openssl/apps/speed.c
Matt Caswell a0a82324f9 Centralise loading default apps config file
Loading the config file after processing command line options can
cause problems, e.g. where an engine provides new ciphers/digests
these are not then recoginised on the command line. Move the
default config file loading to before the command line option
processing. Whilst we're doing this we might as well centralise
this instead of doing it individually for each application. Finally
if we do it before the OpenSSL_add_ssl_algorithms() call then
ciphersuites provided by an engine (e.g. GOST) can be available to
the apps.

RT#4085
RT#4086

Reviewed-by: Richard Levitte <levitte@openssl.org>
2015-10-12 22:31:00 +01:00

2528 lines
78 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The ECDH and ECDSA speed test software is originally written by
* Sumit Gupta of Sun Microsystems Laboratories.
*
*/
#undef SECONDS
#define SECONDS 3
#define PRIME_SECONDS 10
#define RSA_SECONDS 10
#define DSA_SECONDS 10
#define ECDSA_SECONDS 10
#define ECDH_SECONDS 10
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
#ifndef OPENSSL_SYS_NETWARE
# include <signal.h>
#endif
#if defined(_WIN32) || defined(__CYGWIN__)
# include <windows.h>
# if defined(__CYGWIN__) && !defined(_WIN32)
/*
* <windows.h> should define _WIN32, which normally is mutually exclusive
* with __CYGWIN__, but if it didn't...
*/
# define _WIN32
/* this is done because Cygwin alarm() fails sometimes. */
# endif
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_AES
# include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
#ifndef OPENSSL_NO_EC
# include <openssl/ecdsa.h>
# include <openssl/ecdh.h>
#endif
#include <openssl/modes.h>
#include <openssl/bn.h>
#ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# endif
#endif
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif
#undef BUFSIZE
#define BUFSIZE (1024*8+1)
#define MAX_MISALIGNMENT 63
static volatile int run = 0;
static int mr = 0;
static int usertime = 1;
static double Time_F(int s);
static void print_message(const char *s, long num, int length);
static void pkey_print_message(const char *str, const char *str2,
long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
#ifndef NO_FORK
static int do_multi(int multi);
#endif
#define ALGOR_NUM 30
#define SIZE_NUM 5
#define PRIME_NUM 3
#define RSA_NUM 7
#define DSA_NUM 3
#define EC_NUM 16
#define MAX_ECDH_SIZE 256
#define MISALIGN 64
static const char *names[ALGOR_NUM] = {
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
"des cbc", "des ede3", "idea cbc", "seed cbc",
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
"evp", "sha256", "sha512", "whirlpool",
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
};
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM] = {
16, 64, 256, 1024, 8 * 1024
};
#ifndef OPENSSL_NO_RSA
static double rsa_results[RSA_NUM][2];
#endif
#ifndef OPENSSL_NO_DSA
static double dsa_results[DSA_NUM][2];
#endif
#ifndef OPENSSL_NO_EC
static double ecdsa_results[EC_NUM][2];
static double ecdh_results[EC_NUM][1];
#endif
#if defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_EC)
