openssl/crypto/bn/bn_lib.c
Richard Levitte fcd2d5a612 Refactor the computation of API version limits
Previously, the API version limit was indicated with a numeric version
number.  This was "natural" in the pre-3.0.0 because the version was
this simple number.

With 3.0.0, the version is divided into three separate numbers, and
it's only the major number that counts, but we still need to be able
to support pre-3.0.0 version limits.

Therefore, we allow OPENSSL_API_COMPAT to be defined with a pre-3.0.0
style numeric version number or with a simple major number, i.e. can
be defined like this for any application:

    -D OPENSSL_API_COMPAT=0x10100000L
    -D OPENSSL_API_COMPAT=3

Since the pre-3.0.0 numerical version numbers are high, it's easy to
distinguish between a simple major number and a pre-3.0.0 numerical
version number and to thereby support both forms at the same time.

Internally, we define the following macros depending on the value of
OPENSSL_API_COMPAT:

    OPENSSL_API_0_9_8
    OPENSSL_API_1_0_0
    OPENSSL_API_1_1_0
    OPENSSL_API_3

They indicate that functions marked for deprecation in the
corresponding major release shall not be built if defined.

Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7724)
2018-12-06 12:24:48 +01:00

961 lines
21 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <limits.h>
#include "internal/cryptlib.h"
#include "bn_lcl.h"
#include <openssl/opensslconf.h>
#include "internal/constant_time_locl.h"
/* This stuff appears to be completely unused, so is deprecated */
#if !OPENSSL_API_0_9_8
/*-
* For a 32 bit machine
* 2 - 4 == 128
* 3 - 8 == 256
* 4 - 16 == 512
* 5 - 32 == 1024
* 6 - 64 == 2048
* 7 - 128 == 4096
* 8 - 256 == 8192
*/
static int bn_limit_bits = 0;
static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
static int bn_limit_bits_low = 0;
static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
static int bn_limit_bits_high = 0;
static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
static int bn_limit_bits_mont = 0;
static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
void BN_set_params(int mult, int high, int low, int mont)
{
if (mult >= 0) {
if (mult > (int)(sizeof(int) * 8) - 1)
mult = sizeof(int) * 8 - 1;
bn_limit_bits = mult;
bn_limit_num = 1 << mult;
}
if (high >= 0) {
if (high > (int)(sizeof(int) * 8) - 1)
high = sizeof(int) * 8 - 1;
bn_limit_bits_high = high;
bn_limit_num_high = 1 << high;
}
if (low >= 0) {
if (low > (int)(sizeof(int) * 8) - 1)
low = sizeof(int) * 8 - 1;
bn_limit_bits_low = low;
bn_limit_num_low = 1 << low;
}
if (mont >= 0) {
if (mont > (int)(sizeof(int) * 8) - 1)
mont = sizeof(int) * 8 - 1;
bn_limit_bits_mont = mont;
bn_limit_num_mont = 1 << mont;
}
}
int BN_get_params(int which)
{
if (which == 0)
return bn_limit_bits;
else if (which == 1)
return bn_limit_bits_high;
else if (which == 2)
return bn_limit_bits_low;
else if (which == 3)
return bn_limit_bits_mont;
else
return 0;
}
#endif
const BIGNUM *BN_value_one(void)
{
static const BN_ULONG data_one = 1L;
static const BIGNUM const_one =
{ (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA };
return &const_one;
}
int BN_num_bits_word(BN_ULONG l)
{
BN_ULONG x, mask;
int bits = (l != 0);
#if BN_BITS2 > 32
x = l >> 32;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 32 & mask;
l ^= (x ^ l) & mask;
#endif
x = l >> 16;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 16 & mask;
l ^= (x ^ l) & mask;
x = l >> 8;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 8 & mask;
l ^= (x ^ l) & mask;
x = l >> 4;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 4 & mask;
