openssl/crypto/ec/asm/ecp_nistz256-x86.pl
Richard Levitte 73d2fb66ef Unified - adapt the generation of ec assembler to use GENERATE
This gets rid of the BEGINRAW..ENDRAW sections in crypto/ec/build.info.

This also moves the assembler generating perl scripts to take the
output file name as last command line argument, where necessary.

Reviewed-by: Andy Polyakov <appro@openssl.org>
2016-03-09 11:09:26 +01:00

1836 lines
55 KiB
Raku
Executable file

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# ECP_NISTZ256 module for x86/SSE2.
#
# October 2014.
#
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
# http://eprint.iacr.org/2013/816. In the process of adaptation
# original .c module was made 32-bit savvy in order to make this
# implementation possible.
#
# with/without -DECP_NISTZ256_ASM
# Pentium +66-163%
# PIII +72-172%
# P4 +65-132%
# Core2 +90-215%
# Sandy Bridge +105-265% (contemporary i[57]-* are all close to this)
# Atom +65-155%
# Opteron +54-110%
# Bulldozer +99-240%
# VIA Nano +93-290%
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. Lower coefficients are for ECDSA sign, server-side
# operation. Keep in mind that +200% means 3x improvement.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
$output=pop;
open STDOUT,">$output";
&asm_init($ARGV[0],"ecp_nistz256-x86.pl",$ARGV[$#ARGV] eq "386");
$sse2=0;
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
&external_label("OPENSSL_ia32cap_P") if ($sse2);
########################################################################
# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
#
open TABLE,"<ecp_nistz256_table.c" or
open TABLE,"<${dir}../ecp_nistz256_table.c" or
die "failed to open ecp_nistz256_table.c:",$!;
use integer;
foreach(<TABLE>) {
s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
}
close TABLE;
# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
# 64*16*37-1 is because $#arr returns last valid index or @arr, not
# amount of elements.
die "insane number of elements" if ($#arr != 64*16*37-1);
&public_label("ecp_nistz256_precomputed");
&align(4096);
&set_label("ecp_nistz256_precomputed");
########################################################################
# this conversion smashes P256_POINT_AFFINE by individual bytes with
# 64 byte interval, similar to
# 1111222233334444
# 1234123412341234
for(1..37) {
@tbl = splice(@arr,0,64*16);
for($i=0;$i<64;$i++) {
undef @line;
for($j=0;$j<64;$j++) {
push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
}
&data_byte(join(',',map { sprintf "0x%02x",$_} @line));
}
}
########################################################################
# Keep in mind that constants are stored least to most significant word
&static_label("RR");
&set_label("RR",64);
&data_word(3,0,-1,-5,-2,-1,-3,4); # 2^512 mod P-256
&static_label("ONE_mont");
&set_label("ONE_mont");
&data_word(1,0,0,-1,-1,-1,-2,0);
&static_label("ONE");
&set_label("ONE");
&data_word(1,0,0,0,0,0,0,0);
&asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by <appro\@openssl.org>");
&align(64);
########################################################################
# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_mul_by_2");
&mov ("esi",&wparam(1));
&mov ("edi",&wparam(0));
&mov ("ebp","esi");
########################################################################
# common pattern for internal functions is that %edi is result pointer,
# %esi and %ebp are input ones, %ebp being optional. %edi is preserved.
&call ("_ecp_nistz256_add");
&function_end("ecp_nistz256_mul_by_2");
########################################################################
# void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_mul_by_3");
&mov ("esi",&wparam(1));
# multiplication by 3 is performed
# as 2*n+n, but we can't use output
# to store 2*n, because if output
# pointer equals to input, then
# we'll get 2*n+2*n.
&stack_push(8); # therefore we need to allocate
# 256-bit intermediate buffer.
&mov ("edi","esp");
&mov ("ebp","esi");
&call ("_ecp_nistz256_add");
&lea ("esi",&DWP(0,"edi"));
&mov ("ebp",&wparam(1));
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_add");
&stack_pop(8);
&function_end("ecp_nistz256_mul_by_3");
########################################################################
# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_div_by_2");
&mov ("esi",&wparam(1));
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_div_by_2");
&function_end("ecp_nistz256_div_by_2");
&function_begin_B("_ecp_nistz256_div_by_2");
# tmp = a is odd ? a+mod : a
#
# note that because mod has special form, i.e. consists of
# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
# assigning least significant bit of input to one register,
# %ebp, and its negative to another, %edx.
&mov ("ebp",&DWP(0,"esi"));
&xor ("edx","edx");
&mov ("ebx",&DWP(4,"esi"));
&mov ("eax","ebp");
&and ("ebp",1);
&mov ("ecx",&DWP(8,"esi"));
&sub ("edx","ebp");
&add ("eax","edx");
&adc ("ebx","edx");
&mov (&DWP(0,"edi"),"eax");
&adc ("ecx","edx");
&mov (&DWP(4,"edi"),"ebx");
&mov (&DWP(8,"edi"),"ecx");
&mov ("eax",&DWP(12,"esi"));
&mov ("ebx",&DWP(16,"esi"));
&adc ("eax",0);
&mov ("ecx",&DWP(20,"esi"));
&adc ("ebx",0);
&mov (&DWP(12,"edi"),"eax");
&adc ("ecx",0);
&mov (&DWP(16,"edi"),"ebx");
&mov (&DWP(20,"edi"),"ecx");
&mov ("eax",&DWP(24,"esi"));
&mov ("ebx",&DWP(28,"esi"));
&adc ("eax","ebp");
&adc ("ebx","edx");
&mov (&DWP(24,"edi"),"eax");
&sbb ("esi","esi"); # broadcast carry bit
&mov (&DWP(28,"edi"),"ebx");
# ret = tmp >> 1
&mov ("eax",&DWP(0,"edi"));
&mov ("ebx",&DWP(4,"edi"));
&mov ("ecx",&DWP(8,"edi"));
&mov ("edx",&DWP(12,"edi"));
&shr ("eax",1);
&mov ("ebp","ebx");
&shl ("ebx",31);
&or ("eax","ebx");
&shr ("ebp",1);
&mov ("ebx","ecx");
&shl ("ecx",31);
&mov (&DWP(0,"edi"),"eax");
&or ("ebp","ecx");
&mov ("eax",&DWP(16,"edi"));
&shr ("ebx",1);
&mov ("ecx","edx");
&shl ("edx",31);
&mov (&DWP(4,"edi"),"ebp");
&or ("ebx","edx");
&mov ("ebp",&DWP(20,"edi"));
&shr ("ecx",1);
&mov ("edx","eax");
&shl ("eax",31);
&mov (&DWP(8,"edi"),"ebx");
&or ("ecx","eax");
&mov ("ebx",&DWP(24,"edi"));
&shr ("edx",1);
&mov ("eax","ebp");
&shl ("ebp",31);
&mov (&DWP(12,"edi"),"ecx");
&or ("edx","ebp");
&mov ("ecx",&DWP(28,"edi"));
&shr ("eax",1);
&mov ("ebp","ebx");
&shl ("ebx",31);
&mov (&DWP(16,"edi"),"edx");
&or ("eax","ebx");
&shr ("ebp",1);
&mov ("ebx","ecx");
&shl ("ecx",31);
&mov (&DWP(20,"edi"),"eax");
&or ("ebp","ecx");
&shr ("ebx",1);
&shl ("esi",31);
&mov (&DWP(24,"edi"),"ebp");
&or ("ebx","esi"); # handle top-most carry bit
&mov (&DWP(28,"edi"),"ebx");
&ret ();
&function_end_B("_ecp_nistz256_div_by_2");
########################################################################
# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8],
# const BN_ULONG ebp[8]);
&function_begin("ecp_nistz256_add");
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_add");
&function_end("ecp_nistz256_add");
&function_begin_B("_ecp_nistz256_add");
&mov ("eax",&DWP(0,"esi"));
&mov ("ebx",&DWP(4,"esi"));
&mov ("ecx",&DWP(8,"esi"));
&add ("eax",&DWP(0,"ebp"));
&mov ("edx",&DWP(12,"esi"));
&adc ("ebx",&DWP(4,"ebp"));
&mov (&DWP(0,"edi"),"eax");
&adc ("ecx",&DWP(8,"ebp"));
&mov (&DWP(4,"edi"),"ebx");
&adc ("edx",&DWP(12,"ebp"));
&mov (&DWP(8,"edi"),"ecx");
&mov (&DWP(12,"edi"),"edx");
&mov ("eax",&DWP(16,"esi"));
&mov ("ebx",&DWP(20,"esi"));
&mov ("ecx",&DWP(24,"esi"));
&adc ("eax",&DWP(16,"ebp"));
&mov ("edx",&DWP(28,"esi"));
&adc ("ebx",&DWP(20,"ebp"));
&mov (&DWP(16,"edi"),"eax");
&adc ("ecx",&DWP(24,"ebp"));
&mov (&DWP(20,"edi"),"ebx");
&adc ("edx",&DWP(28,"ebp"));
&mov (&DWP(24,"edi"),"ecx");
&sbb ("esi","esi"); # broadcast carry bit
&mov (&DWP(28,"edi"),"edx");
