openssl/apps/s_cb.c
Rich Salz 3b061a00e3 RT2547: Tighten perms on generated privkey files
When generating a private key, try to make the output file be readable
only by the owner.  Put it in CHANGES file since it might be noticeable.

Add "int private" flag to apps that write private keys, and check that it's
set whenever we do write a private key.  Checked via assert so that this
bug (security-related) gets fixed.  Thanks to Viktor for help in tracing
the code-paths where private keys are written.

Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
2015-06-15 18:26:56 -04:00

1455 lines
45 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* callback functions used by s_client, s_server, and s_time */
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for memcpy() and strcmp() */
#define USE_SOCKETS
#include "apps.h"
#undef USE_SOCKETS
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <openssl/ssl.h>
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include "s_apps.h"
#define COOKIE_SECRET_LENGTH 16
int verify_depth = 0;
int verify_quiet = 0;
int verify_error = X509_V_OK;
int verify_return_error = 0;
unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
int cookie_initialized = 0;
static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
{
for ( ; list->name; ++list)
if (list->retval == val)
return list->name;
return def;
}
int verify_callback(int ok, X509_STORE_CTX *ctx)
{
X509 *err_cert;
int err, depth;
err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);
if (!verify_quiet || !ok) {
BIO_printf(bio_err, "depth=%d ", depth);
if (err_cert) {
X509_NAME_print_ex(bio_err,
X509_get_subject_name(err_cert),
0, XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
} else
BIO_puts(bio_err, "<no cert>\n");
}
if (!ok) {
BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
X509_verify_cert_error_string(err));
if (verify_depth >= depth) {
if (!verify_return_error)
ok = 1;
verify_error = X509_V_OK;
} else {
ok = 0;
verify_error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
}
}
switch (err) {
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
BIO_puts(bio_err, "issuer= ");
X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
0, XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
break;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
BIO_printf(bio_err, "notBefore=");
ASN1_TIME_print(bio_err, X509_get_notBefore(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
BIO_printf(bio_err, "notAfter=");
ASN1_TIME_print(bio_err, X509_get_notAfter(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_NO_EXPLICIT_POLICY:
if (!verify_quiet)
policies_print(ctx);
break;
}
if (err == X509_V_OK && ok == 2 && !verify_quiet)
policies_print(ctx);
if (ok && !verify_quiet)
BIO_printf(bio_err, "verify return:%d\n", ok);
return (ok);
}
int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
{
if (cert_file != NULL) {
if (SSL_CTX_use_certificate_file(ctx, cert_file,
SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get certificate from '%s'\n",
cert_file);
ERR_print_errors(bio_err);
return (0);
}
if (key_file == NULL)
key_file = cert_file;
if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get private key from '%s'\n",
key_file);
ERR_print_errors(bio_err);
return (0);
}
/*
* If we are using DSA, we can copy the parameters from the private
* key
*/
/*
* Now we know that a key and cert have been set against the SSL
* context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return (0);
}
}
return (1);
}
int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
STACK_OF(X509) *chain, int build_chain)
{
int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
if (cert == NULL)
return 1;
if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
BIO_printf(bio_err, "error setting certificate\n");
ERR_print_errors(bio_err);
return 0;
}
if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
BIO_printf(bio_err, "error setting private key\n");
ERR_print_errors(bio_err);
return 0;
}
/*