l ^= (x ^ l) & mask;
x = l >> 2;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 2 & mask;
l ^= (x ^ l) & mask;
x = l >> 1;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 1 & mask;
return bits;
}
int BN_num_bits(const BIGNUM *a)
{
int i = a->top - 1;
bn_check_top(a);
if (BN_is_zero(a))
return 0;
return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
}
static void bn_free_d(BIGNUM *a)
{
if (BN_get_flags(a, BN_FLG_SECURE))
OPENSSL_secure_free(a->d);
else
OPENSSL_free(a->d);
}
void BN_clear_free(BIGNUM *a)
{
if (a == NULL)
return;
if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0]));
bn_free_d(a);
}
if (BN_get_flags(a, BN_FLG_MALLOCED)) {
OPENSSL_cleanse(a, sizeof(*a));
OPENSSL_free(a);
}
}
void BN_free(BIGNUM *a)
{
if (a == NULL)
return;
if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
bn_free_d(a);
if (a->flags & BN_FLG_MALLOCED)
OPENSSL_free(a);
}
void bn_init(BIGNUM *a)
{
static BIGNUM nilbn;
*a = nilbn;
bn_check_top(a);
}
BIGNUM *BN_new(void)
{
BIGNUM *ret;
if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->flags = BN_FLG_MALLOCED;
bn_check_top(ret);
return ret;
}
BIGNUM *BN_secure_new(void)
{
BIGNUM *ret = BN_new();
if (ret != NULL)
ret->flags |= BN_FLG_SECURE;
return ret;
}
/* This is used by bn_expand2() */
/* The caller MUST check that words > b->dmax before calling this */
static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
{
BN_ULONG *a = NULL;
if (words > (INT_MAX / (4 * BN_BITS2))) {
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG);
return NULL;
}
if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
return NULL;
}
if (BN_get_flags(b, BN_FLG_SECURE))
a = OPENSSL_secure_zalloc(words * sizeof(*a));
else
a = OPENSSL_zalloc(words * sizeof(*a));
if (a == NULL) {
BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE);
return NULL;
}
assert(b->top <= words);
if (b->top > 0)
memcpy(a, b->d, sizeof(*a) * b->top);
return a;
}
/*
* This is an internal function that should not be used in applications. It
* ensures that 'b' has enough room for a 'words' word number and initialises
* any unused part of b->d with leading zeros. It is mostly used by the
* various BIGNUM routines. If there is an error, NULL is returned. If not,
* 'b' is returned.
*/
BIGNUM *bn_expand2(BIGNUM *b, int words)
{
if (words > b->dmax) {
BN_ULONG *a = bn_expand_internal(b, words);
if (!a)
return NULL;
if (b->d) {
OPENSSL_cleanse(b->d, b->dmax * sizeof(b->d[0]));
bn_free_d(b);
}
b->d = a;
b->dmax = words;
}
return b;
}
BIGNUM *BN_dup(const BIGNUM *a)
{
BIGNUM *t;
if (a == NULL)
return NULL;
bn_check_top(a);
t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
if (t == NULL)
return NULL;
if (!BN_copy(t, a)) {
BN_free(t);
return NULL;
}
bn_check_top(t);
return t;
}
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
{
bn_check_top(b);
if (a == b)
return a;
if (bn_wexpand(a, b->top) == NULL)
return NULL;
if (b->top > 0)
memcpy(a->d, b->d, sizeof(b->d[0]) * b->top);
a->neg = b->neg;
a->top = b->top;
a->flags |= b->flags & BN_FLG_FIXED_TOP;
bn_check_top(a);
return a;
}
#define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
| BN_FLG_CONSTTIME \
| BN_FLG_SECURE \
| BN_FLG_FIXED_TOP))
#define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
void BN_swap(BIGNUM *a, BIGNUM *b)
{
int flags_old_a, flags_old_b;
BN_ULONG *tmp_d;
int tmp_top, tmp_dmax, tmp_neg;
bn_check_top(a);
bn_check_top(b);
flags_old_a = a->flags;
flags_old_b = b->flags;
tmp_d = a->d;
tmp_top = a->top;
tmp_dmax = a->dmax;
tmp_neg = a->neg;
a->d = b->d;
a->top = b->top;
a->dmax = b->dmax;
a->neg = b->neg;
b->d = tmp_d;
b->top = tmp_top;
b->dmax = tmp_dmax;