# if a+b carries, subtract modulus.
#
# Note that because mod has special form, i.e. consists of
# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
# assigning carry bit to one register, %ebp, and its negative
# to another, %esi. But we started by calculating %esi...
&mov ("eax",&DWP(0,"edi"));
&mov ("ebp","esi");
&mov ("ebx",&DWP(4,"edi"));
&shr ("ebp",31);
&mov ("ecx",&DWP(8,"edi"));
&sub ("eax","esi");
&mov ("edx",&DWP(12,"edi"));
&sbb ("ebx","esi");
&mov (&DWP(0,"edi"),"eax");
&sbb ("ecx","esi");
&mov (&DWP(4,"edi"),"ebx");
&sbb ("edx",0);
&mov (&DWP(8,"edi"),"ecx");
&mov (&DWP(12,"edi"),"edx");
&mov ("eax",&DWP(16,"edi"));
&mov ("ebx",&DWP(20,"edi"));
&mov ("ecx",&DWP(24,"edi"));
&sbb ("eax",0);
&mov ("edx",&DWP(28,"edi"));
&sbb ("ebx",0);
&mov (&DWP(16,"edi"),"eax");
&sbb ("ecx","ebp");
&mov (&DWP(20,"edi"),"ebx");
&sbb ("edx","esi");
&mov (&DWP(24,"edi"),"ecx");
&mov (&DWP(28,"edi"),"edx");
&ret ();
&function_end_B("_ecp_nistz256_add");
########################################################################
# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8],
# const BN_ULONG ebp[8]);
&function_begin("ecp_nistz256_sub");
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_sub");
&function_end("ecp_nistz256_sub");
&function_begin_B("_ecp_nistz256_sub");
&mov ("eax",&DWP(0,"esi"));
&mov ("ebx",&DWP(4,"esi"));
&mov ("ecx",&DWP(8,"esi"));
&sub ("eax",&DWP(0,"ebp"));
&mov ("edx",&DWP(12,"esi"));
&sbb ("ebx",&DWP(4,"ebp"));
&mov (&DWP(0,"edi"),"eax");
&sbb ("ecx",&DWP(8,"ebp"));
&mov (&DWP(4,"edi"),"ebx");
&sbb ("edx",&DWP(12,"ebp"));
&mov (&DWP(8,"edi"),"ecx");
&mov (&DWP(12,"edi"),"edx");
&mov ("eax",&DWP(16,"esi"));
&mov ("ebx",&DWP(20,"esi"));
&mov ("ecx",&DWP(24,"esi"));
&sbb ("eax",&DWP(16,"ebp"));
&mov ("edx",&DWP(28,"esi"));
&sbb ("ebx",&DWP(20,"ebp"));
&sbb ("ecx",&DWP(24,"ebp"));
&mov (&DWP(16,"edi"),"eax");
&sbb ("edx",&DWP(28,"ebp"));
&mov (&DWP(20,"edi"),"ebx");
&sbb ("esi","esi"); # broadcast borrow bit
&mov (&DWP(24,"edi"),"ecx");
&mov (&DWP(28,"edi"),"edx");
# if a-b borrows, add modulus.
#
# Note that because mod has special form, i.e. consists of
# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
# assigning borrow bit to one register, %ebp, and its negative
# to another, %esi. But we started by calculating %esi...
&mov ("eax",&DWP(0,"edi"));
&mov ("ebp","esi");
&mov ("ebx",&DWP(4,"edi"));
&shr ("ebp",31);
&mov ("ecx",&DWP(8,"edi"));
&add ("eax","esi");
&mov ("edx",&DWP(12,"edi"));
&adc ("ebx","esi");
&mov (&DWP(0,"edi"),"eax");
&adc ("ecx","esi");
&mov (&DWP(4,"edi"),"ebx");
&adc ("edx",0);
&mov (&DWP(8,"edi"),"ecx");
&mov (&DWP(12,"edi"),"edx");
&mov ("eax",&DWP(16,"edi"));
&mov ("ebx",&DWP(20,"edi"));
&mov ("ecx",&DWP(24,"edi"));
&adc ("eax",0);
&mov ("edx",&DWP(28,"edi"));
&adc ("ebx",0);
&mov (&DWP(16,"edi"),"eax");
&adc ("ecx","ebp");
&mov (&DWP(20,"edi"),"ebx");
&adc ("edx","esi");
&mov (&DWP(24,"edi"),"ecx");
&mov (&DWP(28,"edi"),"edx");
&ret ();
&function_end_B("_ecp_nistz256_sub");
########################################################################
# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_neg");
&mov ("ebp",&wparam(1));
&mov ("edi",&wparam(0));
&xor ("eax","eax");
&stack_push(8);
&mov (&DWP(0,"esp"),"eax");
&mov ("esi","esp");
&mov (&DWP(4,"esp"),"eax");
&mov (&DWP(8,"esp"),"eax");
&mov (&DWP(12,"esp"),"eax");
&mov (&DWP(16,"esp"),"eax");
&mov (&DWP(20,"esp"),"eax");
&mov (&DWP(24,"esp"),"eax");
&mov (&DWP(28,"esp"),"eax");
&call ("_ecp_nistz256_sub");
&stack_pop(8);
&function_end("ecp_nistz256_neg");
&function_begin_B("_picup_eax");
&mov ("eax",&DWP(0,"esp"));
&ret ();
&function_end_B("_picup_eax");
########################################################################
# void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_to_mont");
&mov ("esi",&wparam(1));
&call ("_picup_eax");
&set_label("pic");
&lea ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax"));
if ($sse2) {
&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("eax",&DWP(0,"eax")); }
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_to_mont");
########################################################################
# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_from_mont");
&mov ("esi",&wparam(1));
&call ("_picup_eax");
&set_label("pic");
&lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax"));
if ($sse2) {
&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("eax",&DWP(0,"eax")); }
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_from_mont");
########################################################################
# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8],
# const BN_ULONG ebp[8]);
&function_begin("ecp_nistz256_mul_mont");
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
if ($sse2) {
&call ("_picup_eax");
&set_label("pic");
&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("eax",&DWP(0,"eax")); }
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_mul_mont");
########################################################################
# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_sqr_mont");
&mov ("esi",&wparam(1));
if ($sse2) {
&call ("_picup_eax");
&set_label("pic");
&picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("eax",&DWP(0,"eax")); }
&mov ("edi",&wparam(0));
&mov ("ebp","esi");
&call ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_sqr_mont");
&function_begin_B("_ecp_nistz256_mul_mont");
if ($sse2) {
&and ("eax",1<<24|1<<26);
&cmp ("eax",1<<24|1<<26); # see if XMM+SSE2 is on
&jne (&label("mul_mont_ialu"));
########################################
# SSE2 code path featuring 32x16-bit
# multiplications is ~2x faster than
# IALU counterpart (except on Atom)...
########################################
# stack layout:
# +------------------------------------+< %esp
# | 7 16-byte temporary XMM words, |
# | "sliding" toward lower address |
# . .
# +------------------------------------+
# | unused XMM word |
# +------------------------------------+< +128,%ebx
# | 8 16-byte XMM words holding copies |
# | of a[i]<<64|a[i] |
# . .
# . .
# +------------------------------------+< +256
&mov ("edx","esp");
&sub ("esp",0x100);
&movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy
&lea ("ebp",&DWP(4,"ebp"));
&pcmpeqd("xmm6","xmm6");
&psrlq ("xmm6",48); # compose 0xffff<<64|0xffff
&pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y
&and ("esp",-64);
&pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
&lea ("ebx",&DWP(0x80,"esp"));
&movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy
&pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy
&movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ...
&movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0]
&pmuludq("xmm0","xmm7"); # a[0]*b[0]
&movd ("xmm2",&DWP(4*2,"esi"));
&pshufd ("xmm1","xmm1",0b11001100);
&movdqa (&QWP(0x10,"ebx"),"xmm1");
&pmuludq("xmm1","xmm7"); # a[1]*b[0]
&movq ("xmm4","xmm0"); # clear upper 64 bits
&pslldq("xmm4",6);
&paddq ("xmm4","xmm0");
&movdqa("xmm5","xmm4");
&psrldq("xmm4",10); # upper 32 bits of a[0]*b[0]
&pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0]
# Upper half of a[0]*b[i] is carried into next multiplication
# iteration, while lower one "participates" in actual reduction.
# Normally latter is done by accumulating result of multiplication
# of modulus by "magic" digit, but thanks to special form of modulus
# and "magic" digit it can be performed only with additions and
# subtractions (see note in IALU section below). Note that we are
# not bothered with carry bits, they are accumulated in "flatten"
# phase after all multiplications and reductions.
&movd ("xmm3",&DWP(4*3,"esi"));
&pshufd ("xmm2","xmm2",0b11001100);
&movdqa (&QWP(0x20,"ebx"),"xmm2");
&pmuludq("xmm2","xmm7"); # a[2]*b[0]
&paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry
&movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0]
&movd ("xmm0",&DWP(4*4,"esi"));
&pshufd ("xmm3","xmm3",0b11001100);
&movdqa (&QWP(0x30,"ebx"),"xmm3");
&pmuludq("xmm3","xmm7"); # a[3]*b[0]
&movdqa (&QWP(0x10,"esp"),"xmm2");
&movd ("xmm1",&DWP(4*5,"esi"));
&pshufd ("xmm0","xmm0",0b11001100);
&movdqa (&QWP(0x40,"ebx"),"xmm0");
&pmuludq("xmm0","xmm7"); # a[4]*b[0]
&paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step
&movdqa (&QWP(0x20,"esp"),"xmm3");
&movd ("xmm2",&DWP(4*6,"esi"));
&pshufd ("xmm1","xmm1",0b11001100);
&movdqa (&QWP(0x50,"ebx"),"xmm1");
&pmuludq("xmm1","xmm7"); # a[5]*b[0]
&movdqa (&QWP(0x30,"esp"),"xmm0");
&pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
&movd ("xmm3",&DWP(4*7,"esi"));
&pshufd ("xmm2","xmm2",0b11001100);
&movdqa (&QWP(0x60,"ebx"),"xmm2");
&pmuludq("xmm2","xmm7"); # a[6]*b[0]
&movdqa (&QWP(0x40,"esp"),"xmm1");
&psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
&movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy
&pshufd ("xmm3","xmm3",0b11001100);
&movdqa (&QWP(0x70,"ebx"),"xmm3");
&pmuludq("xmm3","xmm7"); # a[7]*b[0]
&pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y
&movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0]
&pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
&mov ("ecx",6);
&lea ("ebp",&DWP(4,"ebp"));
&jmp (&label("madd_sse2"));
&set_label("madd_sse2",16);
&paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled]
&paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled]
&movdqa ("xmm1",&QWP(0x10,"ebx"));
&pmuludq("xmm0","xmm7"); # a[0]*b[i]
&movdqa(&QWP(0x50,"esp"),"xmm2");
&movdqa ("xmm2",&QWP(0x20,"ebx"));
&pmuludq("xmm1","xmm7"); # a[1]*b[i]
&movdqa(&QWP(0x60,"esp"),"xmm3");
&paddq ("xmm0",&QWP(0x00,"esp"));
&movdqa ("xmm3",&QWP(0x30,"ebx"));
&pmuludq("xmm2","xmm7"); # a[2]*b[i]
&movq ("xmm4","xmm0"); # clear upper 64 bits
&pslldq("xmm4",6);
&paddq ("xmm1",&QWP(0x10,"esp"));
&paddq ("xmm4","xmm0");
&movdqa("xmm5","xmm4");
&psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0]
&movdqa ("xmm0",&QWP(0x40,"ebx"));
&pmuludq("xmm3","xmm7"); # a[3]*b[i]
&paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry
&paddq ("xmm2",&QWP(0x20,"esp"));
&movdqa (&QWP(0x00,"esp"),"xmm1");
&movdqa ("xmm1",&QWP(0x50,"ebx"));
&pmuludq("xmm0","xmm7"); # a[4]*b[i]
&paddq ("xmm3",&QWP(0x30,"esp"));
&movdqa (&QWP(0x10,"esp"),"xmm2");
&pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i]
&movdqa ("xmm2",&QWP(0x60,"ebx"));
&pmuludq("xmm1","xmm7"); # a[5]*b[i]
&paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step
&paddq ("xmm0",&QWP(0x40,"esp"));
&movdqa (&QWP(0x20,"esp"),"xmm3");
&pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
&movdqa ("xmm3","xmm7");
&pmuludq("xmm2","xmm7"); # a[6]*b[i]
&movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy
&lea ("ebp",&DWP(4,"ebp"));
&paddq ("xmm1",&QWP(0x50,"esp"));
&psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
&movdqa (&QWP(0x30,"esp"),"xmm0");
&pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y
&pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i]
&pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
&movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0]
&movdqa (&QWP(0x40,"esp"),"xmm1");
&paddq ("xmm2",&QWP(0x60,"esp"));
&dec ("ecx");
&jnz (&label("madd_sse2"));
&paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled]
&paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled]
&movdqa ("xmm1",&QWP(0x10,"ebx"));
&pmuludq("xmm0","xmm7"); # a[0]*b[7]
&movdqa(&QWP(0x50,"esp"),"xmm2");
&movdqa ("xmm2",&QWP(0x20,"ebx"));
&pmuludq("xmm1","xmm7"); # a[1]*b[7]
&movdqa(&QWP(0x60,"esp"),"xmm3");
&paddq ("xmm0",&QWP(0x00,"esp"));
&movdqa ("xmm3",&QWP(0x30,"ebx"));
&pmuludq("xmm2","xmm7"); # a[2]*b[7]
&movq ("xmm4","xmm0"); # clear upper 64 bits
&pslldq("xmm4",6);
&paddq ("xmm1",&QWP(0x10,"esp"));
&paddq ("xmm4","xmm0");
&movdqa("xmm5","xmm4");
&psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0]
&movdqa ("xmm0",&QWP(0x40,"ebx"));
&pmuludq("xmm3","xmm7"); # a[3]*b[7]
&paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry
&paddq ("xmm2",&QWP(0x20,"esp"));
&movdqa (&QWP(0x00,"esp"),"xmm1");
&movdqa ("xmm1",&QWP(0x50,"ebx"));
&pmuludq("xmm0","xmm7"); # a[4]*b[7]
&paddq ("xmm3",&QWP(0x30,"esp"));
&movdqa (&QWP(0x10,"esp"),"xmm2");
&pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i]
&movdqa ("xmm2",&QWP(0x60,"ebx"));
&pmuludq("xmm1","xmm7"); # a[5]*b[7]
&paddq ("xmm3","xmm5"); # reduction step
&paddq ("xmm0",&QWP(0x40,"esp"));
&movdqa (&QWP(0x20,"esp"),"xmm3");
&pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
&movdqa ("xmm3",&QWP(0x70,"ebx"));
&pmuludq("xmm2","xmm7"); # a[6]*b[7]
&paddq ("xmm1",&QWP(0x50,"esp"));
&psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
&movdqa (&QWP(0x30,"esp"),"xmm0");
&pmuludq("xmm3","xmm7"); # a[7]*b[7]
&pcmpeqd("xmm7","xmm7");
&movdqa ("xmm0",&QWP(0x00,"esp"));
&pslldq ("xmm7",8);
&movdqa (&QWP(0x40,"esp"),"xmm1");
&paddq ("xmm2",&QWP(0x60,"esp"));
&paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step
&paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step
&movdqa(&QWP(0x50,"esp"),"xmm2");
&movdqa(&QWP(0x60,"esp"),"xmm3");
&movdqa ("xmm1",&QWP(0x10,"esp"));
&movdqa ("xmm2",&QWP(0x20,"esp"));
&movdqa ("xmm3",&QWP(0x30,"esp"));
&movq ("xmm4","xmm0"); # "flatten"
&pand ("xmm0","xmm7");
&xor ("ebp","ebp");
&pslldq ("xmm4",6);
&movq ("xmm5","xmm1");
&paddq ("xmm0","xmm4");
&pand ("xmm1","xmm7");
&psrldq ("xmm0",6);
&movd ("eax","xmm0");
&psrldq ("xmm0",4);
&paddq ("xmm5","xmm0");
&movdqa ("xmm0",&QWP(0x40,"esp"));
&sub ("eax",-1); # start subtracting modulus,
# this is used to determine
# if result is larger/smaller
# than modulus (see below)
&pslldq ("xmm5",6);
&movq ("xmm4","xmm2");
&paddq ("xmm1","xmm5");
&pand ("xmm2","xmm7");
&psrldq ("xmm1",6);
&mov (&DWP(4*0,"edi"),"eax");
&movd ("eax","xmm1");
&psrldq ("xmm1",4);
&paddq ("xmm4","xmm1");
&movdqa ("xmm1",&QWP(0x50,"esp"));
&sbb ("eax",-1);
&pslldq ("xmm4",6);
&movq ("xmm5","xmm3");
&paddq ("xmm2","xmm4");
&pand ("xmm3","xmm7");
&psrldq ("xmm2",6);
&mov (&DWP(4*1,"edi"),"eax");
&movd ("eax","xmm2");
&psrldq ("xmm2",4);
&paddq ("xmm5","xmm2");
&movdqa ("xmm2",&QWP(0x60,"esp"));
&sbb ("eax",-1);
&pslldq ("xmm5",6);
&movq ("xmm4","xmm0");
&paddq ("xmm3","xmm5");
&pand ("xmm0","xmm7");
&psrldq ("xmm3",6);
&mov (&DWP(4*2,"edi"),"eax");
&movd ("eax","xmm3");
&psrldq ("xmm3",4);
&paddq ("xmm4","xmm3");
&sbb ("eax",0);
&pslldq ("xmm4",6);
&movq ("xmm5","xmm1");
&paddq ("xmm0","xmm4");
&pand ("xmm1","xmm7");
&psrldq ("xmm0",6);
&mov (&DWP(4*3,"edi"),"eax");
&movd ("eax","xmm0");
&psrldq ("xmm0",4);
&paddq ("xmm5","xmm0");
&sbb ("eax",0);
&pslldq ("xmm5",6);
&movq ("xmm4","xmm2");
&paddq ("xmm1","xmm5");
&pand ("xmm2","xmm7");
&psrldq ("xmm1",6);
&movd ("ebx","xmm1");
&psrldq ("xmm1",4);
&mov ("esp","edx");
&paddq ("xmm4","xmm1");
&pslldq ("xmm4",6);
&paddq ("xmm2","xmm4");
&psrldq ("xmm2",6);
&movd ("ecx","xmm2");
&psrldq ("xmm2",4);
&sbb ("ebx",0);
&movd ("edx","xmm2");
&pextrw ("esi","xmm2",2); # top-most overflow bit
&sbb ("ecx",1);
&sbb ("edx",-1);
&sbb ("esi",0); # borrow from subtraction
# Final step is "if result > mod, subtract mod", and at this point
# we have result - mod written to output buffer, as well as borrow
# bit from this subtraction, and if borrow bit is set, we add
# modulus back.
#
# Note that because mod has special form, i.e. consists of
# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
# assigning borrow bit to one register, %ebp, and its negative
# to another, %esi. But we started by calculating %esi...
&sub ("ebp","esi");
&add (&DWP(4*0,"edi"),"esi"); # add modulus or zero
&adc (&DWP(4*1,"edi"),"esi");
&adc (&DWP(4*2,"edi"),"esi");
&adc (&DWP(4*3,"edi"),0);
&adc ("eax",0);
&adc ("ebx",0);
&mov (&DWP(4*4,"edi"),"eax");
&adc ("ecx","ebp");
&mov (&DWP(4*5,"edi"),"ebx");
&adc ("edx","esi");
&mov (&DWP(4*6,"edi"),"ecx");
&mov (&DWP(4*7,"edi"),"edx");
&ret ();
