openssl/crypto/rsa/rsa_mp.c
Andy Polyakov 0122add654 rsa/rsa_lib.c: make RSA_security_bits multi-prime aware.
Multi-prime RSA security is not determined by modulus length alone, but
depends even on number of primes. Too many primes render security
inadequate, but there is no common amount of primes or common factors'
length that provide equivalent secuity promise as two-prime for given
modulus length. Maximum amount of permitted primes is determined
according to following table.

   <1024 | >=1024 | >=4096 | >=8192
   ------+--------+--------+-------
     2   |   3    |   4    |   5

Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4791)
2017-11-28 20:04:57 +01:00

109 lines
2.5 KiB
C

/*
* Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2017 BaishanCloud. All rights reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/bn.h>
#include "rsa_locl.h"
void rsa_multip_info_free_ex(RSA_PRIME_INFO *pinfo)
{
/* free pp and pinfo only */
BN_clear_free(pinfo->pp);
OPENSSL_free(pinfo);
}
void rsa_multip_info_free(RSA_PRIME_INFO *pinfo)
{
/* free a RSA_PRIME_INFO structure */
BN_clear_free(pinfo->r);
BN_clear_free(pinfo->d);
BN_clear_free(pinfo->t);
rsa_multip_info_free_ex(pinfo);
}
RSA_PRIME_INFO *rsa_multip_info_new(void)
{
RSA_PRIME_INFO *pinfo;
/* create a RSA_PRIME_INFO structure */
pinfo = OPENSSL_zalloc(sizeof(RSA_PRIME_INFO));
if (pinfo == NULL)
return NULL;
if ((pinfo->r = BN_secure_new()) == NULL)
goto err;
if ((pinfo->d = BN_secure_new()) == NULL)
goto err;
if ((pinfo->t = BN_secure_new()) == NULL)
goto err;
if ((pinfo->pp = BN_secure_new()) == NULL)
goto err;
return pinfo;
err:
BN_free(pinfo->r);
BN_free(pinfo->d);
BN_free(pinfo->t);
BN_free(pinfo->pp);
return NULL;
}
/* Refill products of primes */
int rsa_multip_calc_product(RSA *rsa)
{
RSA_PRIME_INFO *pinfo;
BIGNUM *p1 = NULL, *p2 = NULL;
BN_CTX *ctx = NULL;
int i, rv = 0, ex_primes;
if ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0) {
/* invalid */
goto err;
}
if ((ctx = BN_CTX_new()) == NULL)
goto err;
/* calculate pinfo->pp = p * q for first 'extra' prime */
p1 = rsa->p;
p2 = rsa->q;
for (i = 0; i < ex_primes; i++) {
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
if (pinfo->pp == NULL) {
pinfo->pp = BN_secure_new();
if (pinfo->pp == NULL)
goto err;
}
if (!BN_mul(pinfo->pp, p1, p2, ctx))
goto err;
/* save previous one */
p1 = pinfo->pp;
p2 = pinfo->r;
}
rv = 1;
err:
BN_CTX_free(ctx);
return rv;
}
int rsa_multip_cap(int bits)
{
int cap = 5;
if (bits < 1024)
cap = 2;
else if (bits < 4096)
cap = 3;
else if (bits < 8192)
cap = 4;
return cap;
}