b->neg = tmp_neg;
a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
bn_check_top(a);
bn_check_top(b);
}
void BN_clear(BIGNUM *a)
{
bn_check_top(a);
if (a->d != NULL)
OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
a->neg = 0;
a->top = 0;
a->flags &= ~BN_FLG_FIXED_TOP;
}
BN_ULONG BN_get_word(const BIGNUM *a)
{
if (a->top > 1)
return BN_MASK2;
else if (a->top == 1)
return a->d[0];
/* a->top == 0 */
return 0;
}
int BN_set_word(BIGNUM *a, BN_ULONG w)
{
bn_check_top(a);
if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
return 0;
a->neg = 0;
a->d[0] = w;
a->top = (w ? 1 : 0);
a->flags &= ~BN_FLG_FIXED_TOP;
bn_check_top(a);
return 1;
}
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
{
unsigned int i, m;
unsigned int n;
BN_ULONG l;
BIGNUM *bn = NULL;
if (ret == NULL)
ret = bn = BN_new();
if (ret == NULL)
return NULL;
bn_check_top(ret);
/* Skip leading zero's. */
for ( ; len > 0 && *s == 0; s++, len--)
continue;
n = len;
if (n == 0) {
ret->top = 0;
return ret;
}
i = ((n - 1) / BN_BYTES) + 1;
m = ((n - 1) % (BN_BYTES));
if (bn_wexpand(ret, (int)i) == NULL) {
BN_free(bn);
return NULL;
}
ret->top = i;
ret->neg = 0;
l = 0;
while (n--) {
l = (l << 8L) | *(s++);
if (m-- == 0) {
ret->d[--i] = l;
l = 0;
m = BN_BYTES - 1;
}
}
/*
* need to call this due to clear byte at top if avoiding having the top
* bit set (-ve number)
*/
bn_correct_top(ret);
return ret;
}
/* ignore negative */
static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
{
int n;
size_t i, lasti, j, atop, mask;
BN_ULONG l;
/*
* In case |a| is fixed-top, BN_num_bytes can return bogus length,
* but it's assumed that fixed-top inputs ought to be "nominated"
* even for padded output, so it works out...
*/
n = BN_num_bytes(a);
if (tolen == -1) {
tolen = n;
} else if (tolen < n) { /* uncommon/unlike case */
BIGNUM temp = *a;
bn_correct_top(&temp);
n = BN_num_bytes(&temp);
if (tolen < n)
return -1;
}
/* Swipe through whole available data and don't give away padded zero. */
atop = a->dmax * BN_BYTES;
if (atop == 0) {
OPENSSL_cleanse(to, tolen);
return tolen;
}
lasti = atop - 1;
atop = a->top * BN_BYTES;
for (i = 0, j = 0, to += tolen; j < (size_t)tolen; j++) {
l = a->d[i / BN_BYTES];
mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
*--to = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
}
return tolen;
}
int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
{
if (tolen < 0)
return -1;
return bn2binpad(a, to, tolen);
}
int BN_bn2bin(const BIGNUM *a, unsigned char *to)
{
return bn2binpad(a, to, -1);
}
BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
{
unsigned int i, m;
unsigned int n;
BN_ULONG l;
BIGNUM *bn = NULL;
if (ret == NULL)
ret = bn = BN_new();
if (ret == NULL)
return NULL;
bn_check_top(ret);
s += len;
/* Skip trailing zeroes. */
for ( ; len > 0 && s[-1] == 0; s--, len--)
continue;
n = len;
if (n == 0) {
ret->top = 0;
return ret;
}
i = ((n - 1) / BN_BYTES) + 1;
m = ((n - 1) % (BN_BYTES));
if (bn_wexpand(ret, (int)i) == NULL) {
BN_free(bn);
return NULL;
}
ret->top = i;
ret->neg = 0;
l = 0;
while (n--) {
s--;
l = (l << 8L) | *s;
if (m-- == 0) {
ret->d[--i] = l;
l = 0;
m = BN_BYTES - 1;
}
}
/*
* need to call this due to clear byte at top if avoiding having the top
* bit set (-ve number)
*/
bn_correct_top(ret);
return ret;
}
int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
{
int i;
BN_ULONG l;
bn_check_top(a);
i = BN_num_bytes(a);
if (tolen < i)
return -1;
/* Add trailing zeroes if necessary */
if (tolen > i)
memset(to + i, 0, tolen - i);
to += i;
while (i--) {
l = a->d[i / BN_BYTES];
to--;
*to = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