&set_label("mul_mont_ialu",16); }
########################################
# IALU code path suitable for all CPUs.
########################################
# stack layout:
# +------------------------------------+< %esp
# | 8 32-bit temporary words, accessed |
# | as circular buffer |
# . .
# . .
# +------------------------------------+< +32
# | offloaded destination pointer |
# +------------------------------------+
# | unused |
# +------------------------------------+< +40
&sub ("esp",10*4);
&mov ("eax",&DWP(0*4,"esi")); # a[0]
&mov ("ebx",&DWP(0*4,"ebp")); # b[0]
&mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr
&mul ("ebx"); # a[0]*b[0]
&mov (&DWP(0*4,"esp"),"eax"); # t[0]
&mov ("eax",&DWP(1*4,"esi"));
&mov ("ecx","edx")
&mul ("ebx"); # a[1]*b[0]
&add ("ecx","eax");
&mov ("eax",&DWP(2*4,"esi"));
&adc ("edx",0);
&mov (&DWP(1*4,"esp"),"ecx"); # t[1]
&mov ("ecx","edx");
&mul ("ebx"); # a[2]*b[0]
&add ("ecx","eax");
&mov ("eax",&DWP(3*4,"esi"));
&adc ("edx",0);
&mov (&DWP(2*4,"esp"),"ecx"); # t[2]
&mov ("ecx","edx");
&mul ("ebx"); # a[3]*b[0]
&add ("ecx","eax");
&mov ("eax",&DWP(4*4,"esi"));
&adc ("edx",0);
&mov (&DWP(3*4,"esp"),"ecx"); # t[3]
&mov ("ecx","edx");
&mul ("ebx"); # a[4]*b[0]
&add ("ecx","eax");
&mov ("eax",&DWP(5*4,"esi"));
&adc ("edx",0);
&mov (&DWP(4*4,"esp"),"ecx"); # t[4]
&mov ("ecx","edx");
&mul ("ebx"); # a[5]*b[0]
&add ("ecx","eax");
&mov ("eax",&DWP(6*4,"esi"));
&adc ("edx",0);
&mov (&DWP(5*4,"esp"),"ecx"); # t[5]
&mov ("ecx","edx");
&mul ("ebx"); # a[6]*b[0]
&add ("ecx","eax");
&mov ("eax",&DWP(7*4,"esi"));
&adc ("edx",0);
&mov (&DWP(6*4,"esp"),"ecx"); # t[6]
&mov ("ecx","edx");
&xor ("edi","edi"); # initial top-most carry
&mul ("ebx"); # a[7]*b[0]
&add ("ecx","eax"); # t[7]
&mov ("eax",&DWP(0*4,"esp")); # t[0]
&adc ("edx",0); # t[8]
for ($i=0;$i<7;$i++) {
my $j=$i+1;
# Reduction iteration is normally performed by accumulating
# result of multiplication of modulus by "magic" digit [and
# omitting least significant word, which is guaranteed to
# be 0], but thanks to special form of modulus and "magic"
# digit being equal to least significant word, it can be
# performed with additions and subtractions alone. Indeed:
#
# ffff.0001.0000.0000.0000.ffff.ffff.ffff
# * abcd
# + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
#
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
# rewrite above as:
#
# xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
# + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
# - abcd.0000.0000.0000.0000.0000.0000.abcd
#
# or marking redundant operations:
#
# xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
# + abcd.0000.abcd.0000.0000.abcd.----.----.----
# - abcd.----.----.----.----.----.----.----
&add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0]
&adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0
&adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0
&adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0]
&adc ("ecx",0); # t[7]+=0
&adc ("edx","eax"); # t[8]+=t[0]
&adc ("edi",0); # top-most carry
&mov ("ebx",&DWP($j*4,"ebp")); # b[i]
&sub ("ecx","eax"); # t[7]-=t[0]
&mov ("eax",&DWP(0*4,"esi")); # a[0]
&sbb ("edx",0); # t[8]-=0
&mov (&DWP((($i+7)%8)*4,"esp"),"ecx");
&sbb ("edi",0); # top-most carry,
# keep in mind that
# netto result is
# *addition* of value
# with (abcd<<32)-abcd
# on top, so that
# underflow is
# impossible, because
# (abcd<<32)-abcd
# doesn't underflow
&mov (&DWP((($i+8)%8)*4,"esp"),"edx");
&mul ("ebx"); # a[0]*b[i]
&add ("eax",&DWP((($j+0)%8)*4,"esp"));
&adc ("edx",0);
&mov (&DWP((($j+0)%8)*4,"esp"),"eax");
&mov ("eax",&DWP(1*4,"esi"));
&mov ("ecx","edx")
&mul ("ebx"); # a[1]*b[i]
&add ("ecx",&DWP((($j+1)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax");
&adc ("edx",0);
&mov ("eax",&DWP(2*4,"esi"));
&mov (&DWP((($j+1)%8)*4,"esp"),"ecx");
&mov ("ecx","edx");
&mul ("ebx"); # a[2]*b[i]
&add ("ecx",&DWP((($j+2)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax");
&adc ("edx",0);
&mov ("eax",&DWP(3*4,"esi"));
&mov (&DWP((($j+2)%8)*4,"esp"),"ecx");
&mov ("ecx","edx");
&mul ("ebx"); # a[3]*b[i]
&add ("ecx",&DWP((($j+3)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax");
&adc ("edx",0);
&mov ("eax",&DWP(4*4,"esi"));
&mov (&DWP((($j+3)%8)*4,"esp"),"ecx");
&mov ("ecx","edx");
&mul ("ebx"); # a[4]*b[i]
&add ("ecx",&DWP((($j+4)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax");
&adc ("edx",0);
&mov ("eax",&DWP(5*4,"esi"));
&mov (&DWP((($j+4)%8)*4,"esp"),"ecx");
&mov ("ecx","edx");
&mul ("ebx"); # a[5]*b[i]
&add ("ecx",&DWP((($j+5)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax");
&adc ("edx",0);
&mov ("eax",&DWP(6*4,"esi"));
&mov (&DWP((($j+5)%8)*4,"esp"),"ecx");
&mov ("ecx","edx");
&mul ("ebx"); # a[6]*b[i]
&add ("ecx",&DWP((($j+6)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax");
&adc ("edx",0);
&mov ("eax",&DWP(7*4,"esi"));
&mov (&DWP((($j+6)%8)*4,"esp"),"ecx");
&mov ("ecx","edx");
&mul ("ebx"); # a[7]*b[i]
&add ("ecx",&DWP((($j+7)%8)*4,"esp"));
&adc ("edx",0);
&add ("ecx","eax"); # t[7]
&mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0]
&adc ("edx","edi"); # t[8]
&mov ("edi",0);
&adc ("edi",0); # top-most carry
}
&mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr
&xor ("esi","esi");
my $j=$i+1;
# last multiplication-less reduction
&add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0]
&adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0
&adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0
&adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0]
&adc ("ecx",0); # t[7]+=0
&adc ("edx","eax"); # t[8]+=t[0]
&adc ("edi",0); # top-most carry
&mov ("ebx",&DWP((($j+1)%8)*4,"esp"));
&sub ("ecx","eax"); # t[7]-=t[0]
&mov ("eax",&DWP((($j+0)%8)*4,"esp"));
&sbb ("edx",0); # t[8]-=0
&mov (&DWP((($i+7)%8)*4,"esp"),"ecx");
&sbb ("edi",0); # top-most carry
&mov (&DWP((($i+8)%8)*4,"esp"),"edx");
# Final step is "if result > mod, subtract mod", but we do it
# "other way around", namely write result - mod to output buffer
# and if subtraction borrowed, add modulus back.
&mov ("ecx",&DWP((($j+2)%8)*4,"esp"));
&sub ("eax",-1);
&mov ("edx",&DWP((($j+3)%8)*4,"esp"));
&sbb ("ebx",-1);
&mov (&DWP(0*4,"ebp"),"eax");
&sbb ("ecx",-1);
&mov (&DWP(1*4,"ebp"),"ebx");
&sbb ("edx",0);
&mov (&DWP(2*4,"ebp"),"ecx");
&mov (&DWP(3*4,"ebp"),"edx");
&mov ("eax",&DWP((($j+4)%8)*4,"esp"));
&mov ("ebx",&DWP((($j+5)%8)*4,"esp"));
&mov ("ecx",&DWP((($j+6)%8)*4,"esp"));
&sbb ("eax",0);
&mov ("edx",&DWP((($j+7)%8)*4,"esp"));
&sbb ("ebx",0);
&sbb ("ecx",1);
&sbb ("edx",-1);
&sbb ("edi",0);
