OPENSSL_NO_DH
const DH_METHOD *meth2;
# endif
if (!ENGINE_set_id(e, engine_cswift_id) ||
!ENGINE_set_name(e, engine_cswift_name) ||
# ifndef OPENSSL_NO_RSA
!ENGINE_set_RSA(e, &cswift_rsa) ||
# endif
# ifndef OPENSSL_NO_DSA
!ENGINE_set_DSA(e, &cswift_dsa) ||
# endif
# ifndef OPENSSL_NO_DH
!ENGINE_set_DH(e, &cswift_dh) ||
# endif
!ENGINE_set_RAND(e, &cswift_random) ||
!ENGINE_set_destroy_function(e, cswift_destroy) ||
!ENGINE_set_init_function(e, cswift_init) ||
!ENGINE_set_finish_function(e, cswift_finish) ||
!ENGINE_set_ctrl_function(e, cswift_ctrl) ||
!ENGINE_set_cmd_defns(e, cswift_cmd_defns))
return 0;
# ifndef OPENSSL_NO_RSA
/*
* We know that the "PKCS1_SSLeay()" functions hook properly to the
* cswift-specific mod_exp and mod_exp_crt so we use those functions. NB:
* We don't use ENGINE_openssl() or anything "more generic" because
* something like the RSAref code may not hook properly, and if you own
* one of these cards then you have the right to do RSA operations on it
* anyway!
*/
meth1 = RSA_PKCS1_SSLeay();
cswift_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
cswift_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
cswift_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
cswift_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
# endif
# ifndef OPENSSL_NO_DH
/* Much the same for Diffie-Hellman */
meth2 = DH_OpenSSL();
cswift_dh.generate_key = meth2->generate_key;
cswift_dh.compute_key = meth2->compute_key;
# endif
/* Ensure the cswift error handling is set up */
ERR_load_CSWIFT_strings();
return 1;
}
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *engine_cswift(void)
{
ENGINE *ret = ENGINE_new();
if (!ret)
return NULL;
if (!bind_helper(ret)) {
ENGINE_free(ret);
return NULL;
}
return ret;
}
void ENGINE_load_cswift(void)
{
/* Copied from eng_[openssl|dyn].c */
ENGINE *toadd = engine_cswift();
if (!toadd)
return;
ENGINE_add(toadd);
ENGINE_free(toadd);
ERR_clear_error();
}
# endif
/*
* This is a process-global DSO handle used for loading and unloading the
* CryptoSwift library. NB: This is only set (or unset) during an init() or
* finish() call (reference counts permitting) and they're operating with
* global locks, so this should be thread-safe implicitly.
*/
static DSO *cswift_dso = NULL;
/*
* These are the function pointers that are (un)set when the library has
* successfully (un)loaded.
*/
t_swAcquireAccContext *p_CSwift_AcquireAccContext = NULL;
t_swAttachKeyParam *p_CSwift_AttachKeyParam = NULL;
t_swSimpleRequest *p_CSwift_SimpleRequest = NULL;
t_swReleaseAccContext *p_CSwift_ReleaseAccContext = NULL;
/* Used in the DSO operations. */
static const char *CSWIFT_LIBNAME = NULL;
static const char *get_CSWIFT_LIBNAME(void)
{
if (CSWIFT_LIBNAME)
return CSWIFT_LIBNAME;
return "swift";
}
static void free_CSWIFT_LIBNAME(void)
{
OPENSSL_free(CSWIFT_LIBNAME);
CSWIFT_LIBNAME = NULL;
}
static long set_CSWIFT_LIBNAME(const char *name)
{
free_CSWIFT_LIBNAME();
return (((CSWIFT_LIBNAME = BUF_strdup(name)) != NULL) ? 1 : 0);
}
static const char *CSWIFT_F1 = "swAcquireAccContext";
static const char *CSWIFT_F2 = "swAttachKeyParam";
static const char *CSWIFT_F3 = "swSimpleRequest";
static const char *CSWIFT_F4 = "swReleaseAccContext";
/*
* CryptoSwift library functions and mechanics - these are used by the
* higher-level functions further down. NB: As and where there's no error
* checking, take a look lower down where these functions are called, the
* checking and error handling is probably down there.
