openssl/crypto/rc4/asm/rc4-586.pl
David Benjamin e195c8a256 Remove filename argument to x86 asm_init.
The assembler already knows the actual path to the generated file and,
in other perlasm architectures, is left to manage debug symbols itself.
Notably, in OpenSSL 1.1.x's new build system, which allows a separate
build directory, converting .pl to .s as the scripts currently do result
in the wrong paths.

This also avoids inconsistencies from some of the files using $0 and
some passing in the filename.

Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3431)
2017-05-11 17:00:23 -04:00

428 lines
12 KiB
Perl

#! /usr/bin/env perl
# Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# At some point it became apparent that the original SSLeay RC4
# assembler implementation performs suboptimally on latest IA-32
# microarchitectures. After re-tuning performance has changed as
# following:
#
# Pentium -10%
# Pentium III +12%
# AMD +50%(*)
# P4 +250%(**)
#
# (*) This number is actually a trade-off:-) It's possible to
# achieve +72%, but at the cost of -48% off PIII performance.
# In other words code performing further 13% faster on AMD
# would perform almost 2 times slower on Intel PIII...
# For reference! This code delivers ~80% of rc4-amd64.pl
# performance on the same Opteron machine.
# (**) This number requires compressed key schedule set up by
# RC4_set_key [see commentary below for further details].
#
# <appro@fy.chalmers.se>
# May 2011
#
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
# performance in cycles per processed byte (less is better) and
# improvement relative to previous version of this module is:
#
# Pentium 10.2 # original numbers
# Pentium III 7.8(*)
# Intel P4 7.5
#
# Opteron 6.1/+20% # new MMX numbers
# Core2 5.3/+67%(**)
# Westmere 5.1/+94%(**)
# Sandy Bridge 5.0/+8%
# Atom 12.6/+6%
# VIA Nano 6.4/+9%
# Ivy Bridge 4.9/±0%
# Bulldozer 4.9/+15%
#
# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
# but this specific code performs poorly on Core2. And vice
# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
# [anymore], I chose to discard PIII-specific code path and opt
# for original IALU-only code, which is why MMX/SSE code path
# is guarded by SSE2 bit (see below), not MMX/SSE.
# (**) Performance vs. block size on Core2 and Westmere had a maximum
# at ... 64 bytes block size. And it was quite a maximum, 40-60%
# in comparison to largest 8KB block size. Above improvement
# coefficients are for the largest block size.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
$output=pop;
open STDOUT,">$output";
&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
$xx="eax";
$yy="ebx";
$tx="ecx";
$ty="edx";
$inp="esi";
$out="ebp";
$dat="edi";
sub RC4_loop {
my $i=shift;
my $func = ($i==0)?*mov:*or;
&add (&LB($yy),&LB($tx));
&mov ($ty,&DWP(0,$dat,$yy,4));
&mov (&DWP(0,$dat,$yy,4),$tx);
&mov (&DWP(0,$dat,$xx,4),$ty);
&add ($ty,$tx);
&inc (&LB($xx));
&and ($ty,0xff);
&ror ($out,8) if ($i!=0);
if ($i<3) {
&mov ($tx,&DWP(0,$dat,$xx,4));
} else {
&mov ($tx,&wparam(3)); # reload [re-biased] out
}
&$func ($out,&DWP(0,$dat,$ty,4));
}
if ($alt=0) {
# >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
# but ~40% slower on Core2 and Westmere... Attempt to add movz
# brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
# on Core2 with movz it's almost 20% slower than below alternative
# code... Yes, it's a total mess...
my @XX=($xx,$out);
$RC4_loop_mmx = sub { # SSE actually...
my $i=shift;
my $j=$i<=0?0:$i>>1;
my $mm=$i<=0?"mm0":"mm".($i&1);
&add (&LB($yy),&LB($tx));
&lea (@XX[1],&DWP(1,@XX[0]));
&pxor ("mm2","mm0") if ($i==0);
&psllq ("mm1",8) if ($i==0);
&and (@XX[1],0xff);
&pxor ("mm0","mm0") if ($i<=0);
&mov ($ty,&DWP(0,$dat,$yy,4));
&mov (&DWP(0,$dat,$yy,4),$tx);
&pxor ("mm1","mm2") if ($i==0);
&mov (&DWP(0,$dat,$XX[0],4),$ty);
&add (&LB($ty),&LB($tx));
&movd (@XX[0],"mm7") if ($i==0);
&mov ($tx,&DWP(0,$dat,@XX[1],4));
&pxor ("mm1","mm1") if ($i==1);
&movq ("mm2",&QWP(0,$inp)) if ($i==1);
&movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
&pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
push (@XX,shift(@XX)) if ($i>=0);
