openssl/ssl/tls13_enc.c
Matt Caswell 0528f253c7 Fix a bogus uninit var warning
Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-11-24 18:02:43 +00:00

438 lines
15 KiB
C

/*
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include "ssl_locl.h"
#include <openssl/evp.h>
#include <openssl/kdf.h>
#define TLS13_MAX_LABEL_LEN 246
/* Always filled with zeros */
static const unsigned char default_zeros[EVP_MAX_MD_SIZE];
/*
* Given a |secret|; a |label| of length |labellen|; and a |hash| of the
* handshake messages, derive a new secret |outlen| bytes long and store it in
* the location pointed to be |out|. The |hash| value may be NULL. Returns 1 on
* success 0 on failure.
*/
static int tls13_hkdf_expand(SSL *s, const unsigned char *secret,
const unsigned char *label, size_t labellen,
const unsigned char *hash,
unsigned char *out, size_t outlen)
{
const unsigned char label_prefix[] = "TLS 1.3, ";
const EVP_MD *md = ssl_handshake_md(s);
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
int ret;
size_t hkdflabellen;
size_t hashlen;
/*
* 2 bytes for length of whole HkdfLabel + 1 byte for length of combined
* prefix and label + bytes for the label itself + bytes for the hash
*/
unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) +
+ sizeof(label_prefix) + TLS13_MAX_LABEL_LEN
+ EVP_MAX_MD_SIZE];
WPACKET pkt;
if (pctx == NULL)
return 0;
hashlen = EVP_MD_size(md);
if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0)
|| !WPACKET_put_bytes_u16(&pkt, outlen)
|| !WPACKET_start_sub_packet_u8(&pkt)
|| !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1)
|| !WPACKET_memcpy(&pkt, label, labellen)
|| !WPACKET_close(&pkt)
|| !WPACKET_sub_memcpy_u8(&pkt, hash, (hash == NULL) ? 0 : hashlen)
|| !WPACKET_get_total_written(&pkt, &hkdflabellen)
|| !WPACKET_finish(&pkt)) {
WPACKET_cleanup(&pkt);
return 0;
}
ret = EVP_PKEY_derive_init(pctx) <= 0
|| EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY)
<= 0
|| EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
|| EVP_PKEY_CTX_set1_hkdf_key(pctx, secret, hashlen) <= 0
|| EVP_PKEY_CTX_add1_hkdf_info(pctx, hkdflabel, hkdflabellen) <= 0
|| EVP_PKEY_derive(pctx, out, &outlen) <= 0;
EVP_PKEY_CTX_free(pctx);
return ret == 0;
}
/*
* Given a input secret |insecret| and a |label| of length |labellen|, derive a
* new |secret|. This will be the length of the current hash output size and
* will be based on the current state of the handshake hashes. Returns 1 on
* success 0 on failure.
*/
int tls13_derive_secret(SSL *s, const unsigned char *insecret,
const unsigned char *label, size_t labellen,
unsigned char *secret)
{
unsigned char hash[EVP_MAX_MD_SIZE];
size_t hashlen;
if (!ssl3_digest_cached_records(s, 1))
return 0;
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
return 0;
return tls13_hkdf_expand(s, insecret, label, labellen, hash, secret,
hashlen);
}
/*
* Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on
* success 0 on failure.
*/
int tls13_derive_key(SSL *s, const unsigned char *secret, unsigned char *key,
size_t keylen)
{
static const unsigned char keylabel[] = "key";
return tls13_hkdf_expand(s, secret, keylabel, sizeof(keylabel) - 1, NULL,
key, keylen);
}
/*
* Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on
* success 0 on failure.
*/
int tls13_derive_iv(SSL *s, const unsigned char *secret, unsigned char *iv,
size_t ivlen)
{
static const unsigned char ivlabel[] = "iv";
return tls13_hkdf_expand(s, secret, ivlabel, sizeof(ivlabel) - 1, NULL,
iv, ivlen);
}
static int tls13_derive_finishedkey(SSL *s, const unsigned char *secret,
unsigned char *fin, size_t finlen)
{
static const unsigned char finishedlabel[] = "finished";
return tls13_hkdf_expand(s, secret, finishedlabel,
sizeof(finishedlabel) - 1, NULL, fin, finlen);
}
/*
* Given the previous secret |prevsecret| and a new input secret |insecret| of
* length |insecretlen|, generate a new secret and store it in the location
* pointed to by |outsecret|. Returns 1 on success 0 on failure.