*/
/* utility function to obtain a context */
static int get_context(SW_CONTEXT_HANDLE *hac)
{
SW_STATUS status;
status = p_CSwift_AcquireAccContext(hac);
if (status != SW_OK)
return 0;
return 1;
}
/* similarly to release one. */
static void release_context(SW_CONTEXT_HANDLE hac)
{
p_CSwift_ReleaseAccContext(hac);
}
/* Destructor (complements the "ENGINE_cswift()" constructor) */
static int cswift_destroy(ENGINE *e)
{
free_CSWIFT_LIBNAME();
ERR_unload_CSWIFT_strings();
return 1;
}
/* (de)initialisation functions. */
static int cswift_init(ENGINE *e)
{
SW_CONTEXT_HANDLE hac;
t_swAcquireAccContext *p1;
t_swAttachKeyParam *p2;
t_swSimpleRequest *p3;
t_swReleaseAccContext *p4;
if (cswift_dso != NULL) {
CSWIFTerr(CSWIFT_F_CSWIFT_INIT, CSWIFT_R_ALREADY_LOADED);
goto err;
}
/* Attempt to load libswift.so/swift.dll/whatever. */
cswift_dso = DSO_load(NULL, get_CSWIFT_LIBNAME(), NULL, 0);
if (cswift_dso == NULL) {
CSWIFTerr(CSWIFT_F_CSWIFT_INIT, CSWIFT_R_NOT_LOADED);
goto err;
}
#define BINDIT(t, name) (t *)DSO_bind_func(cswift_dso, name)
if ((p1 = BINDIT(t_swAcquireAccContext, CSWIFT_F1)) == NULL
|| (p2 = BINDIT(t_swAttachKeyParam, CSWIFT_F2)) == NULL
|| (p3 = BINDIT(t_swSimpleRequest *) DSO_bind_func(cswift_dso, CSWIFT_F3)) == NULL
|| (p4 = BINDIT(t_swReleaseAccContext *) DSO_bind_func(cswift_dso, CSWIFT_F4)) == NULL) {
CSWIFTerr(CSWIFT_F_CSWIFT_INIT, CSWIFT_R_NOT_LOADED);
goto err;
}
/* Copy the pointers */
p_CSwift_AcquireAccContext = p1;
p_CSwift_AttachKeyParam = p2;
p_CSwift_SimpleRequest = p3;
p_CSwift_ReleaseAccContext = p4;
/*
* Try and get a context - if not, we may have a DSO but no accelerator!