}
return tolen;
}
int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
{
int i;
BN_ULONG t1, t2, *ap, *bp;
bn_check_top(a);
bn_check_top(b);
i = a->top - b->top;
if (i != 0)
return i;
ap = a->d;
bp = b->d;
for (i = a->top - 1; i >= 0; i--) {
t1 = ap[i];
t2 = bp[i];
if (t1 != t2)
return ((t1 > t2) ? 1 : -1);
}
return 0;
}
int BN_cmp(const BIGNUM *a, const BIGNUM *b)
{
int i;
int gt, lt;
BN_ULONG t1, t2;
if ((a == NULL) || (b == NULL)) {
if (a != NULL)
return -1;
else if (b != NULL)
return 1;
else
return 0;
}
bn_check_top(a);
bn_check_top(b);
if (a->neg != b->neg) {
if (a->neg)
return -1;
else
return 1;
}
if (a->neg == 0) {
gt = 1;
lt = -1;
} else {
gt = -1;
lt = 1;
}
if (a->top > b->top)
return gt;
if (a->top < b->top)
return lt;
for (i = a->top - 1; i >= 0; i--) {
t1 = a->d[i];
t2 = b->d[i];
if (t1 > t2)
return gt;
if (t1 < t2)
return lt;
}
return 0;
}
int BN_set_bit(BIGNUM *a, int n)
{
int i, j, k;
if (n < 0)
return 0;
i = n / BN_BITS2;
j = n % BN_BITS2;
if (a->top <= i) {
if (bn_wexpand(a, i + 1) == NULL)
return 0;
for (k = a->top; k < i + 1; k++)
a->d[k] = 0;
a->top = i + 1;
a->flags &= ~BN_FLG_FIXED_TOP;
}
a->d[i] |= (((BN_ULONG)1) << j);
bn_check_top(a);
return 1;
}
int BN_clear_bit(BIGNUM *a, int n)
{
int i, j;
bn_check_top(a);
if (n < 0)
return 0;
i = n / BN_BITS2;
j = n % BN_BITS2;
if (a->top <= i)
return 0;
a->d[i] &= (~(((BN_ULONG)1) << j));
bn_correct_top(a);
return 1;
}
int BN_is_bit_set(const BIGNUM *a, int n)
{
int i, j;
bn_check_top(a);
if (n < 0)
return 0;
i = n / BN_BITS2;
j = n % BN_BITS2;
if (a->top <= i)
return 0;
return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
}
int BN_mask_bits(BIGNUM *a, int n)
{
int b, w;
bn_check_top(a);
if (n < 0)
return 0;
w = n / BN_BITS2;
b = n % BN_BITS2;
if (w >= a->top)
return 0;
if (b == 0)
a->top = w;
else {
a->top = w + 1;
a->d[w] &= ~(BN_MASK2 << b);
}
bn_correct_top(a);
return 1;
}
void BN_set_negative(BIGNUM *a, int b)
{
if (b && !BN_is_zero(a))
a->neg = 1;
else
a->neg = 0;
}
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
{
int i;
BN_ULONG aa, bb;
aa = a[n - 1];
bb = b[n - 1];
if (aa != bb)
return ((aa > bb) ? 1 : -1);
for (i = n - 2; i >= 0; i--) {
aa = a[i];
bb = b[i];
if (aa != bb)
return ((aa > bb) ? 1 : -1);
}
return 0;
}
/*
* Here follows a specialised variants of bn_cmp_words(). It has the
* capability of performing the operation on arrays of different sizes. The
* sizes of those arrays is expressed through cl, which is the common length
* ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
* two lengths, calculated as len(a)-len(b). All lengths are the number of
* BN_ULONGs...
*/
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
{
int n, i;
n = cl - 1;
if (dl < 0) {
for (i = dl; i < 0; i++) {
if (b[n - i] != 0)
return -1; /* a < b */
}
}
if (dl > 0) {
for (i = dl; i > 0; i--) {
if (a[n + i] != 0)
return 1; /* a > b */
}
}
return bn_cmp_words(a, b, cl);
}
/*-
* Constant-time conditional swap of a and b.
* a and b are swapped if condition is not 0.
* nwords is the number of words to swap.
* Assumes that at least nwords are allocated in both a and b.
* Assumes that no more than nwords are used by either a or b.
*/
void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
{
BN_ULONG t;
int i;
if (a == b)
return;
bn_wcheck_size(a, nwords);
bn_wcheck_size(b, nwords);
condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
t = (a->top ^ b->top) & condition;
a->top ^= t;
b->top ^= t;
t = (a->neg ^ b->neg) & condition;
a->neg ^= t;
b->neg ^= t;
/*-
* BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