static const char rnd_seed[] =
"string to make the random number generator think it has entropy";
static int rnd_fake = 0;
#endif
#ifdef SIGALRM
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
# define SIGRETTYPE void
# else
# define SIGRETTYPE int
# endif
static SIGRETTYPE sig_done(int sig);
static SIGRETTYPE sig_done(int sig)
{
signal(SIGALRM, sig_done);
run = 0;
}
#endif
#define START 0
#define STOP 1
#if defined(_WIN32)
# if !defined(SIGALRM)
# define SIGALRM
# endif
static unsigned int lapse, schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
double ret;
static HANDLE thr;
if (s == START) {
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD err = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
ExitProcess(err);
}
while (!schlock)
Sleep(0); /* scheduler spinlock */
ret = app_tminterval(s, usertime);
} else {
ret = app_tminterval(s, usertime);
if (run)
TerminateThread(thr, 0);
CloseHandle(thr);
}
return ret;
}
#else
static double Time_F(int s)
{
double ret = app_tminterval(s, usertime);
if (s == STOP)
alarm(0);
return ret;
}
#endif
#ifndef OPENSSL_NO_EC
static const int KDF1_SHA1_len = 20;
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
size_t *outlen)
{
if (*outlen < SHA_DIGEST_LENGTH)
return NULL;
*outlen = SHA_DIGEST_LENGTH;
return SHA1(in, inlen, out);
}
#endif /* OPENSSL_NO_EC */
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
static int found(const char *name, const OPT_PAIR * pairs, int *result)
{
for (; pairs->name; pairs++)
if (strcmp(name, pairs->name) == 0) {
*result = pairs->retval;
return 1;
}
return 0;
}
typedef enum OPTION_choice {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
OPT_MR, OPT_MB, OPT_MISALIGN
} OPTION_CHOICE;
OPTIONS speed_options[] = {
{OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
{OPT_HELP_STR, 1, '-', "Valid options are:\n"},
{"help", OPT_HELP, '-', "Display this summary"},
{"evp", OPT_EVP, 's', "Use specified EVP cipher"},
{"decrypt", OPT_DECRYPT, '-',
"Time decryption instead of encryption (only EVP)"},
{"mr", OPT_MR, '-', "Produce machine readable output"},
{"mb", OPT_MB, '-'},
{"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
{"elapsed", OPT_ELAPSED, '-',
"Measure time in real time instead of CPU user time"},
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
{NULL},
};
#define D_MD2 0
#define D_MDC2 1
#define D_MD4 2
#define D_MD5 3
#define D_HMAC 4
#define D_SHA1 5
#define D_RMD160 6
#define D_RC4 7
#define D_CBC_DES 8
#define D_EDE3_DES 9
#define D_CBC_IDEA 10
#define D_CBC_SEED 11
#define D_CBC_RC2 12
#define D_CBC_RC5 13
#define D_CBC_BF 14
#define D_CBC_CAST 15
#define D_CBC_128_AES 16
#define D_CBC_192_AES 17
#define D_CBC_256_AES 18
#define D_CBC_128_CML 19
#define D_CBC_192_CML 20
#define D_CBC_256_CML 21
#define D_EVP 22
#define D_SHA256 23
#define D_SHA512 24
#define D_WHIRLPOOL 25
#define D_IGE_128_AES 26
#define D_IGE_192_AES 27
#define D_IGE_256_AES 28
#define D_GHASH 29
static OPT_PAIR doit_choices[] = {
#ifndef OPENSSL_NO_MD2
{"md2", D_MD2},
#endif
#ifndef OPENSSL_NO_MDC2
{"mdc2", D_MDC2},
#endif