* Now we know that a key and cert have been set against the SSL context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return 0;
}
if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
BIO_printf(bio_err, "error setting certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
BIO_printf(bio_err, "error building certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static STRINT_PAIR cert_type_list[] = {
{"RSA sign", TLS_CT_RSA_SIGN},
{"DSA sign", TLS_CT_DSS_SIGN},
{"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
{"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
{"ECDSA sign", TLS_CT_ECDSA_SIGN},
{"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
{"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
{"GOST94 Sign", TLS_CT_GOST94_SIGN},
{"GOST01 Sign", TLS_CT_GOST01_SIGN},
{NULL}
};
static void ssl_print_client_cert_types(BIO *bio, SSL *s)
{
const unsigned char *p;
int i;
int cert_type_num = SSL_get0_certificate_types(s, &p);
if (!cert_type_num)
return;
BIO_puts(bio, "Client Certificate Types: ");
for (i = 0; i < cert_type_num; i++) {
unsigned char cert_type = p[i];
const char *cname = lookup((int)cert_type, cert_type_list, NULL);
if (i)
BIO_puts(bio, ", ");
if (cname)
BIO_puts(bio, cname);
else
BIO_printf(bio, "UNKNOWN (%d),", cert_type);
}
BIO_puts(bio, "\n");
}
static int do_print_sigalgs(BIO *out, SSL *s, int shared)
{
int i, nsig, client;
client = SSL_is_server(s) ? 0 : 1;
if (shared)
nsig = SSL_get_shared_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
else
nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
if (nsig == 0)
return 1;
if (shared)
BIO_puts(out, "Shared ");
if (client)
BIO_puts(out, "Requested ");
BIO_puts(out, "Signature Algorithms: ");
for (i = 0; i < nsig; i++) {
int hash_nid, sign_nid;
unsigned char rhash, rsign;
const char *sstr = NULL;
if (shared)
SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
&rsign, &rhash);
else
SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
if (i)
BIO_puts(out, ":");
if (sign_nid == EVP_PKEY_RSA)
sstr = "RSA";
else if (sign_nid == EVP_PKEY_DSA)
sstr = "DSA";
else if (sign_nid == EVP_PKEY_EC)
sstr = "ECDSA";
if (sstr)
BIO_printf(out, "%s+", sstr);
else
BIO_printf(out, "0x%02X+", (int)rsign);
if (hash_nid != NID_undef)
BIO_printf(out, "%s", OBJ_nid2sn(hash_nid));
else
BIO_printf(out, "0x%02X", (int)rhash);
}
BIO_puts(out, "\n");
return 1;
}
int ssl_print_sigalgs(BIO *out, SSL *s)
{
int mdnid;
if (!SSL_is_server(s))
ssl_print_client_cert_types(out, s);
do_print_sigalgs(out, s, 0);
do_print_sigalgs(out, s, 1);
if (SSL_get_peer_signature_nid(s, &mdnid))
BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(mdnid));
return 1;
}
#ifndef OPENSSL_NO_EC
int ssl_print_point_formats(BIO *out, SSL *s)
{
int i, nformats;
const char *pformats;
nformats = SSL_get0_ec_point_formats(s, &pformats);
if (nformats <= 0)
return 1;
BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
for (i = 0; i < nformats; i++, pformats++) {
if (i)
BIO_puts(out, ":");
switch (*pformats) {
case TLSEXT_ECPOINTFORMAT_uncompressed:
BIO_puts(out, "uncompressed");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
BIO_puts(out, "ansiX962_compressed_prime");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
BIO_puts(out, "ansiX962_compressed_char2");
break;
default:
BIO_printf(out, "unknown(%d)", (int)*pformats);
break;
}
}
if (nformats <= 0)
BIO_puts(out, "NONE");
BIO_puts(out, "\n");
return 1;
}
int ssl_print_curves(BIO *out, SSL *s, int noshared)
{
int i, ncurves, *curves, nid;
const char *cname;
ncurves = SSL_get1_curves(s, NULL);
if (ncurves <= 0)
return 1;
curves = app_malloc(ncurves * sizeof(int), "curves to print");
SSL_get1_curves(s, curves);
BIO_puts(out, "Supported Elliptic Curves: ");
for (i = 0; i < ncurves; i++) {
if (i)
BIO_puts(out, ":");
nid = curves[i];
/* If unrecognised print out hex version */
if (nid & TLSEXT_nid_unknown)
BIO_printf(out, "0x%04X", nid & 0xFFFF);
else {
/* Use NIST name for curve if it exists */
cname = EC_curve_nid2nist(nid);