}
} else {
# Using pinsrw here improves performane on Intel CPUs by 2-3%, but
# brings down AMD by 7%...
$RC4_loop_mmx = sub {
my $i=shift;
&add (&LB($yy),&LB($tx));
&psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
&mov ($ty,&DWP(0,$dat,$yy,4));
&mov (&DWP(0,$dat,$yy,4),$tx);
&mov (&DWP(0,$dat,$xx,4),$ty);
&inc ($xx);
&add ($ty,$tx);
&movz ($xx,&LB($xx)); # (*)
&movz ($ty,&LB($ty)); # (*)
&pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
&movq ("mm0",&QWP(0,$inp)) if ($i<=0);
&movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
&mov ($tx,&DWP(0,$dat,$xx,4));
&movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
# (*) This is the key to Core2 and Westmere performance.
# Without movz out-of-order execution logic confuses
# itself and fails to reorder loads and stores. Problem
# appears to be fixed in Sandy Bridge...
}
}
&external_label("OPENSSL_ia32cap_P");
# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
&function_begin("RC4");
&mov ($dat,&wparam(0)); # load key schedule pointer
&mov ($ty, &wparam(1)); # load len
&mov ($inp,&wparam(2)); # load inp
&mov ($out,&wparam(3)); # load out
&xor ($xx,$xx); # avoid partial register stalls
&xor ($yy,$yy);
&cmp ($ty,0); # safety net
&je (&label("abort"));
&mov (&LB($xx),&BP(0,$dat)); # load key->x
&mov (&LB($yy),&BP(4,$dat)); # load key->y
&add ($dat,8);
&lea ($tx,&DWP(0,$inp,$ty));
&sub ($out,$inp); # re-bias out
&mov (&wparam(1),$tx); # save input+len
&inc (&LB($xx));
# detect compressed key schedule...
&cmp (&DWP(256,$dat),-1);
&je (&label("RC4_CHAR"));
&mov ($tx,&DWP(0,$dat,$xx,4));
&and ($ty,-4); # how many 4-byte chunks?
&jz (&label("loop1"));
&mov (&wparam(3),$out); # $out as accumulator in these loops
if ($x86only) {
&jmp (&label("go4loop4"));
} else {
&test ($ty,-8);
&jz (&label("go4loop4"));
&picmeup($out,"OPENSSL_ia32cap_P");
&bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
&jnc (&label("go4loop4"));
&mov ($out,&wparam(3)) if (!$alt);
&movd ("mm7",&wparam(3)) if ($alt);
&and ($ty,-8);
&lea ($ty,&DWP(-8,$inp,$ty));
&mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
&$RC4_loop_mmx(-1);
&jmp(&label("loop_mmx_enter"));
&set_label("loop_mmx",16);
&$RC4_loop_mmx(0);
&set_label("loop_mmx_enter");
for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
&mov ($ty,$yy);
&xor ($yy,$yy); # this is second key to Core2
&mov (&LB($yy),&LB($ty)); # and Westmere performance...
&cmp ($inp,&DWP(-4,$dat));
&lea ($inp,&DWP(8,$inp));
&jb (&label("loop_mmx"));
if ($alt) {
&movd ($out,"mm7");
&pxor ("mm2","mm0");
&psllq ("mm1",8);
&pxor ("mm1","mm2");
&movq (&QWP(-8,$out,$inp),"mm1");
} else {
&psllq ("mm1",56);
&pxor ("mm2","mm1");
&movq (&QWP(-8,$out,$inp),"mm2");
}
&emms ();
&cmp ($inp,&wparam(1)); # compare to input+len
&je (&label("done"));
&jmp (&label("loop1"));
}
&set_label("go4loop4",16);
&lea ($ty,&DWP(-4,$inp,$ty));
&mov (&wparam(2),$ty); # save input+(len/4)*4-4
&set_label("loop4");
for ($i=0;$i<4;$i++) { RC4_loop($i); }
&ror ($out,8);
&xor ($out,&DWP(0,$inp));
&cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
&mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
&lea ($inp,&DWP(4,$inp));
&mov ($tx,&DWP(0,$dat,$xx,4));
&jb (&label("loop4"));
&cmp ($inp,&wparam(1)); # compare to input+len
&je (&label("done"));
&mov ($out,&wparam(3)); # restore $out
&set_label("loop1",16);
&add (&LB($yy),&LB($tx));
&mov ($ty,&DWP(0,$dat,$yy,4));
&mov (&DWP(0,$dat,$yy,4),$tx);
&mov (&DWP(0,$dat,$xx,4),$ty);
&add ($ty,$tx);
&inc (&LB($xx));
&and ($ty,0xff);
&mov ($ty,&DWP(0,$dat,$ty,4));
&xor (&LB($ty),&BP(0,$inp));
&lea ($inp,&DWP(1,$inp));
&mov ($tx,&DWP(0,$dat,$xx,4));
&cmp ($inp,&wparam(1)); # compare to input+len
&mov (&BP(-1,$out,$inp),&LB($ty));
&jb (&label("loop1"));
&jmp (&label("done"));