#ifndef OPENSSL_NO_MD4
{"md4", D_MD4},
#endif
#ifndef OPENSSL_NO_MD5
{"md5", D_MD5},
#endif
#ifndef OPENSSL_NO_MD5
{"hmac", D_HMAC},
#endif
{"sha1", D_SHA1},
{"sha256", D_SHA256},
{"sha512", D_SHA512},
#ifndef OPENSSL_NO_WHIRLPOOL
{"whirlpool", D_WHIRLPOOL},
#endif
#ifndef OPENSSL_NO_RMD160
{"ripemd", D_RMD160},
{"rmd160", D_RMD160},
{"ripemd160", D_RMD160},
#endif
#ifndef OPENSSL_NO_RC4
{"rc4", D_RC4},
#endif
#ifndef OPENSSL_NO_DES
{"des-cbc", D_CBC_DES},
{"des-ede3", D_EDE3_DES},
#endif
#ifndef OPENSSL_NO_AES
{"aes-128-cbc", D_CBC_128_AES},
{"aes-192-cbc", D_CBC_192_AES},
{"aes-256-cbc", D_CBC_256_AES},
{"aes-128-ige", D_IGE_128_AES},
{"aes-192-ige", D_IGE_192_AES},
{"aes-256-ige", D_IGE_256_AES},
#endif
#ifndef OPENSSL_NO_RC2
{"rc2-cbc", D_CBC_RC2},
{"rc2", D_CBC_RC2},
#endif
#ifndef OPENSSL_NO_RC5
{"rc5-cbc", D_CBC_RC5},
{"rc5", D_CBC_RC5},
#endif
#ifndef OPENSSL_NO_IDEA
{"idea-cbc", D_CBC_IDEA},
{"idea", D_CBC_IDEA},
#endif
#ifndef OPENSSL_NO_SEED
{"seed-cbc", D_CBC_SEED},
{"seed", D_CBC_SEED},
#endif
#ifndef OPENSSL_NO_BF
{"bf-cbc", D_CBC_BF},
{"blowfish", D_CBC_BF},
{"bf", D_CBC_BF},
#endif
#ifndef OPENSSL_NO_CAST
{"cast-cbc", D_CBC_CAST},
{"cast", D_CBC_CAST},
{"cast5", D_CBC_CAST},
#endif
{"ghash", D_GHASH},
{NULL}
};
#define R_DSA_512 0
#define R_DSA_1024 1
#define R_DSA_2048 2
static OPT_PAIR dsa_choices[] = {
{"dsa512", R_DSA_512},
{"dsa1024", R_DSA_1024},
{"dsa2048", R_DSA_2048},
{NULL},
};
#define R_RSA_512 0
#define R_RSA_1024 1
#define R_RSA_2048 2
#define R_RSA_3072 3
#define R_RSA_4096 4
#define R_RSA_7680 5
#define R_RSA_15360 6
static OPT_PAIR rsa_choices[] = {
{"rsa512", R_RSA_512},
{"rsa1024", R_RSA_1024},
{"rsa2048", R_RSA_2048},
{"rsa3072", R_RSA_3072},
{"rsa4096", R_RSA_4096},
{"rsa7680", R_RSA_7680},
{"rsa15360", R_RSA_15360},
{NULL}
};
#define R_EC_P160 0
#define R_EC_P192 1
#define R_EC_P224 2
#define R_EC_P256 3
#define R_EC_P384 4
#define R_EC_P521 5
#define R_EC_K163 6
#define R_EC_K233 7
#define R_EC_K283 8
#define R_EC_K409 9
#define R_EC_K571 10
#define R_EC_B163 11
#define R_EC_B233 12
#define R_EC_B283 13
#define R_EC_B409 14
#define R_EC_B571 15
#ifndef OPENSSL_NO_EC
static OPT_PAIR ecdsa_choices[] = {
{"ecdsap160", R_EC_P160},
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
{"ecdsak163", R_EC_K163},
{"ecdsak233", R_EC_K233},
{"ecdsak283", R_EC_K283},
{"ecdsak409", R_EC_K409},
{"ecdsak571", R_EC_K571},
{"ecdsab163", R_EC_B163},
{"ecdsab233", R_EC_B233},
{"ecdsab283", R_EC_B283},
{"ecdsab409", R_EC_B409},
{"ecdsab571", R_EC_B571},
{NULL}
};
static OPT_PAIR ecdh_choices[] = {
{"ecdhp160", R_EC_P160},
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
{"ecdhk163", R_EC_K163},
{"ecdhk233", R_EC_K233},
{"ecdhk283", R_EC_K283},
{"ecdhk409", R_EC_K409},
{"ecdhk571", R_EC_K571},
{"ecdhb163", R_EC_B163},
{"ecdhb233", R_EC_B233},
{"ecdhb283", R_EC_B283},
{"ecdhb409", R_EC_B409},
{"ecdhb571", R_EC_B571},
{NULL}
};
#endif
int speed_main(int argc, char **argv)
{
char *prog;
const EVP_CIPHER *evp_cipher = NULL;
const EVP_MD *evp_md = NULL;
double d = 0.0;
OPTION_CHOICE o;