if (!cname)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", cname);
}
}
if (ncurves == 0)
BIO_puts(out, "NONE");
OPENSSL_free(curves);
if (noshared) {
BIO_puts(out, "\n");
return 1;
}
BIO_puts(out, "\nShared Elliptic curves: ");
ncurves = SSL_get_shared_curve(s, -1);
for (i = 0; i < ncurves; i++) {
if (i)
BIO_puts(out, ":");
nid = SSL_get_shared_curve(s, i);
cname = EC_curve_nid2nist(nid);
if (!cname)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", cname);
}
if (ncurves == 0)
BIO_puts(out, "NONE");
BIO_puts(out, "\n");
return 1;
}
#endif
int ssl_print_tmp_key(BIO *out, SSL *s)
{
EVP_PKEY *key;
if (!SSL_get_server_tmp_key(s, &key))
return 1;
BIO_puts(out, "Server Temp Key: ");
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key));
break;
case EVP_PKEY_DH:
BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key));
break;
#ifndef OPENSSL_NO_EC
case EVP_PKEY_EC:
{
EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
int nid;
const char *cname;
nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
EC_KEY_free(ec);
cname = EC_curve_nid2nist(nid);
if (!cname)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key));
}
#endif
}
EVP_PKEY_free(key);
return 1;
}
long bio_dump_callback(BIO *bio, int cmd, const char *argp,
int argi, long argl, long ret)
{
BIO *out;
out = (BIO *)BIO_get_callback_arg(bio);
if (out == NULL)
return (ret);
if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) {
BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
return (ret);
} else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) {
BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
}
return (ret);
}
void apps_ssl_info_callback(const SSL *s, int where, int ret)
{
const char *str;
int w;
w = where & ~SSL_ST_MASK;
if (w & SSL_ST_CONNECT)
str = "SSL_connect";
else if (w & SSL_ST_ACCEPT)
str = "SSL_accept";
else
str = "undefined";
if (where & SSL_CB_LOOP) {
BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
} else if (where & SSL_CB_ALERT) {
str = (where & SSL_CB_READ) ? "read" : "write";
BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));
} else if (where & SSL_CB_EXIT) {
if (ret == 0)
BIO_printf(bio_err, "%s:failed in %s\n",
str, SSL_state_string_long(s));
else if (ret < 0) {
BIO_printf(bio_err, "%s:error in %s\n",
str, SSL_state_string_long(s));
}
}
}
static STRINT_PAIR ssl_versions[] = {
{"SSL 3.0", SSL3_VERSION},
{"TLS 1.0", TLS1_VERSION},
{"TLS 1.1", TLS1_1_VERSION},
{"TLS 1.2", TLS1_2_VERSION},
{"DTLS 1.0", DTLS1_VERSION},
{"DTLS 1.0 (bad)", DTLS1_BAD_VER},
{NULL}
};
static STRINT_PAIR alert_types[] = {
{" close_notify", 0},
{" unexpected_message", 10},
{" bad_record_mac", 20},
{" decryption_failed", 21},
{" record_overflow", 22},
{" decompression_failure", 30},
{" handshake_failure", 40},
{" bad_certificate", 42},
{" unsupported_certificate", 43},
{" certificate_revoked", 44},
{" certificate_expired", 45},
{" certificate_unknown", 46},
{" illegal_parameter", 47},
{" unknown_ca", 48},
{" access_denied", 49},
{" decode_error", 50},
{" decrypt_error", 51},
{" export_restriction", 60},
{" protocol_version", 70},
{" insufficient_security", 71},
{" internal_error", 80},
{" user_canceled", 90},
{" no_renegotiation", 100},
{" unsupported_extension", 110},
{" certificate_unobtainable", 111},
{" unrecognized_name", 112},
{" bad_certificate_status_response", 113},
{" bad_certificate_hash_value", 114},
{" unknown_psk_identity", 115},
{NULL}
};
static STRINT_PAIR handshakes[] = {
{", HelloRequest", 0},
{", ClientHello", 1},
{", ServerHello", 2},
{", HelloVerifyRequest", 3},
{", Certificate", 11},
{", ServerKeyExchange", 12},
{", CertificateRequest", 13},
{", ServerHelloDone", 14},
{", CertificateVerify", 15},
{", ClientKeyExchange", 16},
{", Finished", 20},
{NULL}
};
void msg_cb(int write_p, int version, int content_type, const void *buf,
size_t len, SSL *ssl, void *arg)
{
BIO *bio = arg;
const char *str_write_p = write_p ? ">>>" : "<<<";
const char *str_version = lookup(version, ssl_versions, "???");
