0c994d54af
Currently, there are two different directories which contain internal header files of libcrypto which are meant to be shared internally: While header files in 'include/internal' are intended to be shared between libcrypto and libssl, the files in 'crypto/include/internal' are intended to be shared inside libcrypto only. To make things complicated, the include search path is set up in such a way that the directive #include "internal/file.h" could refer to a file in either of these two directoroes. This makes it necessary in some cases to add a '_int.h' suffix to some files to resolve this ambiguity: #include "internal/file.h" # located in 'include/internal' #include "internal/file_int.h" # located in 'crypto/include/internal' This commit moves the private crypto headers from 'crypto/include/internal' to 'include/crypto' As a result, the include directives become unambiguous #include "internal/file.h" # located in 'include/internal' #include "crypto/file.h" # located in 'include/crypto' hence the superfluous '_int.h' suffixes can be stripped. The files 'store_int.h' and 'store.h' need to be treated specially; they are joined into a single file. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9681)
248 lines
7.7 KiB
C
248 lines
7.7 KiB
C
/*
|
|
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/bn.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/x509.h>
|
|
#include "crypto/x509.h"
|
|
#include "rsa_locl.h"
|
|
|
|
/* Size of an SSL signature: MD5+SHA1 */
|
|
#define SSL_SIG_LENGTH 36
|
|
|
|
/*
|
|
* encode_pkcs1 encodes a DigestInfo prefix of hash |type| and digest |m|, as
|
|
* described in EMSA-PKCS1-v1_5-ENCODE, RFC 3447 section 9.2 step 2. This
|
|
* encodes the DigestInfo (T and tLen) but does not add the padding.
|
|
*
|
|
* On success, it returns one and sets |*out| to a newly allocated buffer
|
|
* containing the result and |*out_len| to its length. The caller must free
|
|
* |*out| with |OPENSSL_free|. Otherwise, it returns zero.
|
|
*/
|
|
static int encode_pkcs1(unsigned char **out, int *out_len, int type,
|
|
const unsigned char *m, unsigned int m_len)
|
|
{
|
|
X509_SIG sig;
|
|
X509_ALGOR algor;
|
|
ASN1_TYPE parameter;
|
|
ASN1_OCTET_STRING digest;
|
|
uint8_t *der = NULL;
|
|
int len;
|
|
|
|
sig.algor = &algor;
|
|
sig.algor->algorithm = OBJ_nid2obj(type);
|
|
if (sig.algor->algorithm == NULL) {
|
|
RSAerr(RSA_F_ENCODE_PKCS1, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
|
return 0;
|
|
}
|
|
if (OBJ_length(sig.algor->algorithm) == 0) {
|
|
RSAerr(RSA_F_ENCODE_PKCS1,
|
|
RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD);
|
|
return 0;
|
|
}
|
|
parameter.type = V_ASN1_NULL;
|
|
parameter.value.ptr = NULL;
|
|
sig.algor->parameter = ¶meter;
|
|
|
|
sig.digest = &digest;
|
|
sig.digest->data = (unsigned char *)m;
|
|
sig.digest->length = m_len;
|
|
|
|
len = i2d_X509_SIG(&sig, &der);
|
|
if (len < 0)
|
|
return 0;
|
|
|
|
*out = der;
|
|
*out_len = len;
|
|
return 1;
|
|
}
|
|
|
|
int RSA_sign(int type, const unsigned char *m, unsigned int m_len,
|
|
unsigned char *sigret, unsigned int *siglen, RSA *rsa)
|
|
{
|
|
int encrypt_len, encoded_len = 0, ret = 0;
|
|
unsigned char *tmps = NULL;
|
|
const unsigned char *encoded = NULL;
|
|
|
|
if (rsa->meth->rsa_sign) {
|
|
return rsa->meth->rsa_sign(type, m, m_len, sigret, siglen, rsa);
|
|
}
|
|
|
|
/* Compute the encoded digest. */
|
|
if (type == NID_md5_sha1) {
|
|
/*
|
|
* NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and
|
|
* earlier. It has no DigestInfo wrapper but otherwise is
|
|
* RSASSA-PKCS1-v1_5.
|
|
*/
|
|
if (m_len != SSL_SIG_LENGTH) {
|
|
RSAerr(RSA_F_RSA_SIGN, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
return 0;
|
|
}
|
|
encoded_len = SSL_SIG_LENGTH;
|
|
encoded = m;
|
|
} else {
|
|
if (!encode_pkcs1(&tmps, &encoded_len, type, m, m_len))
|
|
goto err;
|
|
encoded = tmps;
|
|
}
|
|
|
|
if (encoded_len > RSA_size(rsa) - RSA_PKCS1_PADDING_SIZE) {
|
|
RSAerr(RSA_F_RSA_SIGN, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
|
|
goto err;
|
|
}
|
|
encrypt_len = RSA_private_encrypt(encoded_len, encoded, sigret, rsa,
|
|
RSA_PKCS1_PADDING);
|
|
if (encrypt_len <= 0)
|
|
goto err;
|
|
|
|
*siglen = encrypt_len;
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_clear_free(tmps, (size_t)encoded_len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* int_rsa_verify verifies an RSA signature in |sigbuf| using |rsa|. It may be
|
|
* called in two modes. If |rm| is NULL, it verifies the signature for digest
|
|
* |m|. Otherwise, it recovers the digest from the signature, writing the digest
|
|
* to |rm| and the length to |*prm_len|. |type| is the NID of the digest
|
|
* algorithm to use. It returns one on successful verification and zero
|
|
* otherwise.