int decrypt = 0, multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
int dsa_doit[DSA_NUM], rsa_doit[RSA_NUM];
int ret = 1, i, j, k, misalign = MAX_MISALIGNMENT + 1;
long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
unsigned char *buf_malloc = NULL, *buf2_malloc = NULL;
unsigned char *buf = NULL, *buf2 = NULL;
unsigned char md[EVP_MAX_MD_SIZE];
#ifndef NO_FORK
int multi = 0;
#endif
/* What follows are the buffers and key material. */
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
long rsa_count;
#endif
#ifndef OPENSSL_NO_MD2
unsigned char md2[MD2_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MDC2
unsigned char mdc2[MDC2_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD4
unsigned char md4[MD4_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD5
unsigned char md5[MD5_DIGEST_LENGTH];
unsigned char hmac[MD5_DIGEST_LENGTH];
#endif
unsigned char sha[SHA_DIGEST_LENGTH];
unsigned char sha256[SHA256_DIGEST_LENGTH];
unsigned char sha512[SHA512_DIGEST_LENGTH];
#ifndef OPENSSL_NO_WHIRLPOOL
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RMD160
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RC4
RC4_KEY rc4_ks;
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
#endif
#ifndef OPENSSL_NO_RC2
RC2_KEY rc2_ks;
#endif
#ifndef OPENSSL_NO_IDEA
IDEA_KEY_SCHEDULE idea_ks;
#endif
#ifndef OPENSSL_NO_SEED
SEED_KEY_SCHEDULE seed_ks;
#endif
#ifndef OPENSSL_NO_BF
BF_KEY bf_ks;
#endif
#ifndef OPENSSL_NO_CAST
CAST_KEY cast_ks;
#endif
static const unsigned char key16[16] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
#ifndef OPENSSL_NO_AES
static const unsigned char key24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
#endif
#ifndef OPENSSL_NO_CAMELLIA
static const unsigned char ckey24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char ckey32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
#ifndef OPENSSL_NO_AES
# define MAX_BLOCK_SIZE 128
#else
# define MAX_BLOCK_SIZE 64
#endif
unsigned char DES_iv[8];
unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_DES
static DES_cblock key = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
};
static DES_cblock key2 = {
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
static DES_cblock key3 = {
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
DES_key_schedule sch;
DES_key_schedule sch2;
DES_key_schedule sch3;
#endif
#ifndef OPENSSL_NO_AES
AES_KEY aes_ks1, aes_ks2, aes_ks3;
#endif
#ifndef OPENSSL_NO_RSA
unsigned rsa_num;
RSA *rsa_key[RSA_NUM];
long rsa_c[RSA_NUM][2];
static unsigned int rsa_bits[RSA_NUM] = {
512, 1024, 2048, 3072, 4096, 7680, 15360
};
static unsigned char *rsa_data[RSA_NUM] = {
test512, test1024, test2048, test3072, test4096, test7680, test15360
};
static int rsa_data_length[RSA_NUM] = {
sizeof(test512), sizeof(test1024),
sizeof(test2048), sizeof(test3072),
sizeof(test4096), sizeof(test7680),
sizeof(test15360)
};
#endif
#ifndef OPENSSL_NO_DSA
DSA *dsa_key[DSA_NUM];
long dsa_c[DSA_NUM][2];
static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
#endif
#ifndef OPENSSL_NO_EC
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the EC_NUM value accordingly.