const char *str_content_type = "", *str_details1 = "", *str_details2 = "";
const unsigned char* bp = buf;
if (version == SSL3_VERSION ||
version == TLS1_VERSION ||
version == TLS1_1_VERSION ||
version == TLS1_2_VERSION ||
version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
switch (content_type) {
case 20:
str_content_type = "ChangeCipherSpec";
break;
case 21:
str_content_type = "Alert";
str_details1 = ", ???";
if (len == 2) {
switch (bp[0]) {
case 1:
str_details1 = ", warning";
break;
case 2:
str_details1 = ", fatal";
break;
}
str_details2 = lookup((int)bp[1], alert_types, " ???");
}
break;
case 22:
str_content_type = "Handshake";
str_details1 = "???";
if (len > 0)
str_details1 = lookup((int)bp[0], handshakes, "???");
break;
#ifndef OPENSSL_NO_HEARTBEATS
case 24:
str_details1 = ", Heartbeat";
if (len > 0) {
switch (bp[0]) {
case 1:
str_details1 = ", HeartbeatRequest";
break;
case 2:
str_details1 = ", HeartbeatResponse";
break;
}
}
break;
#endif
}
}
BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
str_content_type, (unsigned long)len, str_details1,
str_details2);
if (len > 0) {
size_t num, i;
BIO_printf(bio, " ");
num = len;
for (i = 0; i < num; i++) {
if (i % 16 == 0 && i > 0)
BIO_printf(bio, "\n ");
BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
}
if (i < len)
BIO_printf(bio, " ...");
BIO_printf(bio, "\n");
}
(void)BIO_flush(bio);
}
static STRINT_PAIR tlsext_types[] = {
{"server name", TLSEXT_TYPE_server_name},
{"max fragment length", TLSEXT_TYPE_max_fragment_length},
{"client certificate URL", TLSEXT_TYPE_client_certificate_url},
{"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
{"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
{"status request", TLSEXT_TYPE_status_request},
{"user mapping", TLSEXT_TYPE_user_mapping},
{"client authz", TLSEXT_TYPE_client_authz},
{"server authz", TLSEXT_TYPE_server_authz},
{"cert type", TLSEXT_TYPE_cert_type},
{"elliptic curves", TLSEXT_TYPE_elliptic_curves},
{"EC point formats", TLSEXT_TYPE_ec_point_formats},
{"SRP", TLSEXT_TYPE_srp},
{"signature algorithms", TLSEXT_TYPE_signature_algorithms},
{"use SRTP", TLSEXT_TYPE_use_srtp},
{"heartbeat", TLSEXT_TYPE_heartbeat},
{"session ticket", TLSEXT_TYPE_session_ticket},
{"renegotiation info", TLSEXT_TYPE_renegotiate},
{"TLS padding", TLSEXT_TYPE_padding},
#ifdef TLSEXT_TYPE_next_proto_neg
{"next protocol", TLSEXT_TYPE_next_proto_neg},
#endif
#ifdef TLSEXT_TYPE_encrypt_then_mac
{"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
#endif
{NULL}
};
void tlsext_cb(SSL *s, int client_server, int type,
unsigned char *data, int len, void *arg)
{
BIO *bio = arg;
const char *extname = lookup(type, tlsext_types, "unknown");
BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
client_server ? "server" : "client", extname, type, len);
BIO_dump(bio, (char *)data, len);
(void)BIO_flush(bio);
}
int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
unsigned int *cookie_len)
{
unsigned char *buffer, result[EVP_MAX_MD_SIZE];
unsigned int length, resultlength;
union {
struct sockaddr sa;
struct sockaddr_in s4;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 s6;
#endif
} peer;
/* Initialize a random secret */
if (!cookie_initialized) {
if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
BIO_printf(bio_err, "error setting random cookie secret\n");
return 0;
}
cookie_initialized = 1;
}
/* Read peer information */
(void)BIO_dgram_get_peer(SSL_get_rbio(ssl), &peer);
/* Create buffer with peer's address and port */
length = 0;
switch (peer.sa.sa_family) {
case AF_INET:
length += sizeof(struct in_addr);
length += sizeof(peer.s4.sin_port);
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
length += sizeof(struct in6_addr);
length += sizeof(peer.s6.sin6_port);
break;
#endif
default:
OPENSSL_assert(0);
break;
}
buffer = app_malloc(length, "cookie generate buffer");
switch (peer.sa.sa_family) {
case AF_INET:
memcpy(buffer, &peer.s4.sin_port, sizeof(peer.s4.sin_port));
memcpy(buffer + sizeof(peer.s4.sin_port),