*/
if (!get_context(&hac)) {
CSWIFTerr(CSWIFT_F_CSWIFT_INIT, CSWIFT_R_UNIT_FAILURE);
goto err;
}
release_context(hac);
/* Everything's fine. */
return 1;
err:
DSO_free(cswift_dso);
cswift_dso = NULL;
p_CSwift_AcquireAccContext = NULL;
p_CSwift_AttachKeyParam = NULL;
p_CSwift_SimpleRequest = NULL;
p_CSwift_ReleaseAccContext = NULL;
return 0;
}
static int cswift_finish(ENGINE *e)
{
free_CSWIFT_LIBNAME();
if (cswift_dso == NULL) {
CSWIFTerr(CSWIFT_F_CSWIFT_FINISH, CSWIFT_R_NOT_LOADED);
return 0;
}
if (!DSO_free(cswift_dso)) {
CSWIFTerr(CSWIFT_F_CSWIFT_FINISH, CSWIFT_R_UNIT_FAILURE);
return 0;
}
cswift_dso = NULL;
p_CSwift_AcquireAccContext = NULL;
p_CSwift_AttachKeyParam = NULL;
p_CSwift_SimpleRequest = NULL;
p_CSwift_ReleaseAccContext = NULL;
return 1;
}
static int cswift_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
int initialised = ((cswift_dso == NULL) ? 0 : 1);
switch (cmd) {
case CSWIFT_CMD_SO_PATH:
if (p == NULL) {
CSWIFTerr(CSWIFT_F_CSWIFT_CTRL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (initialised) {
CSWIFTerr(CSWIFT_F_CSWIFT_CTRL, CSWIFT_R_ALREADY_LOADED);
return 0;
}
return set_CSWIFT_LIBNAME((const char *)p);
default:
break;
}
CSWIFTerr(CSWIFT_F_CSWIFT_CTRL, CSWIFT_R_CTRL_COMMAND_NOT_IMPLEMENTED);
return 0;
}
/* Un petit mod_exp */
static int cswift_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx)
{
/*
* I need somewhere to store temporary serialised values for use with the
* CryptoSwift API calls. A neat cheat - I'll use BIGNUMs from the BN_CTX
* but access their arrays directly as byte arrays <grin>. This way I
* don't have to clean anything up.
*/
BIGNUM *modulus;
BIGNUM *exponent;
BIGNUM *argument;
BIGNUM *result;
SW_STATUS sw_status;
SW_LARGENUMBER arg, res;
SW_PARAM sw_param;
SW_CONTEXT_HANDLE hac;
int to_return, acquired;
modulus = exponent = argument = result = NULL;
to_return = 0; /* expect failure */
acquired = 0;
if (!get_context(&hac)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP, CSWIFT_R_UNIT_FAILURE);
goto err;
}
acquired = 1;
/* Prepare the params */
BN_CTX_start(ctx);
modulus = BN_CTX_get(ctx);
exponent = BN_CTX_get(ctx);
argument = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (!result) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP, CSWIFT_R_BN_CTX_FULL);
goto err;
}
if (!bn_wexpand(modulus, m->top) || !bn_wexpand(exponent, p->top) ||
!bn_wexpand(argument, a->top) || !bn_wexpand(result, m->top)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
sw_param.type = SW_ALG_EXP;
sw_param.up.exp.modulus.nbytes = BN_bn2bin(m,
(unsigned char *)modulus->d);
sw_param.up.exp.modulus.value = (unsigned char *)modulus->d;
sw_param.up.exp.exponent.nbytes = BN_bn2bin(p,
(unsigned char *)exponent->d);
sw_param.up.exp.exponent.value = (unsigned char *)exponent->d;
/* Attach the key params */
sw_status = p_CSwift_AttachKeyParam(hac, &sw_param);
switch (sw_status) {
case SW_OK:
break;
case SW_ERR_INPUT_SIZE:
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP, CSWIFT_R_BAD_KEY_SIZE);
goto err;
default:
{
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
}
goto err;
}
/* Prepare the argument and response */
arg.nbytes = BN_bn2bin(a, (unsigned char *)argument->d);
arg.value = (unsigned char *)argument->d;
res.nbytes = BN_num_bytes(m);
memset(result->d, 0, res.nbytes);