*/
static unsigned int test_curves[EC_NUM] = {
/* Prime Curves */
NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
/* Binary Curves */
NID_sect163k1, NID_sect233k1, NID_sect283k1,
NID_sect409k1, NID_sect571k1, NID_sect163r2,
NID_sect233r1, NID_sect283r1, NID_sect409r1,
NID_sect571r1
};
static const char *test_curves_names[EC_NUM] = {
/* Prime Curves */
"secp160r1", "nistp192", "nistp224",
"nistp256", "nistp384", "nistp521",
/* Binary Curves */
"nistk163", "nistk233", "nistk283",
"nistk409", "nistk571", "nistb163",
"nistb233", "nistb283", "nistb409",
"nistb571"
};
static int test_curves_bits[EC_NUM] = {
160, 192, 224,
256, 384, 521,
163, 233, 283,
409, 571, 163,
233, 283, 409,
571
};
#endif
#ifndef OPENSSL_NO_EC
unsigned char ecdsasig[256];
unsigned int ecdsasiglen;
EC_KEY *ecdsa[EC_NUM];
long ecdsa_c[EC_NUM][2];
int ecdsa_doit[EC_NUM];
EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
int secret_size_a, secret_size_b;
int ecdh_checks = 0;
int secret_idx = 0;
long ecdh_c[EC_NUM][2];
int ecdh_doit[EC_NUM];
#endif
memset(results, 0, sizeof(results));
#ifndef OPENSSL_NO_DSA
memset(dsa_key, 0, sizeof(dsa_key));
#endif
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa[i] = NULL;
for (i = 0; i < EC_NUM; i++)
ecdh_a[i] = ecdh_b[i] = NULL;
#endif
#ifndef OPENSSL_NO_RSA
memset(rsa_key, 0, sizeof(rsa_key));
for (i = 0; i < RSA_NUM; i++)
rsa_key[i] = NULL;
#endif
memset(c, 0, sizeof(c));
memset(DES_iv, 0, sizeof(DES_iv));
memset(iv, 0, sizeof(iv));
for (i = 0; i < ALGOR_NUM; i++)
doit[i] = 0;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 0;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 0;
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 0;
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 0;
#endif
buf = buf_malloc = app_malloc((int)BUFSIZE + misalign, "input buffer");
buf2 = buf2_malloc = app_malloc((int)BUFSIZE + misalign, "output buffer");
misalign = 0;
prog = opt_init(argc, argv, speed_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF:
case OPT_ERR:
opterr:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
goto end;
case OPT_HELP:
opt_help(speed_options);
ret = 0;
goto end;
case OPT_ELAPSED:
usertime = 0;
break;
case OPT_EVP:
evp_cipher = EVP_get_cipherbyname(opt_arg());
if (evp_cipher == NULL)
evp_md = EVP_get_digestbyname(opt_arg());
if (evp_cipher == NULL && evp_md == NULL) {
BIO_printf(bio_err,
"%s: %s an unknown cipher or digest\n",
prog, opt_arg());
goto end;
}
doit[D_EVP] = 1;
break;
case OPT_DECRYPT:
decrypt = 1;
break;
case OPT_ENGINE:
(void)setup_engine(opt_arg(), 0);
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = atoi(opt_arg());
#endif
break;
case OPT_MISALIGN:
if (!opt_int(opt_arg(), &misalign))
goto end;
if (misalign > MISALIGN) {
BIO_printf(bio_err,
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
buf = buf_malloc + misalign;
buf2 = buf2_malloc + misalign;
break;
case OPT_MR:
mr = 1;
break;
case OPT_MB:
multiblock = 1;
break;
}
}
argc = opt_num_rest();
argv = opt_rest();
/* Remaining arguments are algorithms. */
for ( ; *argv; argv++) {
if (found(*argv, doit_choices, &i)) {
doit[i] = 1;
continue;
}
#ifndef OPENSSL_NO_DES
if (strcmp(*argv, "des") == 0) {
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
continue;
}
#endif
if (strcmp(*argv, "sha") == 0) {
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
continue;
}
#ifndef OPENSSL_NO_RSA
# ifndef RSA_NULL
if (strcmp(*argv, "openssl") == 0) {
RSA_set_default_method(RSA_PKCS1_SSLeay());
continue;
}
# endif
if (strcmp(*argv, "rsa") == 0) {
rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
rsa_doit[R_RSA_15360] = 1;
continue;
}
if (found(*argv, rsa_choices, &i)) {
rsa_doit[i] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_DSA
if (strcmp(*argv, "dsa") == 0) {
dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
dsa_doit[R_DSA_2048] = 1;
continue;
}
if (found(*argv, dsa_choices, &i)) {
dsa_doit[i] = 2;
continue;
}
#endif
#ifndef OPENSSL_NO_AES
if (strcmp(*argv, "aes") == 0) {
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
doit[D_CBC_256_AES] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia") == 0) {
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
doit[D_CBC_256_CML] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_EC
if (strcmp(*argv, "ecdsa") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
continue;
}
if (found(*argv, ecdsa_choices, &i)) {
ecdsa_doit[i] = 2;
continue;
}
if (strcmp(*argv, "ecdh") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
continue;
}
if (found(*argv, ecdh_choices, &i)) {
ecdh_doit[i] = 2;
continue;
}
#endif
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
goto end;
}
#ifndef NO_FORK
if (multi && do_multi(multi))
goto show_res;
#endif
/* No parameters; turn on everything. */
if ((argc == 0) && !doit[D_EVP]) {
for (i = 0; i < ALGOR_NUM; i++)
if (i != D_EVP)
doit[i] = 1;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 1;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 1;
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
#endif
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
#ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++) {
const unsigned char *p;
p = rsa_data[i];
rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]);
if (rsa_key[i] == NULL) {
BIO_printf(bio_err, "internal error loading RSA key number %d\n",
i);
goto end;
}
}
#endif
#ifndef OPENSSL_NO_DSA
dsa_key[0] = get_dsa512();
dsa_key[1] = get_dsa1024();
dsa_key[2] = get_dsa2048();
#endif
#ifndef OPENSSL_NO_DES
DES_set_key_unchecked(&key, &sch);
DES_set_key_unchecked(&key2, &sch2);
DES_set_key_unchecked(&key3, &sch3);
#endif
#ifndef OPENSSL_NO_AES
AES_set_encrypt_key(key16, 128, &aes_ks1);
AES_set_encrypt_key(key24, 192, &aes_ks2);
AES_set_encrypt_key(key32, 256, &aes_ks3);
#endif
#ifndef OPENSSL_NO_CAMELLIA
Camellia_set_key(key16, 128, &camellia_ks1);
Camellia_set_key(ckey24, 192, &camellia_ks2);
Camellia_set_key(ckey32, 256, &camellia_ks3);
#endif
#ifndef OPENSSL_NO_IDEA
idea_set_encrypt_key(key16, &idea_ks);
#endif
#ifndef OPENSSL_NO_SEED
SEED_set_key(key16, &seed_ks);
#endif
#ifndef OPENSSL_NO_RC4
RC4_set_key(&rc4_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RC2
RC2_set_key(&rc2_ks, 16, key16, 128);
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_set_key(&rc5_ks, 16, key16, 12);
#endif
#ifndef OPENSSL_NO_BF
BF_set_key(&bf_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_CAST
CAST_set_key(&cast_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RSA
memset(rsa_c, 0, sizeof(rsa_c));
#endif
#ifndef SIGALRM
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
count = 10;
do {
long it;
count *= 2;
Time_F(START);
for (it = count; it; it--)
DES_ecb_encrypt((DES_cblock *)buf,
(DES_cblock *)buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
save_count = count;
c[D_MD2][0] = count / 10;
c[D_MDC2][0] = count / 10;
c[D_MD4][0] = count;
c[D_MD5][0] = count;
c[D_HMAC][0] = count;
c[D_SHA1][0] = count;
c[D_RMD160][0] = count;
c[D_RC4][0] = count * 5;
c[D_CBC_DES][0] = count;
c[D_EDE3_DES][0] = count / 3;
c[D_CBC_IDEA][0] = count;
c[D_CBC_SEED][0] = count;
c[D_CBC_RC2][0] = count;