&peer.s4.sin_addr, sizeof(struct in_addr));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(buffer, &peer.s6.sin6_port, sizeof(peer.s6.sin6_port));
memcpy(buffer + sizeof(peer.s6.sin6_port),
&peer.s6.sin6_addr, sizeof(struct in6_addr));
break;
#endif
default:
OPENSSL_assert(0);
break;
}
/* Calculate HMAC of buffer using the secret */
HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH,
buffer, length, result, &resultlength);
OPENSSL_free(buffer);
memcpy(cookie, result, resultlength);
*cookie_len = resultlength;
return 1;
}
int verify_cookie_callback(SSL *ssl, unsigned char *cookie,
unsigned int cookie_len)
{
unsigned char *buffer, result[EVP_MAX_MD_SIZE];
unsigned int length, resultlength;
union {
struct sockaddr sa;
struct sockaddr_in s4;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 s6;
#endif
} peer;
/* If secret isn't initialized yet, the cookie can't be valid */
if (!cookie_initialized)
return 0;
/* Read peer information */
(void)BIO_dgram_get_peer(SSL_get_rbio(ssl), &peer);
/* Create buffer with peer's address and port */
length = 0;
switch (peer.sa.sa_family) {
case AF_INET:
length += sizeof(struct in_addr);
length += sizeof(peer.s4.sin_port);
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
length += sizeof(struct in6_addr);
length += sizeof(peer.s6.sin6_port);
break;
#endif
default:
OPENSSL_assert(0);
break;
}
buffer = app_malloc(length, "cookie verify buffer");
switch (peer.sa.sa_family) {
case AF_INET:
memcpy(buffer, &peer.s4.sin_port, sizeof(peer.s4.sin_port));
memcpy(buffer + sizeof(peer.s4.sin_port),
&peer.s4.sin_addr, sizeof(struct in_addr));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(buffer, &peer.s6.sin6_port, sizeof(peer.s6.sin6_port));
memcpy(buffer + sizeof(peer.s6.sin6_port),
&peer.s6.sin6_addr, sizeof(struct in6_addr));
break;
#endif
default:
OPENSSL_assert(0);
break;
}
/* Calculate HMAC of buffer using the secret */
HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH,
buffer, length, result, &resultlength);
OPENSSL_free(buffer);
if (cookie_len == resultlength
&& memcmp(result, cookie, resultlength) == 0)
return 1;
return 0;
}
/*
* Example of extended certificate handling. Where the standard support of
* one certificate per algorithm is not sufficient an application can decide
* which certificate(s) to use at runtime based on whatever criteria it deems
* appropriate.
*/
/* Linked list of certificates, keys and chains */
struct ssl_excert_st {
int certform;
const char *certfile;
int keyform;
const char *keyfile;
const char *chainfile;
X509 *cert;
EVP_PKEY *key;
STACK_OF(X509) *chain;
int build_chain;
struct ssl_excert_st *next, *prev;
};
static STRINT_PAIR chain_flags[] = {
{"Overall Validity", CERT_PKEY_VALID},
{"Sign with EE key", CERT_PKEY_SIGN},
{"EE signature", CERT_PKEY_EE_SIGNATURE},
{"CA signature", CERT_PKEY_CA_SIGNATURE},
{"EE key parameters", CERT_PKEY_EE_PARAM},
{"CA key parameters", CERT_PKEY_CA_PARAM},
{"Explicity sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
{"Issuer Name", CERT_PKEY_ISSUER_NAME},
{"Certificate Type", CERT_PKEY_CERT_TYPE},
{NULL}
};
static void print_chain_flags(SSL *s, int flags)
{
STRINT_PAIR *pp;
for (pp = chain_flags; pp->name; ++pp)
BIO_printf(bio_err, "\t%s: %s\n",
pp->name,
(flags & pp->retval) ? "OK" : "NOT OK");
BIO_printf(bio_err, "\tSuite B: ");
if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
else
BIO_printf(bio_err, "not tested\n");
}
/*
* Very basic selection callback: just use any certificate chain reported as
* valid. More sophisticated could prioritise according to local policy.
*/
static int set_cert_cb(SSL *ssl, void *arg)
{
int i, rv;
SSL_EXCERT *exc = arg;
#ifdef CERT_CB_TEST_RETRY
static int retry_cnt;
if (retry_cnt < 5) {
retry_cnt++;
BIO_printf(bio_err,
"Certificate callback retry test: count %d\n",
retry_cnt);
return -1;
}
#endif
SSL_certs_clear(ssl);
if (!exc)
return 1;
/*
* Go to end of list and traverse backwards since we prepend newer
* entries this retains the original order.