res.value = (unsigned char *)result->d;
/* Perform the operation */
if ((sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_MODEXP, &arg, 1,
&res, 1)) != SW_OK) {
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
goto err;
}
/* Convert the response */
BN_bin2bn((unsigned char *)result->d, res.nbytes, r);
to_return = 1;
err:
if (acquired)
release_context(hac);
BN_CTX_end(ctx);
return to_return;
}
# ifndef OPENSSL_NO_RSA
int cswift_bn_32copy(SW_LARGENUMBER *out, const BIGNUM *in)
{
int mod;
int numbytes = BN_num_bytes(in);
mod = 0;
while (((out->nbytes = (numbytes + mod)) % 32)) {
mod++;
}
out->value = OPENSSL_malloc(out->nbytes);
if (!out->value) {
return 0;
}
BN_bn2bin(in, &out->value[mod]);
if (mod)
memset(out->value, 0, mod);
return 1;
}
# endif
# ifndef OPENSSL_NO_RSA
/* Un petit mod_exp chinois */
static int cswift_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *q, const BIGNUM *dmp1,
const BIGNUM *dmq1, const BIGNUM *iqmp,
BN_CTX *ctx)
{
SW_STATUS sw_status;
SW_LARGENUMBER arg, res;
SW_PARAM sw_param;
SW_CONTEXT_HANDLE hac;
BIGNUM *result = NULL;
BIGNUM *argument = NULL;
int to_return = 0; /* expect failure */
int acquired = 0;
sw_param.up.crt.p.value = NULL;
sw_param.up.crt.q.value = NULL;
sw_param.up.crt.dmp1.value = NULL;
sw_param.up.crt.dmq1.value = NULL;
sw_param.up.crt.iqmp.value = NULL;
if (!get_context(&hac)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_UNIT_FAILURE);
goto err;
}
acquired = 1;
/* Prepare the params */
argument = BN_new();
result = BN_new();
if (!result || !argument) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_CTX_FULL);
goto err;
}
sw_param.type = SW_ALG_CRT;
/************************************************************************/
/*
* 04/02/2003
*/
/*
* Modified by Frederic Giudicelli (deny-all.com) to overcome the
*/
/*
* limitation of cswift with values not a multiple of 32
*/
/************************************************************************/
if (!cswift_bn_32copy(&sw_param.up.crt.p, p)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
if (!cswift_bn_32copy(&sw_param.up.crt.q, q)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
if (!cswift_bn_32copy(&sw_param.up.crt.dmp1, dmp1)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
if (!cswift_bn_32copy(&sw_param.up.crt.dmq1, dmq1)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
if (!cswift_bn_32copy(&sw_param.up.crt.iqmp, iqmp)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
if (!bn_wexpand(argument, a->top) || !bn_wexpand(result, p->top + q->top)) {
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
/* Attach the key params */
sw_status = p_CSwift_AttachKeyParam(hac, &sw_param);
switch (sw_status) {
case SW_OK:
break;
case SW_ERR_INPUT_SIZE:
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_BAD_KEY_SIZE);
goto err;
default:
{
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
}
goto err;
}
/* Prepare the argument and response */
arg.nbytes = BN_bn2bin(a, (unsigned char *)argument->d);
arg.value = (unsigned char *)argument->d;
res.nbytes = 2 * BN_num_bytes(p);
memset(result->d, 0, res.nbytes);
res.value = (unsigned char *)result->d;
/* Perform the operation */
if ((sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_MODEXP_CRT, &arg, 1,
&res, 1)) != SW_OK) {