# Note that because mod has special form, i.e. consists of
# 0xffffffff, 1 and 0s, we can conditionally synthesize it by
# assigning borrow bit to one register, %ebp, and its negative
# to another, %esi. But we started by calculating %esi...
&sub ("esi","edi");
&add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero
&adc (&DWP(1*4,"ebp"),"edi");
&adc (&DWP(2*4,"ebp"),"edi");
&adc (&DWP(3*4,"ebp"),0);
&adc ("eax",0);
&adc ("ebx",0);
&mov (&DWP(4*4,"ebp"),"eax");
&adc ("ecx","esi");
&mov (&DWP(5*4,"ebp"),"ebx");
&adc ("edx","edi");
&mov (&DWP(6*4,"ebp"),"ecx");
&mov ("edi","ebp"); # fulfill contract
&mov (&DWP(7*4,"ebp"),"edx");
&add ("esp",10*4);
&ret ();
&function_end_B("_ecp_nistz256_mul_mont");
########################################################################
# void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi,
# int ebp);
&function_begin("ecp_nistz256_scatter_w5");
&mov ("edi",&wparam(0));
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
&lea ("edi",&DWP(128-4,"edi","ebp",4));
&mov ("ebp",96/16);
&set_label("scatter_w5_loop");
&mov ("eax",&DWP(0,"esi"));
&mov ("ebx",&DWP(4,"esi"));
&mov ("ecx",&DWP(8,"esi"));
&mov ("edx",&DWP(12,"esi"));
&lea ("esi",&DWP(16,"esi"));
&mov (&DWP(64*0-128,"edi"),"eax");
&mov (&DWP(64*1-128,"edi"),"ebx");
&mov (&DWP(64*2-128,"edi"),"ecx");
&mov (&DWP(64*3-128,"edi"),"edx");
&lea ("edi",&DWP(64*4,"edi"));
&dec ("ebp");
&jnz (&label("scatter_w5_loop"));
&function_end("ecp_nistz256_scatter_w5");
########################################################################
# void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi,
# int ebp);
&function_begin("ecp_nistz256_gather_w5");
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
&lea ("esi",&DWP(0,"esi","ebp",4));
&neg ("ebp");
&sar ("ebp",31);
&mov ("edi",&wparam(0));
&lea ("esi",&DWP(0,"esi","ebp",4));
for($i=0;$i<24;$i+=4) {
&mov ("eax",&DWP(64*($i+0),"esi"));
&mov ("ebx",&DWP(64*($i+1),"esi"));
&mov ("ecx",&DWP(64*($i+2),"esi"));
&mov ("edx",&DWP(64*($i+3),"esi"));
&and ("eax","ebp");
&and ("ebx","ebp");
&and ("ecx","ebp");
&and ("edx","ebp");
&mov (&DWP(4*($i+0),"edi"),"eax");
&mov (&DWP(4*($i+1),"edi"),"ebx");
&mov (&DWP(4*($i+2),"edi"),"ecx");
&mov (&DWP(4*($i+3),"edi"),"edx");
}
&function_end("ecp_nistz256_gather_w5");
########################################################################
# void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi,
# int ebp);
&function_begin("ecp_nistz256_scatter_w7");
&mov ("edi",&wparam(0));
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
&lea ("edi",&DWP(-1,"edi","ebp"));
&mov ("ebp",64/4);
&set_label("scatter_w7_loop");
&mov ("eax",&DWP(0,"esi"));
&lea ("esi",&DWP(4,"esi"));
&mov (&BP(64*0,"edi"),"al");
&mov (&BP(64*1,"edi"),"ah");
&shr ("eax",16);
&mov (&BP(64*2,"edi"),"al");
&mov (&BP(64*3,"edi"),"ah");
&lea ("edi",&DWP(64*4,"edi"));
&dec ("ebp");
&jnz (&label("scatter_w7_loop"));
&function_end("ecp_nistz256_scatter_w7");
########################################################################
# void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi,
# int ebp);
&function_begin("ecp_nistz256_gather_w7");
&mov ("esi",&wparam(1));
&mov ("ebp",&wparam(2));
&add ("esi","ebp");
&neg ("ebp"),
&sar ("ebp",31);
&mov ("edi",&wparam(0));
&lea ("esi",&DWP(0,"esi","ebp"));
for($i=0;$i<64;$i+=4) {
&movz ("eax",&BP(64*($i+0),"esi"));
&movz ("ebx",&BP(64*($i+1),"esi"));
&movz ("ecx",&BP(64*($i+2),"esi"));
&and ("eax","ebp");
&movz ("edx",&BP(64*($i+3),"esi"));
&and ("ebx","ebp");
&mov (&BP($i+0,"edi"),"al");
&and ("ecx","ebp");
&mov (&BP($i+1,"edi"),"bl");
&and ("edx","ebp");
&mov (&BP($i+2,"edi"),"cl");
&mov (&BP($i+3,"edi"),"dl");
}
&function_end("ecp_nistz256_gather_w7");
########################################################################
# following subroutines are "literal" implementation of those found in
# ecp_nistz256.c
#
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
&static_label("point_double_shortcut");
&function_begin("ecp_nistz256_point_double");
{ my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
&mov ("esi",&wparam(1));
# above map() describes stack layout with 5 temporary
# 256-bit vectors on top, then we take extra word for
# OPENSSL_ia32cap_P copy.
&stack_push(8*5+1);
if ($sse2) {
&call ("_picup_eax");
&set_label("pic");
&picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("ebp",&DWP(0,"edx")); }
&set_label("point_double_shortcut");
&mov ("eax",&DWP(0,"esi")); # copy in_x
&mov ("ebx",&DWP(4,"esi"));
&mov ("ecx",&DWP(8,"esi"));
&mov ("edx",&DWP(12,"esi"));
&mov (&DWP($in_x+0,"esp"),"eax");
&mov (&DWP($in_x+4,"esp"),"ebx");
&mov (&DWP($in_x+8,"esp"),"ecx");
&mov (&DWP($in_x+12,"esp"),"edx");
&mov ("eax",&DWP(16,"esi"));
&mov ("ebx",&DWP(20,"esi"));
&mov ("ecx",&DWP(24,"esi"));
&mov ("edx",&DWP(28,"esi"));
&mov (&DWP($in_x+16,"esp"),"eax");
&mov (&DWP($in_x+20,"esp"),"ebx");
&mov (&DWP($in_x+24,"esp"),"ecx");
&mov (&DWP($in_x+28,"esp"),"edx");
&mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy
&lea ("ebp",&DWP(32,"esi"));
&lea ("esi",&DWP(32,"esi"));
&lea ("edi",&DWP($S,"esp"));
&call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&mov ("esi",64);
&add ("esi",&wparam(1));
&lea ("edi",&DWP($Zsqr,"esp"));
&mov ("ebp","esi");
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($S,"esp"));
&lea ("ebp",&DWP($S,"esp"));
&lea ("edi",&DWP($S,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&mov ("ebp",&wparam(1));
&lea ("esi",&DWP(32,"ebp"));
&lea ("ebp",&DWP(64,"ebp"));
&lea ("edi",&DWP($tmp0,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y);
&lea ("esi",&DWP($in_x,"esp"));
&lea ("ebp",&DWP($Zsqr,"esp"));
&lea ("edi",&DWP($M,"esp"));
&call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr);
&mov ("edi",64);
&lea ("esi",&DWP($tmp0,"esp"));
&lea ("ebp",&DWP($tmp0,"esp"));
&add ("edi",&wparam(0));
&call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0);
&lea ("esi",&DWP($in_x,"esp"));
&lea ("ebp",&DWP($Zsqr,"esp"));
&lea ("edi",&DWP($Zsqr,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($S,"esp"));
&lea ("ebp",&DWP($S,"esp"));
&lea ("edi",&DWP($tmp0,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($M,"esp"));
&lea ("ebp",&DWP($Zsqr,"esp"));
&lea ("edi",&DWP($M,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr);
&mov ("edi",32);
&lea ("esi",&DWP($tmp0,"esp"));
&add ("edi",&wparam(0));
&call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0);
&lea ("esi",&DWP($M,"esp"));
&lea ("ebp",&DWP($M,"esp"));
&lea ("edi",&DWP($tmp0,"esp"));
&call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in_x,"esp"));
&lea ("ebp",&DWP($S,"esp"));
&lea ("edi",&DWP($S,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x);
&lea ("esi",&DWP($tmp0,"esp"));
&lea ("ebp",&DWP($M,"esp"));
&lea ("edi",&DWP($M,"esp"));
&call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M);
&lea ("esi",&DWP($S,"esp"));
&lea ("ebp",&DWP($S,"esp"));
&lea ("edi",&DWP($tmp0,"esp"));
&call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($M,"esp"));
&lea ("ebp",&DWP($M,"esp"));
&mov ("edi",&wparam(0));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M);
&mov ("esi","edi"); # %edi is still res_x here
&lea ("ebp",&DWP($tmp0,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0);
&lea ("esi",&DWP($S,"esp"));
&mov ("ebp","edi"); # %edi is still res_x
&lea ("edi",&DWP($S,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x);
&mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
&mov ("esi","edi"); # %edi is still &S
&lea ("ebp",&DWP($M,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M);
&mov ("ebp",32);
&lea ("esi",&DWP($S,"esp"));
&add ("ebp",&wparam(0));
&mov ("edi","ebp");
&call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y);