*/
while (exc->next)
exc = exc->next;
i = 0;
while (exc) {
i++;
rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
print_chain_flags(ssl, rv);
if (rv & CERT_PKEY_VALID) {
if (!SSL_use_certificate(ssl, exc->cert)
|| !SSL_use_PrivateKey(ssl, exc->key)) {
return 0;
}
/*
* NB: we wouldn't normally do this as it is not efficient
* building chains on each connection better to cache the chain
* in advance.
*/
if (exc->build_chain) {
if (!SSL_build_cert_chain(ssl, 0))
return 0;
} else if (exc->chain)
SSL_set1_chain(ssl, exc->chain);
}
exc = exc->prev;
}
return 1;
}
void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
{
SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
}
static int ssl_excert_prepend(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
exc->certfile = NULL;
exc->keyfile = NULL;
exc->chainfile = NULL;
exc->cert = NULL;
exc->key = NULL;
exc->chain = NULL;
exc->prev = NULL;
exc->build_chain = 0;
exc->next = *pexc;
*pexc = exc;
if (exc->next) {
exc->certform = exc->next->certform;
exc->keyform = exc->next->keyform;
exc->next->prev = exc;
} else {
exc->certform = FORMAT_PEM;
exc->keyform = FORMAT_PEM;
}
return 1;
}
void ssl_excert_free(SSL_EXCERT *exc)
{
SSL_EXCERT *curr;
if (!exc)
return;
while (exc) {
X509_free(exc->cert);
EVP_PKEY_free(exc->key);
sk_X509_pop_free(exc->chain, X509_free);
curr = exc;
exc = exc->next;
OPENSSL_free(curr);
}
}
int load_excert(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = *pexc;
if (!exc)
return 1;
/* If nothing in list, free and set to NULL */
if (!exc->certfile && !exc->next) {
ssl_excert_free(exc);
*pexc = NULL;
return 1;
}
for (; exc; exc = exc->next) {
if (!exc->certfile) {
BIO_printf(bio_err, "Missing filename\n");
return 0;
}
exc->cert = load_cert(exc->certfile, exc->certform,
NULL, NULL, "Server Certificate");
if (!exc->cert)
return 0;
if (exc->keyfile) {
exc->key = load_key(exc->keyfile, exc->keyform,
0, NULL, NULL, "Server Key");
} else {
exc->key = load_key(exc->certfile, exc->certform,
0, NULL, NULL, "Server Key");
}
if (!exc->key)
return 0;
if (exc->chainfile) {
exc->chain = load_certs(exc->chainfile, FORMAT_PEM,
NULL, NULL, "Server Chain");
if (!exc->chain)
return 0;
}
}
return 1;
}
enum range { OPT_X_ENUM };
int args_excert(int opt, SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = *pexc;
assert(opt > OPT_X__FIRST);
assert(opt < OPT_X__LAST);
if (exc == NULL) {
if (!ssl_excert_prepend(&exc)) {
BIO_printf(bio_err, " %s: Error initialising xcert\n",
opt_getprog());
goto err;
}
*pexc = exc;
}
switch ((enum range)opt) {
case OPT_X__FIRST:
case OPT_X__LAST:
return 0;
case OPT_X_CERT:
if (exc->certfile && !ssl_excert_prepend(&exc)) {
BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
goto err;
}
exc->certfile = opt_arg();
break;
case OPT_X_KEY:
if (exc->keyfile) {
BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
goto err;
}
exc->keyfile = opt_arg();
break;
case OPT_X_CHAIN:
if (exc->chainfile) {
BIO_printf(bio_err, "%s: Chain already specified\n",
opt_getprog());
goto err;
}
exc->chainfile = opt_arg();
break;
case OPT_X_CHAIN_BUILD:
exc->build_chain = 1;
break;
case OPT_X_CERTFORM:
if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->certform))
return 0;
break;
case OPT_X_KEYFORM:
if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->keyform))
return 0;
break;
}
return 1;
err:
ERR_print_errors(bio_err);
ssl_excert_free(exc);
*pexc = NULL;
return 0;
}
static void print_raw_cipherlist(SSL *s)
{
const unsigned char *rlist;
static const unsigned char scsv_id[] = { 0, 0, 0xFF };
size_t i, rlistlen, num;
if (!SSL_is_server(s))
return;
num = SSL_get0_raw_cipherlist(s, NULL);
rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
BIO_puts(bio_err, "Client cipher list: ");