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
goto err;
}
/* Convert the response */
BN_bin2bn((unsigned char *)result->d, res.nbytes, r);
to_return = 1;
err:
OPENSSL_free(sw_param.up.crt.p.value);
OPENSSL_free(sw_param.up.crt.q.value);
OPENSSL_free(sw_param.up.crt.dmp1.value);
OPENSSL_free(sw_param.up.crt.dmq1.value);
OPENSSL_free(sw_param.up.crt.iqmp.value);
BN_free(result);
BN_free(argument);
if (acquired)
release_context(hac);
return to_return;
}
# endif
# ifndef OPENSSL_NO_RSA
static int cswift_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx)
{
int to_return = 0;
const RSA_METHOD *def_rsa_method;
if (!rsa->p || !rsa->q || !rsa->dmp1 || !rsa->dmq1 || !rsa->iqmp) {
CSWIFTerr(CSWIFT_F_CSWIFT_RSA_MOD_EXP,
CSWIFT_R_MISSING_KEY_COMPONENTS);
goto err;
}
/* Try the limits of RSA (2048 bits) */
if (BN_num_bytes(rsa->p) > 128 ||
BN_num_bytes(rsa->q) > 128 ||
BN_num_bytes(rsa->dmp1) > 128 ||
BN_num_bytes(rsa->dmq1) > 128 || BN_num_bytes(rsa->iqmp) > 128) {
# ifdef RSA_NULL
def_rsa_method = RSA_null_method();
# else
def_rsa_method = RSA_PKCS1_SSLeay();
# endif
if (def_rsa_method)
return def_rsa_method->rsa_mod_exp(r0, I, rsa, ctx);
}
to_return = cswift_mod_exp_crt(r0, I, rsa->p, rsa->q, rsa->dmp1,
rsa->dmq1, rsa->iqmp, ctx);
err:
return to_return;
}
/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int cswift_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
const RSA_METHOD *def_rsa_method;
/* Try the limits of RSA (2048 bits) */
if (BN_num_bytes(r) > 256 ||
BN_num_bytes(a) > 256 || BN_num_bytes(m) > 256) {
# ifdef RSA_NULL
def_rsa_method = RSA_null_method();
# else
def_rsa_method = RSA_PKCS1_SSLeay();
# endif
if (def_rsa_method)
return def_rsa_method->bn_mod_exp(r, a, p, m, ctx, m_ctx);
}
return cswift_mod_exp(r, a, p, m, ctx);
}
# endif /* OPENSSL_NO_RSA */
# ifndef OPENSSL_NO_DSA
static DSA_SIG *cswift_dsa_sign(const unsigned char *dgst, int dlen, DSA *dsa)
{
SW_CONTEXT_HANDLE hac;
SW_PARAM sw_param;
SW_STATUS sw_status;
SW_LARGENUMBER arg, res;
BN_CTX *ctx;
BIGNUM *dsa_p = NULL;
BIGNUM *dsa_q = NULL;
BIGNUM *dsa_g = NULL;
BIGNUM *dsa_key = NULL;
BIGNUM *result = NULL;
DSA_SIG *to_return = NULL;
int acquired = 0;
if ((ctx = BN_CTX_new()) == NULL)
goto err;
if (!get_context(&hac)) {
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN, CSWIFT_R_UNIT_FAILURE);
goto err;
}
acquired = 1;
/* Prepare the params */
BN_CTX_start(ctx);
dsa_p = BN_CTX_get(ctx);
dsa_q = BN_CTX_get(ctx);
dsa_g = BN_CTX_get(ctx);
dsa_key = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (!result) {
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN, CSWIFT_R_BN_CTX_FULL);
goto err;
}
if (!bn_wexpand(dsa_p, dsa->p->top) ||
!bn_wexpand(dsa_q, dsa->q->top) ||
!bn_wexpand(dsa_g, dsa->g->top) ||
!bn_wexpand(dsa_key, dsa->priv_key->top) ||
!bn_wexpand(result, dsa->p->top)) {
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
sw_param.type = SW_ALG_DSA;
sw_param.up.dsa.p.nbytes = BN_bn2bin(dsa->p, (unsigned char *)dsa_p->d);
sw_param.up.dsa.p.value = (unsigned char *)dsa_p->d;
sw_param.up.dsa.q.nbytes = BN_bn2bin(dsa->q, (unsigned char *)dsa_q->d);
sw_param.up.dsa.q.value = (unsigned char *)dsa_q->d;
sw_param.up.dsa.g.nbytes = BN_bn2bin(dsa->g, (unsigned char *)dsa_g->d);
sw_param.up.dsa.g.value = (unsigned char *)dsa_g->d;