|
|
*/
|
|
int int_rsa_verify(int type, const unsigned char *m, unsigned int m_len,
|
|
unsigned char *rm, size_t *prm_len,
|
|
const unsigned char *sigbuf, size_t siglen, RSA *rsa)
|
|
{
|
|
int decrypt_len, ret = 0, encoded_len = 0;
|
|
unsigned char *decrypt_buf = NULL, *encoded = NULL;
|
|
|
|
if (siglen != (size_t)RSA_size(rsa)) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_WRONG_SIGNATURE_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
/* Recover the encoded digest. */
|
|
decrypt_buf = OPENSSL_malloc(siglen);
|
|
if (decrypt_buf == NULL) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
decrypt_len = RSA_public_decrypt((int)siglen, sigbuf, decrypt_buf, rsa,
|
|
RSA_PKCS1_PADDING);
|
|
if (decrypt_len <= 0)
|
|
goto err;
|
|
|
|
if (type == NID_md5_sha1) {
|
|
/*
|
|
* NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and
|
|
* earlier. It has no DigestInfo wrapper but otherwise is
|
|
* RSASSA-PKCS1-v1_5.
|
|
*/
|
|
if (decrypt_len != SSL_SIG_LENGTH) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE);
|
|
goto err;
|
|
}
|
|
|
|
if (rm != NULL) {
|
|
memcpy(rm, decrypt_buf, SSL_SIG_LENGTH);
|
|
*prm_len = SSL_SIG_LENGTH;
|
|
} else {
|
|
if (m_len != SSL_SIG_LENGTH) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
goto err;
|
|
}
|
|
|
|
if (memcmp(decrypt_buf, m, SSL_SIG_LENGTH) != 0) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE);
|
|
goto err;
|
|
}
|
|
}
|
|
} else if (type == NID_mdc2 && decrypt_len == 2 + 16
|
|
&& decrypt_buf[0] == 0x04 && decrypt_buf[1] == 0x10) {
|
|
/*
|
|
* Oddball MDC2 case: signature can be OCTET STRING. check for correct
|
|
* tag and length octets.
|
|
*/
|
|
if (rm != NULL) {
|
|
memcpy(rm, decrypt_buf + 2, 16);
|
|
*prm_len = 16;
|
|
} else {
|
|
if (m_len != 16) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_INVALID_MESSAGE_LENGTH);
|
|
goto err;
|
|
}
|
|
|
|
if (memcmp(m, decrypt_buf + 2, 16) != 0) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE);
|
|
goto err;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* If recovering the digest, extract a digest-sized output from the end
|
|
* of |decrypt_buf| for |encode_pkcs1|, then compare the decryption
|
|
* output as in a standard verification.
|
|
*/
|
|
if (rm != NULL) {
|
|
const EVP_MD *md = EVP_get_digestbynid(type);
|
|
if (md == NULL) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
|
goto err;
|
|
}
|
|
|
|
m_len = EVP_MD_size(md);
|
|
if (m_len > (size_t)decrypt_len) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_INVALID_DIGEST_LENGTH);
|
|
goto err;
|
|
}
|
|
m = decrypt_buf + decrypt_len - m_len;
|
|
}
|
|
|
|
/* Construct the encoded digest and ensure it matches. */
|
|
if (!encode_pkcs1(&encoded, &encoded_len, type, m, m_len))
|
|
goto err;
|
|
|
|
if (encoded_len != decrypt_len
|
|
|| memcmp(encoded, decrypt_buf, encoded_len) != 0) {
|
|
RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_BAD_SIGNATURE);
|
|
goto err;
|
|
}
|
|
|
|
/* Output the recovered digest. */
|
|
if (rm != NULL) {
|
|
memcpy(rm, m, m_len);
|
|
*prm_len = m_len;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_clear_free(encoded, (size_t)encoded_len);
|
|
OPENSSL_clear_free(decrypt_buf, siglen);
|
|
return ret;
|
|
}
|
|
|
|
int RSA_verify(int type, const unsigned char *m, unsigned int m_len,
|
|
const unsigned char *sigbuf, unsigned int siglen, RSA *rsa)
|
|
{
|
|
|
|
if (rsa->meth->rsa_verify) {
|
|
return rsa->meth->rsa_verify(type, m, m_len, sigbuf, siglen, rsa);
|
|
}
|
|
|
|
return int_rsa_verify(type, m, m_len, NULL, NULL, sigbuf, siglen, rsa);
|
|
}
|