for (i = 0; i < rlistlen; i += num, rlist += num) {
const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
if (i)
BIO_puts(bio_err, ":");
if (c)
BIO_puts(bio_err, SSL_CIPHER_get_name(c));
else if (!memcmp(rlist, scsv_id - num + 3, num))
BIO_puts(bio_err, "SCSV");
else {
size_t j;
BIO_puts(bio_err, "0x");
for (j = 0; j < num; j++)
BIO_printf(bio_err, "%02X", rlist[j]);
}
}
BIO_puts(bio_err, "\n");
}
void print_ssl_summary(SSL *s)
{
const SSL_CIPHER *c;
X509 *peer;
/* const char *pnam = SSL_is_server(s) ? "client" : "server"; */
BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
print_raw_cipherlist(s);
c = SSL_get_current_cipher(s);
BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
do_print_sigalgs(bio_err, s, 0);
peer = SSL_get_peer_certificate(s);
if (peer) {
int nid;
BIO_puts(bio_err, "Peer certificate: ");
X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
0, XN_FLAG_ONELINE);
BIO_puts(bio_err, "\n");
if (SSL_get_peer_signature_nid(s, &nid))
BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
} else
BIO_puts(bio_err, "No peer certificate\n");
X509_free(peer);
#ifndef OPENSSL_NO_EC
ssl_print_point_formats(bio_err, s);
if (SSL_is_server(s))
ssl_print_curves(bio_err, s, 1);
else
ssl_print_tmp_key(bio_err, s);
#else
if (!SSL_is_server(s))
ssl_print_tmp_key(bio_err, s);
#endif
}
int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
SSL_CTX *ctx, int no_ecdhe, int no_jpake)
{
int i;
SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
const char *flag = sk_OPENSSL_STRING_value(str, i);
const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
/* If no_ecdhe or named curve already specified don't need a default. */
if (!no_ecdhe && strcmp(flag, "-named_curve") == 0)
no_ecdhe = 1;
#ifndef OPENSSL_NO_JPAKE
if (!no_jpake && (strcmp(flag, "-cipher") == 0)) {
BIO_puts(bio_err, "JPAKE sets cipher to PSK\n");
return 0;
}
#endif
if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
if (arg)
BIO_printf(bio_err, "Error with command: \"%s %s\"\n",
flag, arg);
else
BIO_printf(bio_err, "Error with command: \"%s\"\n", flag);
ERR_print_errors(bio_err);
return 0;
}
}
/*
* This is a special case to keep existing s_server functionality: if we
* don't have any curve specified *and* we haven't disabled ECDHE then
* use P-256.
*/
if (!no_ecdhe) {
if (SSL_CONF_cmd(cctx, "-named_curve", "P-256") <= 0) {
BIO_puts(bio_err, "Error setting EC curve\n");
ERR_print_errors(bio_err);
return 0;
}
}
#ifndef OPENSSL_NO_JPAKE
if (!no_jpake) {
if (SSL_CONF_cmd(cctx, "-cipher", "PSK") <= 0) {
BIO_puts(bio_err, "Error setting cipher to PSK\n");
ERR_print_errors(bio_err);
return 0;
}
}
#endif
if (!SSL_CONF_CTX_finish(cctx)) {
BIO_puts(bio_err, "Error finishing context\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
{
X509_CRL *crl;
int i;
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
crl = sk_X509_CRL_value(crls, i);
X509_STORE_add_crl(st, crl);
}
return 1;
}
int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *st;
st = SSL_CTX_get_cert_store(ctx);
add_crls_store(st, crls);
if (crl_download)
store_setup_crl_download(st);
return 1;
}
int ssl_load_stores(SSL_CTX *ctx,
const char *vfyCApath, const char *vfyCAfile,
const char *chCApath, const char *chCAfile,
STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *vfy = NULL, *ch = NULL;
int rv = 0;
if (vfyCApath || vfyCAfile) {
vfy = X509_STORE_new();
if (!X509_STORE_load_locations(vfy, vfyCAfile, vfyCApath))
goto err;
add_crls_store(vfy, crls);
SSL_CTX_set1_verify_cert_store(ctx, vfy);
if (crl_download)
store_setup_crl_download(vfy);
}
if (chCApath || chCAfile) {
ch = X509_STORE_new();
if (!X509_STORE_load_locations(ch, chCAfile, chCApath))
goto err;
SSL_CTX_set1_chain_cert_store(ctx, ch);
}
rv = 1;
err:
X509_STORE_free(vfy);