sw_param.up.dsa.key.nbytes = BN_bn2bin(dsa->priv_key,
(unsigned char *)dsa_key->d);
sw_param.up.dsa.key.value = (unsigned char *)dsa_key->d;
/* Attach the key params */
sw_status = p_CSwift_AttachKeyParam(hac, &sw_param);
switch (sw_status) {
case SW_OK:
break;
case SW_ERR_INPUT_SIZE:
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN, CSWIFT_R_BAD_KEY_SIZE);
goto err;
default:
{
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
}
goto err;
}
/* Prepare the argument and response */
arg.nbytes = dlen;
arg.value = (unsigned char *)dgst;
res.nbytes = BN_num_bytes(dsa->p);
memset(result->d, 0, res.nbytes);
res.value = (unsigned char *)result->d;
/* Perform the operation */
sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_DSS_SIGN, &arg, 1,
&res, 1);
if (sw_status != SW_OK) {
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
goto err;
}
/* Convert the response */
if ((to_return = DSA_SIG_new()) == NULL)
goto err;
to_return->r = BN_bin2bn((unsigned char *)result->d, 20, NULL);
to_return->s = BN_bin2bn((unsigned char *)result->d + 20, 20, NULL);
err:
if (acquired)
release_context(hac);
if (ctx)
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return to_return;
}
static int cswift_dsa_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa)
{
SW_CONTEXT_HANDLE hac;
SW_PARAM sw_param;
SW_STATUS sw_status;
SW_LARGENUMBER arg[2], res;
unsigned long sig_result;
BN_CTX *ctx;
BIGNUM *dsa_p = NULL;
BIGNUM *dsa_q = NULL;
BIGNUM *dsa_g = NULL;
BIGNUM *dsa_key = NULL;
BIGNUM *argument = NULL;
int to_return = -1;
int acquired = 0;
if ((ctx = BN_CTX_new()) == NULL)
goto err;
if (!get_context(&hac)) {
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY, CSWIFT_R_UNIT_FAILURE);
goto err;
}
acquired = 1;
/* Prepare the params */
BN_CTX_start(ctx);
dsa_p = BN_CTX_get(ctx);
dsa_q = BN_CTX_get(ctx);
dsa_g = BN_CTX_get(ctx);
dsa_key = BN_CTX_get(ctx);
argument = BN_CTX_get(ctx);
if (!argument) {
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY, CSWIFT_R_BN_CTX_FULL);
goto err;
}
if (!bn_wexpand(dsa_p, dsa->p->top) ||
!bn_wexpand(dsa_q, dsa->q->top) ||
!bn_wexpand(dsa_g, dsa->g->top) ||
!bn_wexpand(dsa_key, dsa->pub_key->top) ||
!bn_wexpand(argument, 40)) {
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY, CSWIFT_R_BN_EXPAND_FAIL);
goto err;
}
sw_param.type = SW_ALG_DSA;
sw_param.up.dsa.p.nbytes = BN_bn2bin(dsa->p, (unsigned char *)dsa_p->d);
sw_param.up.dsa.p.value = (unsigned char *)dsa_p->d;
sw_param.up.dsa.q.nbytes = BN_bn2bin(dsa->q, (unsigned char *)dsa_q->d);
sw_param.up.dsa.q.value = (unsigned char *)dsa_q->d;
sw_param.up.dsa.g.nbytes = BN_bn2bin(dsa->g, (unsigned char *)dsa_g->d);
sw_param.up.dsa.g.value = (unsigned char *)dsa_g->d;
sw_param.up.dsa.key.nbytes = BN_bn2bin(dsa->pub_key,
(unsigned char *)dsa_key->d);
sw_param.up.dsa.key.value = (unsigned char *)dsa_key->d;
/* Attach the key params */
sw_status = p_CSwift_AttachKeyParam(hac, &sw_param);
switch (sw_status) {
case SW_OK:
break;
case SW_ERR_INPUT_SIZE:
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY, CSWIFT_R_BAD_KEY_SIZE);
goto err;
default:
{
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
}
goto err;
}
/* Prepare the argument and response */
arg[0].nbytes = dgst_len;
arg[0].value = (unsigned char *)dgst;