*/
static int tls13_generate_secret(SSL *s, const unsigned char *prevsecret,
const unsigned char *insecret,
size_t insecretlen,
unsigned char *outsecret)
{
const EVP_MD *md = ssl_handshake_md(s);
size_t mdlen, prevsecretlen;
int ret;
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
if (pctx == NULL)
return 0;
mdlen = EVP_MD_size(md);
if (insecret == NULL) {
insecret = default_zeros;
insecretlen = mdlen;
}
if (prevsecret == NULL) {
prevsecret = default_zeros;
prevsecretlen = 0;
} else {
prevsecretlen = mdlen;
}
ret = EVP_PKEY_derive_init(pctx) <= 0
|| EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY)
<= 0
|| EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
|| EVP_PKEY_CTX_set1_hkdf_key(pctx, insecret, insecretlen) <= 0
|| EVP_PKEY_CTX_set1_hkdf_salt(pctx, prevsecret, prevsecretlen)
<= 0
|| EVP_PKEY_derive(pctx, outsecret, &mdlen)
<= 0;
EVP_PKEY_CTX_free(pctx);
return ret == 0;
}
/*
* Given an input secret |insecret| of length |insecretlen| generate the early
* secret. Returns 1 on success 0 on failure.
*/
int tls13_generate_early_secret(SSL *s, const unsigned char *insecret,
size_t insecretlen)
{
return tls13_generate_secret(s, NULL, insecret, insecretlen,
(unsigned char *)&s->early_secret);
}
/*
* Given an input secret |insecret| of length |insecretlen| generate the
* handshake secret. This requires the early secret to already have been
* generated. Returns 1 on success 0 on failure.
*/
int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret,
size_t insecretlen)
{
return tls13_generate_secret(s, s->early_secret, insecret, insecretlen,
(unsigned char *)&s->handshake_secret);
}
/*
* Given the handshake secret |prev| of length |prevlen| generate the master
* secret and store its length in |*secret_size|. Returns 1 on success 0 on
* failure.
*/
int tls13_generate_master_secret(SSL *s, unsigned char *out,
unsigned char *prev, size_t prevlen,
size_t *secret_size)
{
*secret_size = EVP_MD_size(ssl_handshake_md(s));
return tls13_generate_secret(s, prev, NULL, 0, out);
}
/*
* Generates the mac for the Finished message. Returns the length of the MAC or
* 0 on error.
*/
size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen,
unsigned char *out)
{
const EVP_MD *md = ssl_handshake_md(s);
unsigned char hash[EVP_MAX_MD_SIZE];
size_t hashlen, ret = 0;
EVP_PKEY *key = NULL;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
goto err;
if (str == s->method->ssl3_enc->server_finished_label)
key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
s->server_finished_secret, hashlen);
else
key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
s->client_finished_secret, hashlen);
if (key == NULL
|| ctx == NULL
|| EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0
|| EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0
|| EVP_DigestSignFinal(ctx, out, &hashlen) <= 0)
goto err;
ret = hashlen;
err:
EVP_PKEY_free(key);
EVP_MD_CTX_free(ctx);
return ret;
}
/*
* There isn't really a key block in TLSv1.3, but we still need this function
* for initialising the cipher and hash. Returns 1 on success or 0 on failure.
*/
int tls13_setup_key_block(SSL *s)
{
const EVP_CIPHER *c;
const EVP_MD *hash;
int mac_type = NID_undef;
s->session->cipher = s->s3->tmp.new_cipher;
if (!ssl_cipher_get_evp
(s->session, &c, &hash, &mac_type, NULL, NULL, 0)) {
SSLerr(SSL_F_TLS13_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return 0;
}
s->s3->tmp.new_sym_enc = c;
s->s3->tmp.new_hash = hash;
return 1;
}
int tls13_change_cipher_state(SSL *s, int which)
{
static const unsigned char client_handshake_traffic[] =
"client handshake traffic secret";
static const unsigned char client_application_traffic[] =
"client application traffic secret";
static const unsigned char server_handshake_traffic[] =
"server handshake traffic secret";
static const unsigned char server_application_traffic[] =
"server application traffic secret";
unsigned char key[EVP_MAX_KEY_LENGTH];
unsigned char iv[EVP_MAX_IV_LENGTH];
unsigned char secret[EVP_MAX_MD_SIZE];