X509_STORE_free(ch);
return rv;
}
/* Verbose print out of security callback */
typedef struct {
BIO *out;
int verbose;
int (*old_cb) (SSL *s, SSL_CTX *ctx, int op, int bits, int nid,
void *other, void *ex);
} security_debug_ex;
static STRINT_PAIR callback_types[] = {
{"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
{"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
{"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
#ifndef OPENSSL_NO_DH
{"Temp DH key bits", SSL_SECOP_TMP_DH},
#endif
{"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
{"Shared Curve", SSL_SECOP_CURVE_SHARED},
{"Check Curve", SSL_SECOP_CURVE_CHECK},
{"Supported Signature Algorithm digest", SSL_SECOP_SIGALG_SUPPORTED},
{"Shared Signature Algorithm digest", SSL_SECOP_SIGALG_SHARED},
{"Check Signature Algorithm digest", SSL_SECOP_SIGALG_CHECK},
{"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
{"Certificate chain EE key", SSL_SECOP_EE_KEY},
{"Certificate chain CA key", SSL_SECOP_CA_KEY},
{"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
{"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
{"Certificate chain CA digest", SSL_SECOP_CA_MD},
{"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
{"SSL compression", SSL_SECOP_COMPRESSION},
{"Session ticket", SSL_SECOP_TICKET},
{NULL}
};
static int security_callback_debug(SSL *s, SSL_CTX *ctx,
int op, int bits, int nid,
void *other, void *ex)
{
security_debug_ex *sdb = ex;
int rv, show_bits = 1, cert_md = 0;
const char *nm;
rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
if (rv == 1 && sdb->verbose < 2)
return 1;
BIO_puts(sdb->out, "Security callback: ");
nm = lookup(op, callback_types, NULL);
switch (op) {
case SSL_SECOP_TICKET:
case SSL_SECOP_COMPRESSION:
show_bits = 0;
nm = NULL;
break;
case SSL_SECOP_VERSION:
BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
show_bits = 0;
nm = NULL;
break;
case SSL_SECOP_CA_MD:
case SSL_SECOP_PEER_CA_MD:
cert_md = 1;
break;
}
if (nm)
BIO_printf(sdb->out, "%s=", nm);
switch (op & SSL_SECOP_OTHER_TYPE) {
case SSL_SECOP_OTHER_CIPHER:
BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
break;
#ifndef OPENSSL_NO_EC
case SSL_SECOP_OTHER_CURVE:
{
const char *cname;
cname = EC_curve_nid2nist(nid);
if (cname == NULL)
cname = OBJ_nid2sn(nid);
BIO_puts(sdb->out, cname);
}
break;
#endif
case SSL_SECOP_OTHER_DH:
{
DH *dh = other;
BIO_printf(sdb->out, "%d", BN_num_bits(dh->p));
break;
}
case SSL_SECOP_OTHER_CERT:
{
if (cert_md) {
int sig_nid = X509_get_signature_nid(other);
BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
} else {
EVP_PKEY *pkey = X509_get_pubkey(other);
const char *algname = "";
EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
&algname, EVP_PKEY_get0_asn1(pkey));
BIO_printf(sdb->out, "%s, bits=%d",
algname, EVP_PKEY_bits(pkey));
EVP_PKEY_free(pkey);
}
break;
}
case SSL_SECOP_OTHER_SIGALG:
{
const unsigned char *salg = other;
const char *sname = NULL;
switch (salg[1]) {
case TLSEXT_signature_anonymous:
sname = "anonymous";
break;
case TLSEXT_signature_rsa:
sname = "RSA";
break;
case TLSEXT_signature_dsa:
sname = "DSA";
break;
case TLSEXT_signature_ecdsa:
sname = "ECDSA";
break;
}
BIO_puts(sdb->out, OBJ_nid2sn(nid));
if (sname)
BIO_printf(sdb->out, ", algorithm=%s", sname);
else
BIO_printf(sdb->out, ", algid=%d", salg[1]);
break;
}
}
if (show_bits)
BIO_printf(sdb->out, ", security bits=%d", bits);
BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
return rv;
}
void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
{
static security_debug_ex sdb;
sdb.out = bio_err;
sdb.verbose = verbose;
sdb.old_cb = SSL_CTX_get_security_callback(ctx);
SSL_CTX_set_security_callback(ctx, security_callback_debug);
SSL_CTX_set0_security_ex_data(ctx, &sdb);
}