* is actually to treat it as it's read-only data, and some (if not most)
* of it does reside in read-only segment. In other words observation of
* BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
* condition. It would either cause SEGV or effectively cause data
* corruption.
*
* BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
* preserved.
*
* BN_FLG_SECURE: must be preserved, because it determines how x->d was
* allocated and hence how to free it.
*
* BN_FLG_CONSTTIME: sufficient to mask and swap
*
* BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
* the data, so the d array may be padded with additional 0 values (i.e.
* top could be greater than the minimal value that it could be). We should
* be swapping it
*/
#define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
a->flags ^= t;
b->flags ^= t;
/* conditionally swap the data */
for (i = 0; i < nwords; i++) {
t = (a->d[i] ^ b->d[i]) & condition;
a->d[i] ^= t;
b->d[i] ^= t;
}
}
#undef BN_CONSTTIME_SWAP_FLAGS
/* Bits of security, see SP800-57 */
int BN_security_bits(int L, int N)
{
int secbits, bits;
if (L >= 15360)
secbits = 256;
else if (L >= 7680)
secbits = 192;
else if (L >= 3072)
secbits = 128;
else if (L >= 2048)
secbits = 112;
else if (L >= 1024)
secbits = 80;
else
return 0;
if (N == -1)
return secbits;
bits = N / 2;
if (bits < 80)
return 0;
return bits >= secbits ? secbits : bits;
}
void BN_zero_ex(BIGNUM *a)
{
a->neg = 0;
a->top = 0;
a->flags &= ~BN_FLG_FIXED_TOP;
}
int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
{
return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
}
int BN_is_zero(const BIGNUM *a)
{
return a->top == 0;
}
int BN_is_one(const BIGNUM *a)
{
return BN_abs_is_word(a, 1) && !a->neg;
}
int BN_is_word(const BIGNUM *a, const BN_ULONG w)
{
return BN_abs_is_word(a, w) && (!w || !a->neg);
}
int BN_is_odd(const BIGNUM *a)
{
return (a->top > 0) && (a->d[0] & 1);
}
int BN_is_negative(const BIGNUM *a)
{
return (a->neg != 0);
}
int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx)
{
return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
}
void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
{
dest->d = b->d;
dest->top = b->top;
dest->dmax = b->dmax;
dest->neg = b->neg;
dest->flags = ((dest->flags & BN_FLG_MALLOCED)
| (b->flags & ~BN_FLG_MALLOCED)
| BN_FLG_STATIC_DATA | flags);
}
BN_GENCB *BN_GENCB_new(void)
{
BN_GENCB *ret;
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
BNerr(BN_F_BN_GENCB_NEW, ERR_R_MALLOC_FAILURE);
return NULL;
}
return ret;
}
void BN_GENCB_free(BN_GENCB *cb)
{
if (cb == NULL)
return;
OPENSSL_free(cb);
}
void BN_set_flags(BIGNUM *b, int n)
{
b->flags |= n;
}
int BN_get_flags(const BIGNUM *b, int n)
{
return b->flags & n;
}
/* Populate a BN_GENCB structure with an "old"-style callback */
void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
void *cb_arg)
{
BN_GENCB *tmp_gencb = gencb;
tmp_gencb->ver = 1;
tmp_gencb->arg = cb_arg;
tmp_gencb->cb.cb_1 = callback;
}
/* Populate a BN_GENCB structure with a "new"-style callback */
void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
void *cb_arg)
{
BN_GENCB *tmp_gencb = gencb;
tmp_gencb->ver = 2;
tmp_gencb->arg = cb_arg;
tmp_gencb->cb.cb_2 = callback;
}
void *BN_GENCB_get_arg(BN_GENCB *cb)
{
return cb->arg;
}
BIGNUM *bn_wexpand(BIGNUM *a, int words)
{
return (words <= a->dmax) ? a : bn_expand2(a, words);
}
void bn_correct_top(BIGNUM *a)
{
BN_ULONG *ftl;
int tmp_top = a->top;
if (tmp_top > 0) {
for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
ftl--;
if (*ftl != 0)
break;
}
a->top = tmp_top;
}
if (a->top == 0)
a->neg = 0;
a->flags &= ~BN_FLG_FIXED_TOP;
bn_pollute(a);
}