arg[1].nbytes = 40;
arg[1].value = (unsigned char *)argument->d;
memset(arg[1].value, 0, 40);
BN_bn2bin(sig->r, arg[1].value + 20 - BN_num_bytes(sig->r));
BN_bn2bin(sig->s, arg[1].value + 40 - BN_num_bytes(sig->s));
res.nbytes = 4; /* unsigned long */
res.value = (unsigned char *)(&sig_result);
/* Perform the operation */
sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_DSS_VERIFY, arg, 2,
&res, 1);
if (sw_status != SW_OK) {
char tmpbuf[DECIMAL_SIZE(sw_status) + 1];
CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", sw_status);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
goto err;
}
/* Convert the response */
to_return = ((sig_result == 0) ? 0 : 1);
err:
if (acquired)
release_context(hac);
if (ctx)
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return to_return;
}
# endif
# ifndef OPENSSL_NO_DH
/* This function is aliased to mod_exp (with the dh and mont dropped). */
static int cswift_mod_exp_dh(const DH *dh, BIGNUM *r,
const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
{
return cswift_mod_exp(r, a, p, m, ctx);
}
# endif
/* Random bytes are good */
static int cswift_rand_bytes(unsigned char *buf, int num)
{
SW_CONTEXT_HANDLE hac;
SW_STATUS swrc;
SW_LARGENUMBER largenum;
int acquired = 0;
int to_return = 0; /* assume failure */
unsigned char buf32[1024];
if (!get_context(&hac)) {
CSWIFTerr(CSWIFT_F_CSWIFT_RAND_BYTES, CSWIFT_R_UNIT_FAILURE);
goto err;
}
acquired = 1;
/************************************************************************/
/*
* 04/02/2003
*/
/*
* Modified by Frederic Giudicelli (deny-all.com) to overcome the
*/
/*
* limitation of cswift with values not a multiple of 32
*/
/************************************************************************/
while (num >= (int)sizeof(buf32)) {
largenum.value = buf;
largenum.nbytes = sizeof(buf32);
/*-
* tell CryptoSwift how many bytes we want and where we want it.
* Note: - CryptoSwift cannot do more than 4096 bytes at a time.
* - CryptoSwift can only do multiple of 32-bits.
*/
swrc =
p_CSwift_SimpleRequest(hac, SW_CMD_RAND, NULL, 0, &largenum, 1);
if (swrc != SW_OK) {
char tmpbuf[20];
CSWIFTerr(CSWIFT_F_CSWIFT_RAND_BYTES, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", swrc);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
goto err;
}
buf += sizeof(buf32);
num -= sizeof(buf32);
}
if (num) {
largenum.nbytes = sizeof(buf32);
largenum.value = buf32;
swrc =
p_CSwift_SimpleRequest(hac, SW_CMD_RAND, NULL, 0, &largenum, 1);
if (swrc != SW_OK) {
char tmpbuf[20];
CSWIFTerr(CSWIFT_F_CSWIFT_RAND_BYTES, CSWIFT_R_REQUEST_FAILED);
sprintf(tmpbuf, "%ld", swrc);
ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf);
goto err;
}
memcpy(buf, largenum.value, num);
}
to_return = 1; /* success */
err:
if (acquired)
release_context(hac);
return to_return;
}
static int cswift_rand_status(void)
{
return 1;
}
/*
* This stuff is needed if this ENGINE is being compiled into a
* self-contained shared-library.
*/
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_fn(ENGINE *e, const char *id)
{
if (id && (strcmp(id, engine_cswift_id) != 0))
return 0;
if (!bind_helper(e))
return 0;
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_fn)
# endif /* OPENSSL_NO_DYNAMIC_ENGINE */
# endif /* !OPENSSL_NO_HW_CSWIFT */
#endif /* !OPENSSL_NO_HW */