&stack_pop(8*5+1);
} &function_end("ecp_nistz256_point_double");
########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT *in2);
&function_begin("ecp_nistz256_point_add");
{ my ($res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y,$in2_z,
$H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2)=map(32*$_,(0..17));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
&mov ("esi",&wparam(2));
# above map() describes stack layout with 18 temporary
# 256-bit vectors on top, then we take extra words for
# !in1infty, !in2infty, result of check for zero and
# OPENSSL_ia32cap_P copy. [one unused word for padding]
&stack_push(8*18+5);
if ($sse2) {
&call ("_picup_eax");
&set_label("pic");
&picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("ebp",&DWP(0,"edx")); }
&lea ("edi",&DWP($in2_x,"esp"));
for($i=0;$i<96;$i+=16) {
&mov ("eax",&DWP($i+0,"esi")); # copy in2
&mov ("ebx",&DWP($i+4,"esi"));
&mov ("ecx",&DWP($i+8,"esi"));
&mov ("edx",&DWP($i+12,"esi"));
&mov (&DWP($i+0,"edi"),"eax");
&mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0);
&mov ("ebp","eax") if ($i==0);
&or ("ebp","eax") if ($i!=0 && $i<64);
&mov (&DWP($i+4,"edi"),"ebx");
&or ("ebp","ebx") if ($i<64);
&mov (&DWP($i+8,"edi"),"ecx");
&or ("ebp","ecx") if ($i<64);
&mov (&DWP($i+12,"edi"),"edx");
&or ("ebp","edx") if ($i<64);
}
&xor ("eax","eax");
&mov ("esi",&wparam(1));
&sub ("eax","ebp");
&or ("ebp","eax");
&sar ("ebp",31);
&mov (&DWP(32*18+4,"esp"),"ebp"); # !in2infty
&lea ("edi",&DWP($in1_x,"esp"));
for($i=0;$i<96;$i+=16) {
&mov ("eax",&DWP($i+0,"esi")); # copy in1
&mov ("ebx",&DWP($i+4,"esi"));
&mov ("ecx",&DWP($i+8,"esi"));
&mov ("edx",&DWP($i+12,"esi"));
&mov (&DWP($i+0,"edi"),"eax");
&mov ("ebp","eax") if ($i==0);
&or ("ebp","eax") if ($i!=0 && $i<64);
&mov (&DWP($i+4,"edi"),"ebx");
&or ("ebp","ebx") if ($i<64);
&mov (&DWP($i+8,"edi"),"ecx");
&or ("ebp","ecx") if ($i<64);
&mov (&DWP($i+12,"edi"),"edx");
&or ("ebp","edx") if ($i<64);
}
&xor ("eax","eax");
&sub ("eax","ebp");
&or ("ebp","eax");
&sar ("ebp",31);
&mov (&DWP(32*18+0,"esp"),"ebp"); # !in1infty
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in2_z,"esp"));
&lea ("ebp",&DWP($in2_z,"esp"));
&lea ("edi",&DWP($Z2sqr,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in1_z,"esp"));
&lea ("ebp",&DWP($in1_z,"esp"));
&lea ("edi",&DWP($Z1sqr,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($Z2sqr,"esp"));
&lea ("ebp",&DWP($in2_z,"esp"));
&lea ("edi",&DWP($S1,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($Z1sqr,"esp"));
&lea ("ebp",&DWP($in1_z,"esp"));
&lea ("edi",&DWP($S2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in1_y,"esp"));
&lea ("ebp",&DWP($S1,"esp"));
&lea ("edi",&DWP($S1,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in2_y,"esp"));
&lea ("ebp",&DWP($S2,"esp"));
&lea ("edi",&DWP($S2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y);
&lea ("esi",&DWP($S2,"esp"));
&lea ("ebp",&DWP($S1,"esp"));
&lea ("edi",&DWP($R,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1);
&or ("ebx","eax"); # see if result is zero
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&or ("ebx","ecx");
&or ("ebx","edx");
&or ("ebx",&DWP(0,"edi"));
&or ("ebx",&DWP(4,"edi"));
&lea ("esi",&DWP($in1_x,"esp"));
&or ("ebx",&DWP(8,"edi"));
&lea ("ebp",&DWP($Z2sqr,"esp"));
&or ("ebx",&DWP(12,"edi"));
&lea ("edi",&DWP($U1,"esp"));
&mov (&DWP(32*18+8,"esp"),"ebx");
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in2_x,"esp"));
&lea ("ebp",&DWP($Z1sqr,"esp"));
&lea ("edi",&DWP($U2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr);
&lea ("esi",&DWP($U2,"esp"));
&lea ("ebp",&DWP($U1,"esp"));
&lea ("edi",&DWP($H,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1);
&or ("eax","ebx"); # see if result is zero
&or ("eax","ecx");
&or ("eax","edx");
&or ("eax",&DWP(0,"edi"));
&or ("eax",&DWP(4,"edi"));
&or ("eax",&DWP(8,"edi"));
&or ("eax",&DWP(12,"edi"));
&data_byte(0x3e); # predict taken
&jnz (&label("add_proceed")); # is_equal(U1,U2)?
&mov ("eax",&DWP(32*18+0,"esp"));
&and ("eax",&DWP(32*18+4,"esp"));
&mov ("ebx",&DWP(32*18+8,"esp"));
&jz (&label("add_proceed")); # (in1infty || in2infty)?
&test ("ebx","ebx");
&jz (&label("add_double")); # is_equal(S1,S2)?
&mov ("edi",&wparam(0));
&xor ("eax","eax");
&mov ("ecx",96/4);
&data_byte(0xfc,0xf3,0xab); # cld; stosd
&jmp (&label("add_done"));
&set_label("add_double",16);
&mov ("esi",&wparam(1));
&mov ("ebp",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&add ("esp",4*((8*18+5)-(8*5+1))); # difference in frame sizes
&jmp (&label("point_double_shortcut"));
&set_label("add_proceed",16);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($R,"esp"));
&lea ("ebp",&DWP($R,"esp"));
&lea ("edi",&DWP($Rsqr,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($H,"esp"));
&lea ("ebp",&DWP($in1_z,"esp"));
&lea ("edi",&DWP($res_z,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($H,"esp"));
&lea ("ebp",&DWP($H,"esp"));
&lea ("edi",&DWP($Hsqr,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in2_z,"esp"));
&lea ("ebp",&DWP($res_z,"esp"));
&lea ("edi",&DWP($res_z,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($Hsqr,"esp"));
&lea ("ebp",&DWP($U1,"esp"));
&lea ("edi",&DWP($U2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($H,"esp"));
&lea ("ebp",&DWP($Hsqr,"esp"));
&lea ("edi",&DWP($Hcub,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H);
&lea ("esi",&DWP($U2,"esp"));
&lea ("ebp",&DWP($U2,"esp"));
&lea ("edi",&DWP($Hsqr,"esp"));
&call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2);
&lea ("esi",&DWP($Rsqr,"esp"));
&lea ("ebp",&DWP($Hsqr,"esp"));
&lea ("edi",&DWP($res_x,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr);
&lea ("esi",&DWP($res_x,"esp"));
&lea ("ebp",&DWP($Hcub,"esp"));
&lea ("edi",&DWP($res_x,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub);
&lea ("esi",&DWP($U2,"esp"));
&lea ("ebp",&DWP($res_x,"esp"));
&lea ("edi",&DWP($res_y,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($Hcub,"esp"));
&lea ("ebp",&DWP($S1,"esp"));
&lea ("edi",&DWP($S2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub);
&mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($R,"esp"));
&lea ("ebp",&DWP($res_y,"esp"));
&lea ("edi",&DWP($res_y,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y);
&lea ("esi",&DWP($res_y,"esp"));
&lea ("ebp",&DWP($S2,"esp"));
&lea ("edi",&DWP($res_y,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2);
&mov ("ebp",&DWP(32*18+0,"esp")); # !in1infty
&mov ("esi",&DWP(32*18+4,"esp")); # !in2infty
&mov ("edi",&wparam(0));
&mov ("edx","ebp");
&not ("ebp");
&and ("edx","esi");
&and ("ebp","esi");
&not ("esi");
########################################
# conditional moves
for($i=64;$i<96;$i+=4) {
&mov ("eax","edx");
&and ("eax",&DWP($res_x+$i,"esp"));
&mov ("ebx","ebp");
&and ("ebx",&DWP($in2_x+$i,"esp"));
&mov ("ecx","esi");
&and ("ecx",&DWP($in1_x+$i,"esp"));
&or ("eax","ebx");
&or ("eax","ecx");
&mov (&DWP($i,"edi"),"eax");
}
for($i=0;$i<64;$i+=4) {
&mov ("eax","edx");
&and ("eax",&DWP($res_x+$i,"esp"));
&mov ("ebx","ebp");
&and ("ebx",&DWP($in2_x+$i,"esp"));
&mov ("ecx","esi");
&and ("ecx",&DWP($in1_x+$i,"esp"));
&or ("eax","ebx");
&or ("eax","ecx");
&mov (&DWP($i,"edi"),"eax");
}
&set_label("add_done");
&stack_pop(8*18+5);
} &function_end("ecp_nistz256_point_add");
########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,
# const P256_POINT *in1,
# const P256_POINT_AFFINE *in2);
&function_begin("ecp_nistz256_point_add_affine");
{
my ($res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y,
$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
my $Z1sqr = $S2;
my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);
&mov ("esi",&wparam(1));
