openssl/crypto/bn/bn_mont2.c
Bodo Möller db5bda670f Changes to Lenka's Montgomery implementation.
Submitted by: Lenka Fibikova
2000-11-30 17:35:17 +00:00

349 lines
6.3 KiB
C

/*
*
* bn_mont2.c
*
* Montgomery Modular Arithmetic Functions.
*
* Copyright (C) Lenka Fibikova 2000
*
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "bn_lcl.h"
#include "bn_mont2.h"
#define BN_mask_word(x, m) ((x->d[0]) & (m))
BN_MONTGOMERY *BN_mont_new()
{
BN_MONTGOMERY *ret;
ret=(BN_MONTGOMERY *)malloc(sizeof(BN_MONTGOMERY));
if (ret == NULL) return NULL;
if ((ret->p = BN_new()) == NULL)
{
free(ret);
return NULL;
}
return ret;
}
void BN_mont_clear_free(BN_MONTGOMERY *mont)
{
if (mont == NULL) return;
if (mont->p != NULL) BN_clear_free(mont->p);
mont->p_num_bytes = 0;
mont->R_num_bits = 0;
mont->p_inv_b_neg = 0;
}
int BN_to_mont(BIGNUM *x, BN_MONTGOMERY *mont, BN_CTX *ctx)
{
assert(x != NULL);
assert(mont != NULL);
assert(mont->p != NULL);
assert(ctx != NULL);
if (!BN_lshift(x, x, mont->R_num_bits)) return 0;
if (!BN_mod(x, x, mont->p, ctx)) return 0;
return 1;
}
static BN_ULONG BN_mont_inv(BIGNUM *a, int e, BN_CTX *ctx)
/* y = a^{-1} (mod 2^e) for an odd number a */
{
BN_ULONG y, exp, mask;
BIGNUM *x, *xy, *x_sh;
int i;
assert(a != NULL && ctx != NULL);
assert(e <= BN_BITS2);
assert(BN_is_odd(a));
assert(!BN_is_zero(a) && !a->neg);
y = 1;
exp = 2;
mask = 3;
if((x = BN_dup(a)) == NULL) return 0;
if(!BN_mask_bits(x, e)) return 0;
BN_CTX_start(ctx);
xy = BN_CTX_get(ctx);
x_sh = BN_CTX_get(ctx);
if (x_sh == NULL) goto err;
if (BN_copy(xy, x) == NULL) goto err;
if (!BN_lshift1(x_sh, x)) goto err;
for (i = 2; i <= e; i++)
{
if (exp < BN_mask_word(xy, mask))
{
y = y + exp;
if (!BN_add(xy, xy, x_sh)) goto err;
}
exp <<= 1;
if (!BN_lshift1(x_sh, x_sh)) goto err;
mask <<= 1;
mask++;
}
#ifdef TEST
if (xy->d[0] != 1) goto err;
#endif
if (x != NULL) BN_clear_free(x);
BN_CTX_end(ctx);
return y;
err:
if (x != NULL) BN_clear_free(x);
BN_CTX_end(ctx);
return 0;
}
int BN_mont_set(BIGNUM *p, BN_MONTGOMERY *mont, BN_CTX *ctx)
{
assert(p != NULL && ctx != NULL);
assert(mont != NULL);
assert(mont->p != NULL);
assert(!BN_is_zero(p) && !p->neg);
mont->p_num_bytes = p->top;
mont->R_num_bits = (mont->p_num_bytes) * BN_BITS2;
if (BN_copy(mont->p, p) == NULL);
mont->p_inv_b_neg = BN_mont_inv(p, BN_BITS2, ctx);
mont->p_inv_b_neg = 0 - mont->p_inv_b_neg;
return 1;
}
#ifdef BN_LLONG
#define cpy_mul_add(r, b, a, w, c) { \
BN_ULLONG t; \
t = (BN_ULLONG)w * (a) + (b) + (c); \
(r)= Lw(t); \
(c)= Hw(t); \
}
BN_ULONG BN_mul_add_rshift(BN_ULONG *r, BN_ULONG *a, int num, BN_ULONG w)
/* r = (r + a * w) >> BN_BITS2 */
{
BN_ULONG c = 0;
mul_add(r[0], a[0], w, c);
if (--num == 0) return c;
a++;
for (;;)
{
cpy_mul_add(r[0], r[1], a[0], w, c);
if (--num == 0) break;
cpy_mul_add(r[1], r[2], a[1], w, c);
if (--num == 0) break;
cpy_mul_add(r[2], r[3], a[2], w, c);
if (--num == 0) break;
cpy_mul_add(r[3], r[4], a[3], w, c);
if (--num == 0) break;
a += 4;
r += 4;
}
return c;
}
#else
#define cpy_mul_add(r, b, a, bl, bh, c) { \
BN_ULONG l,h; \
\
h=(a); \
l=LBITS(h); \
h=HBITS(h); \
mul64(l,h,(bl),(bh)); \
\