unsigned char *insecret;
unsigned char *finsecret = NULL;
EVP_CIPHER_CTX *ciph_ctx;
const EVP_CIPHER *ciph = s->s3->tmp.new_sym_enc;
size_t ivlen, keylen, finsecretlen = 0;
const unsigned char *label;
size_t labellen;
int ret = 0;
if (which & SSL3_CC_READ) {
if (s->enc_read_ctx != NULL) {
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
} else {
s->enc_read_ctx = EVP_CIPHER_CTX_new();
if (s->enc_read_ctx == NULL) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
goto err;
}
}
ciph_ctx = s->enc_read_ctx;
RECORD_LAYER_reset_read_sequence(&s->rlayer);
} else {
if (s->enc_write_ctx != NULL) {
EVP_CIPHER_CTX_reset(s->enc_write_ctx);
} else {
s->enc_write_ctx = EVP_CIPHER_CTX_new();
if (s->enc_write_ctx == NULL) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
goto err;
}
}
ciph_ctx = s->enc_write_ctx;
RECORD_LAYER_reset_write_sequence(&s->rlayer);
}
if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE))
|| ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) {
if (which & SSL3_CC_HANDSHAKE) {
insecret = s->handshake_secret;
finsecret = s->client_finished_secret;
finsecretlen = sizeof(s->client_finished_secret);
label = client_handshake_traffic;
labellen = sizeof(client_handshake_traffic) - 1;
} else {
insecret = s->session->master_key;
label = client_application_traffic;
labellen = sizeof(client_application_traffic) - 1;
}
} else {
if (which & SSL3_CC_HANDSHAKE) {
insecret = s->handshake_secret;
finsecret = s->server_finished_secret;
finsecretlen = sizeof(s->server_finished_secret);
label = server_handshake_traffic;
labellen = sizeof(server_handshake_traffic) - 1;
} else {
insecret = s->session->master_key;
label = server_application_traffic;
labellen = sizeof(server_application_traffic) - 1;
}
}
if (!tls13_derive_secret(s, insecret, label, labellen, secret)) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err;
}
/* TODO(size_t): convert me */
keylen = EVP_CIPHER_key_length(ciph);
if (EVP_CIPHER_mode(ciph) == EVP_CIPH_GCM_MODE)
ivlen = EVP_GCM_TLS_FIXED_IV_LEN;
else if (EVP_CIPHER_mode(ciph) == EVP_CIPH_CCM_MODE)
ivlen = EVP_CCM_TLS_FIXED_IV_LEN;
else
ivlen = EVP_CIPHER_iv_length(ciph);
if (!tls13_derive_key(s, secret, key, keylen)
|| !tls13_derive_iv(s, secret, iv, ivlen)
|| (finsecret != NULL && !tls13_derive_finishedkey(s, secret,
finsecret,
finsecretlen))) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err;
}
if (EVP_CIPHER_mode(ciph) == EVP_CIPH_GCM_MODE) {
if (!EVP_CipherInit_ex(ciph_ctx, ciph, NULL, key, NULL,
(which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_GCM_SET_IV_FIXED,
(int)ivlen, iv)) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB);
goto err;
}
} else if (EVP_CIPHER_mode(ciph) == EVP_CIPH_CCM_MODE) {
int taglen;
if (s->s3->tmp.new_cipher->algorithm_enc
& (SSL_AES128CCM8 | SSL_AES256CCM8))
taglen = 8;
else
taglen = 16;
if (!EVP_CipherInit_ex(ciph_ctx, ciph, NULL, NULL, NULL,
(which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_IVLEN, 12,
NULL)
|| !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_AEAD_SET_TAG, taglen,
NULL)
|| !EVP_CIPHER_CTX_ctrl(ciph_ctx, EVP_CTRL_CCM_SET_IV_FIXED,
(int)ivlen, iv)
|| !EVP_CipherInit_ex(ciph_ctx, NULL, NULL, key, NULL, -1)) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB);
goto err;
}
} else {
if (!EVP_CipherInit_ex(ciph_ctx, ciph, NULL, key, iv,
(which & SSL3_CC_WRITE))) {
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB);
goto err;
}
}
#ifdef OPENSSL_SSL_TRACE_CRYPTO
if (s->msg_callback) {
int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0;
if (ciph->key_len)
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY,
key, ciph->key_len, s, s->msg_callback_arg);
if (ivlen) {
if (EVP_CIPHER_mode(ciph) == EVP_CIPH_GCM_MODE)
wh |= TLS1_RT_CRYPTO_FIXED_IV;
else
wh |= TLS1_RT_CRYPTO_IV;
s->msg_callback(2, s->version, wh, iv, ivlen, s,
s->msg_callback_arg);
}
}
#endif
ret = 1;
err:
OPENSSL_cleanse(secret, sizeof(secret));
OPENSSL_cleanse(key, sizeof(key));
OPENSSL_cleanse(iv, sizeof(iv));
return ret;
}