# above map() describes stack layout with 15 temporary
# 256-bit vectors on top, then we take extra words for
# !in1infty, !in2infty, and OPENSSL_ia32cap_P copy.
&stack_push(8*15+3);
if ($sse2) {
&call ("_picup_eax");
&set_label("pic");
&picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
&mov ("ebp",&DWP(0,"edx")); }
&lea ("edi",&DWP($in1_x,"esp"));
for($i=0;$i<96;$i+=16) {
&mov ("eax",&DWP($i+0,"esi")); # copy in1
&mov ("ebx",&DWP($i+4,"esi"));
&mov ("ecx",&DWP($i+8,"esi"));
&mov ("edx",&DWP($i+12,"esi"));
&mov (&DWP($i+0,"edi"),"eax");
&mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0);
&mov ("ebp","eax") if ($i==0);
&or ("ebp","eax") if ($i!=0 && $i<64);
&mov (&DWP($i+4,"edi"),"ebx");
&or ("ebp","ebx") if ($i<64);
&mov (&DWP($i+8,"edi"),"ecx");
&or ("ebp","ecx") if ($i<64);
&mov (&DWP($i+12,"edi"),"edx");
&or ("ebp","edx") if ($i<64);
}
&xor ("eax","eax");
&mov ("esi",&wparam(2));
&sub ("eax","ebp");
&or ("ebp","eax");
&sar ("ebp",31);
&mov (&DWP(32*15+0,"esp"),"ebp"); # !in1infty
&lea ("edi",&DWP($in2_x,"esp"));
for($i=0;$i<64;$i+=16) {
&mov ("eax",&DWP($i+0,"esi")); # copy in2
&mov ("ebx",&DWP($i+4,"esi"));
&mov ("ecx",&DWP($i+8,"esi"));
&mov ("edx",&DWP($i+12,"esi"));
&mov (&DWP($i+0,"edi"),"eax");
&mov ("ebp","eax") if ($i==0);
&or ("ebp","eax") if ($i!=0);
&mov (&DWP($i+4,"edi"),"ebx");
&or ("ebp","ebx");
&mov (&DWP($i+8,"edi"),"ecx");
&or ("ebp","ecx");
&mov (&DWP($i+12,"edi"),"edx");
&or ("ebp","edx");
}
&xor ("ebx","ebx");
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&sub ("ebx","ebp");
&lea ("esi",&DWP($in1_z,"esp"));
&or ("ebx","ebp");
&lea ("ebp",&DWP($in1_z,"esp"));
&sar ("ebx",31);
&lea ("edi",&DWP($Z1sqr,"esp"));
&mov (&DWP(32*15+4,"esp"),"ebx"); # !in2infty
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in2_x,"esp"));
&mov ("ebp","edi"); # %esi is stull &Z1sqr
&lea ("edi",&DWP($U2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in1_z,"esp"));
&lea ("ebp",&DWP($Z1sqr,"esp"));
&lea ("edi",&DWP($S2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z);
&lea ("esi",&DWP($U2,"esp"));
&lea ("ebp",&DWP($in1_x,"esp"));
&lea ("edi",&DWP($H,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in2_y,"esp"));
&lea ("ebp",&DWP($S2,"esp"));
&lea ("edi",&DWP($S2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in1_z,"esp"));
&lea ("ebp",&DWP($H,"esp"));
&lea ("edi",&DWP($res_z,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z);
&lea ("esi",&DWP($S2,"esp"));
&lea ("ebp",&DWP($in1_y,"esp"));
&lea ("edi",&DWP($R,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($H,"esp"));
&lea ("ebp",&DWP($H,"esp"));
&lea ("edi",&DWP($Hsqr,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($R,"esp"));
&lea ("ebp",&DWP($R,"esp"));
&lea ("edi",&DWP($Rsqr,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($in1_x,"esp"));
&lea ("ebp",&DWP($Hsqr,"esp"));
&lea ("edi",&DWP($U2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($H,"esp"));
&lea ("ebp",&DWP($Hsqr,"esp"));
&lea ("edi",&DWP($Hcub,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H);
&lea ("esi",&DWP($U2,"esp"));
&lea ("ebp",&DWP($U2,"esp"));
&lea ("edi",&DWP($Hsqr,"esp"));
&call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2);
&lea ("esi",&DWP($Rsqr,"esp"));
&lea ("ebp",&DWP($Hsqr,"esp"));
&lea ("edi",&DWP($res_x,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr);
&lea ("esi",&DWP($res_x,"esp"));
&lea ("ebp",&DWP($Hcub,"esp"));
&lea ("edi",&DWP($res_x,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub);
&lea ("esi",&DWP($U2,"esp"));
&lea ("ebp",&DWP($res_x,"esp"));
&lea ("edi",&DWP($res_y,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($Hcub,"esp"));
&lea ("ebp",&DWP($in1_y,"esp"));
&lea ("edi",&DWP($S2,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y);
&mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
&lea ("esi",&DWP($R,"esp"));
&lea ("ebp",&DWP($res_y,"esp"));
&lea ("edi",&DWP($res_y,"esp"));
&call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R);
&lea ("esi",&DWP($res_y,"esp"));
&lea ("ebp",&DWP($S2,"esp"));
&lea ("edi",&DWP($res_y,"esp"));
&call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2);
&mov ("ebp",&DWP(32*15+0,"esp")); # !in1infty
&mov ("esi",&DWP(32*15+4,"esp")); # !in2infty
&mov ("edi",&wparam(0));
&mov ("edx","ebp");
&not ("ebp");
&and ("edx","esi");
&and ("ebp","esi");
&not ("esi");
########################################
# conditional moves
for($i=64;$i<96;$i+=4) {
my $one=@ONE_mont[($i-64)/4];
&mov ("eax","edx");
&and ("eax",&DWP($res_x+$i,"esp"));
&mov ("ebx","ebp") if ($one && $one!=-1);
&and ("ebx",$one) if ($one && $one!=-1);
&mov ("ecx","esi");
&and ("ecx",&DWP($in1_x+$i,"esp"));
&or ("eax",$one==-1?"ebp":"ebx") if ($one);
&or ("eax","ecx");
&mov (&DWP($i,"edi"),"eax");
}
for($i=0;$i<64;$i+=4) {
&mov ("eax","edx");
&and ("eax",&DWP($res_x+$i,"esp"));
&mov ("ebx","ebp");
&and ("ebx",&DWP($in2_x+$i,"esp"));
&mov ("ecx","esi");
&and ("ecx",&DWP($in1_x+$i,"esp"));
&or ("eax","ebx");
&or ("eax","ecx");
&mov (&DWP($i,"edi"),"eax");
}
&stack_pop(8*15+3);
} &function_end("ecp_nistz256_point_add_affine");
&asm_finish();
close STDOUT;