/* non-multiply part */ \
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
(c)=(b); \
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
(c)=h&BN_MASK2; \
(r)=l; \
}
static BN_ULONG BN_mul_add_rshift(BN_ULONG *r, BN_ULONG *a, int num, BN_ULONG w)
/* ret = (ret + a * w) << shift * BN_BITS2 */
{
BN_ULONG c = 0;
BN_ULONG bl, bh;
bl = LBITS(w);
bh = HBITS(w);
mul_add(r[0], a[0], bl, bh, c);
if (--num == 0) return c;
a++;
for (;;)
{
cpy_mul_add(r[0], r[1], a[0], bl, bh, c);
if (--num == 0) break;
cpy_mul_add(r[1], r[2], a[1], bl, bh, c);
if (--num == 0) break;
cpy_mul_add(r[2], r[3], a[2], bl, bh, c);
if (--num == 0) break;
cpy_mul_add(r[3], r[4], a[3], bl, bh, c);
if (--num == 0) break;
a += 4;
r += 4;
}
return c;
}
#endif /* BN_LLONG */
int BN_mont_red(BIGNUM *y, BN_MONTGOMERY *mont)
/* yR^{-1} (mod p) */
{
BIGNUM *p;
BN_ULONG c;
int i, max;
assert(y != NULL && mont != NULL);
assert(mont->p != NULL);
assert(BN_cmp(y, mont->p) < 0);
assert(!y->neg);
if (BN_is_zero(y)) return 1;
p = mont->p;
max = mont->p_num_bytes;
if (bn_wexpand(y, max) == NULL) return 0;
for (i = y->top; i < max; i++) y->d[i] = 0;
y->top = max;
/* r = [r + (y_0 * p') * p] / b */
for (i = 0; i < max; i++)
{
c = BN_mul_add_rshift(y->d, p->d, max, ((y->d[0]) * mont->p_inv_b_neg) & BN_MASK2);
y->d[max - 1] = c;
}
while (y->d[y->top - 1] == 0) y->top--;
if (BN_cmp(y, p) >= 0)
{
if (!BN_sub(y, y, p)) return 0;
}
return 1;
}
int BN_mont_mod_mul(BIGNUM *r, BIGNUM *x, BIGNUM *y, BN_MONTGOMERY *mont)
/* r = x * y mod p */
/* r != x && r! = y !!! */
{
BN_ULONG c;
BIGNUM *p;
int i, j, max;
assert(r != x && r != y);
assert(r != NULL && x != NULL && y != NULL && mont != NULL);
assert(mont->p != NULL);
assert(BN_cmp(x, mont->p) < 0);
assert(BN_cmp(y, mont->p) < 0);
assert(!x->neg);
assert(!y->neg);
if (BN_is_zero(x) || BN_is_zero(y))
{
if (!BN_zero(r)) return 0;
return 1;
}
p = mont->p;
max = mont->p_num_bytes;
/* for multiplication we need at most max + 2 words
the last one --- max + 3 --- is only as a backstop
for incorrect input
*/
if (bn_wexpand(r, max + 3) == NULL) return 0;
for (i = 0; i < max + 3; i++) r->d[i] = 0;
r->top = max + 2;
for (i = 0; i < x->top; i++)
{
/* r = r + (r_0 + x_i * y_0) * p' * p */
c = bn_mul_add_words(r->d, p->d, max, \
((r->d[0] + x->d[i] * y->d[0]) * mont->p_inv_b_neg) & BN_MASK2);
if (c)
{
if (((r->d[max] += c) & BN_MASK2) < c)
if (((r->d[max + 1] ++) & BN_MASK2) == 0) return 0;
}
/* r = (r + x_i * y) / b */
c = BN_mul_add_rshift(r->d, y->d, y->top, x->d[i]);
for(j = y->top; j <= max + 1; j++) r->d[j - 1] = r->d[j];
if (c)
{
if (((r->d[y->top - 1] += c) & BN_MASK2) < c)
{
j = y->top;
while (((++ (r->d[j]) ) & BN_MASK2) == 0)
j++;
if (j > max) return 0;
}
}
r->d[max + 1] = 0;
}
for (i = x->top; i < max; i++)
{
/* r = (r + r_0 * p' * p) / b */
c = BN_mul_add_rshift(r->d, p->d, max, ((r->d[0]) * mont->p_inv_b_neg) & BN_MASK2);
j = max - 1;
r->d[j] = c + r->d[max];
if (r->d[j++] < c) r->d[j] = r->d[++j] + 1;
else r->d[j] = r->d[++j];
r->d[max + 1] = 0;
}
while (r->d[r->top - 1] == 0) r->top--;
if (BN_cmp(r, mont->p) >= 0)
{
if (!BN_sub(r, r, mont->p)) return 0;
}
return 1;
}