# this is essentially Intel P4 specific codepath...
&set_label("RC4_CHAR",16);
&movz ($tx,&BP(0,$dat,$xx));
# strangely enough unrolled loop performs over 20% slower...
&set_label("cloop1");
&add (&LB($yy),&LB($tx));
&movz ($ty,&BP(0,$dat,$yy));
&mov (&BP(0,$dat,$yy),&LB($tx));
&mov (&BP(0,$dat,$xx),&LB($ty));
&add (&LB($ty),&LB($tx));
&movz ($ty,&BP(0,$dat,$ty));
&add (&LB($xx),1);
&xor (&LB($ty),&BP(0,$inp));
&lea ($inp,&DWP(1,$inp));
&movz ($tx,&BP(0,$dat,$xx));
&cmp ($inp,&wparam(1));
&mov (&BP(-1,$out,$inp),&LB($ty));
&jb (&label("cloop1"));
&set_label("done");
&dec (&LB($xx));
&mov (&DWP(-4,$dat),$yy); # save key->y
&mov (&BP(-8,$dat),&LB($xx)); # save key->x
&set_label("abort");
&function_end("RC4");
########################################################################
$inp="esi";
$out="edi";
$idi="ebp";
$ido="ecx";
$idx="edx";
# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
&function_begin("RC4_set_key");
&mov ($out,&wparam(0)); # load key
&mov ($idi,&wparam(1)); # load len
&mov ($inp,&wparam(2)); # load data
&picmeup($idx,"OPENSSL_ia32cap_P");
&lea ($out,&DWP(2*4,$out)); # &key->data
&lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
&neg ($idi);
&xor ("eax","eax");
&mov (&DWP(-4,$out),$idi); # borrow key->y
&bt (&DWP(0,$idx),20); # check for bit#20
&jc (&label("c1stloop"));
&set_label("w1stloop",16);
&mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
&add (&LB("eax"),1); # i++;
&jnc (&label("w1stloop"));
&xor ($ido,$ido);
&xor ($idx,$idx);
&set_label("w2ndloop",16);
&mov ("eax",&DWP(0,$out,$ido,4));
&add (&LB($idx),&BP(0,$inp,$idi));
&add (&LB($idx),&LB("eax"));
&add ($idi,1);
&mov ("ebx",&DWP(0,$out,$idx,4));
&jnz (&label("wnowrap"));
&mov ($idi,&DWP(-4,$out));
&set_label("wnowrap");
&mov (&DWP(0,$out,$idx,4),"eax");
&mov (&DWP(0,$out,$ido,4),"ebx");
&add (&LB($ido),1);
&jnc (&label("w2ndloop"));
&jmp (&label("exit"));
# Unlike all other x86 [and x86_64] implementations, Intel P4 core
# [including EM64T] was found to perform poorly with above "32-bit" key
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
# schedule for x86[_64], because non-P4 implementations suffer from
# significant performance losses then, e.g. PIII exhibits >2x
# deterioration, and so does Opteron. In order to assure optimal
# all-round performance, we detect P4 at run-time and set up compressed
# key schedule, which is recognized by RC4 procedure.
&set_label("c1stloop",16);
&mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
&add (&LB("eax"),1); # i++;
&jnc (&label("c1stloop"));
&xor ($ido,$ido);
&xor ($idx,$idx);
&xor ("ebx","ebx");
&set_label("c2ndloop",16);
&mov (&LB("eax"),&BP(0,$out,$ido));
&add (&LB($idx),&BP(0,$inp,$idi));
&add (&LB($idx),&LB("eax"));
&add ($idi,1);
&mov (&LB("ebx"),&BP(0,$out,$idx));
&jnz (&label("cnowrap"));
&mov ($idi,&DWP(-4,$out));
&set_label("cnowrap");
&mov (&BP(0,$out,$idx),&LB("eax"));
&mov (&BP(0,$out,$ido),&LB("ebx"));
&add (&LB($ido),1);
&jnc (&label("c2ndloop"));
&mov (&DWP(256,$out),-1); # mark schedule as compressed
&set_label("exit");
&xor ("eax","eax");
&mov (&DWP(-8,$out),"eax"); # key->x=0;
&mov (&DWP(-4,$out),"eax"); # key->y=0;
&function_end("RC4_set_key");
# const char *RC4_options(void);
&function_begin_B("RC4_options");
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("eax");
&lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
&picmeup("edx","OPENSSL_ia32cap_P");
&mov ("edx",&DWP(0,"edx"));
&bt ("edx",20);
&jc (&label("1xchar"));
&bt ("edx",26);
&jnc (&label("ret"));
&add ("eax",25);
&ret ();
&set_label("1xchar");
&add ("eax",12);
&set_label("ret");
&ret ();
&set_label("opts",64);
&asciz ("rc4(4x,int)");
&asciz ("rc4(1x,char)");
&asciz ("rc4(8x,mmx)");
&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
&align (64);
&function_end_B("RC4_options");
&asm_finish();
close STDOUT;