c[D_CBC_RC5][0] = count;
c[D_CBC_BF][0] = count;
c[D_CBC_CAST][0] = count;
c[D_CBC_128_AES][0] = count;
c[D_CBC_192_AES][0] = count;
c[D_CBC_256_AES][0] = count;
c[D_CBC_128_CML][0] = count;
c[D_CBC_192_CML][0] = count;
c[D_CBC_256_CML][0] = count;
c[D_SHA256][0] = count;
c[D_SHA512][0] = count;
c[D_WHIRLPOOL][0] = count;
c[D_IGE_128_AES][0] = count;
c[D_IGE_192_AES][0] = count;
c[D_IGE_256_AES][0] = count;
c[D_GHASH][0] = count;
for (i = 1; i < SIZE_NUM; i++) {
long l0, l1;
l0 = (long)lengths[0];
l1 = (long)lengths[i];
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
l0 = (long)lengths[i - 1];
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
}
# ifndef OPENSSL_NO_RSA
rsa_c[R_RSA_512][0] = count / 2000;
rsa_c[R_RSA_512][1] = count / 400;
for (i = 1; i < RSA_NUM; i++) {
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
rsa_c[i][0] = 1;
rsa_c[i][1] = 20;
}
}
}
# endif
# ifndef OPENSSL_NO_DSA
dsa_c[R_DSA_512][0] = count / 1000;
dsa_c[R_DSA_512][1] = count / 1000 / 2;
for (i = 1; i < DSA_NUM; i++) {
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
dsa_doit[i] = 0;
else {
if (dsa_c[i] == 0) {
dsa_c[i][0] = 1;
dsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_EC
ecdsa_c[R_EC_P160][0] = count / 1000;
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_K163][0] = count / 1000;
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_B163][0] = count / 1000;
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_P160][0] = count / 1000;
ecdh_c[R_EC_P160][1] = count / 1000;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_K163][0] = count / 1000;
ecdh_c[R_EC_K163][1] = count / 1000;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_B163][0] = count / 1000;
ecdh_c[R_EC_B163][1] = count / 1000;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
# endif
# define COND(d) (count < (d))
# define COUNT(d) (d)
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
#else
# define COND(c) (run && count<0x7fffffff)
# define COUNT(d) (count)
# ifndef _WIN32
signal(SIGALRM, sig_done);
# endif
#endif /* SIGALRM */
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD2], c[D_MD2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD2][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL,
EVP_md2(), NULL);
d = Time_F(STOP);
print_result(D_MD2, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MDC2][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL,
EVP_mdc2(), NULL);
d = Time_F(STOP);
print_result(D_MDC2, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD4
if (doit[D_MD4]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]),
NULL, EVP_md4(), NULL);
d = Time_F(STOP);
print_result(D_MD4, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_MD5]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
MD5(buf, lengths[j], md5);
d = Time_F(STOP);
print_result(D_MD5, j, count, d);
}
}
#endif
#if !defined(OPENSSL_NO_MD5)
if (doit[D_HMAC]) {
HMAC_CTX hctx;
HMAC_CTX_init(&hctx);
HMAC_Init_ex(&hctx, (unsigned char *)"This is a key...",
16, EVP_md5(), NULL);
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
HMAC_Init_ex(&hctx, NULL, 0, NULL, NULL);
HMAC_Update(&hctx, buf, lengths[j]);
HMAC_Final(&hctx, &(hmac[0]), NULL);
}
d = Time_F(STOP);
print_result(D_HMAC, j, count, d);
}
HMAC_CTX_cleanup(&hctx);
}
#endif
if (doit[D_SHA1]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
SHA1(buf, lengths[j], sha);
d = Time_F(STOP);
print_result(D_SHA1, j, count, d);
}
}
if (doit[D_SHA256]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
SHA256(buf, lengths[j], sha256);
d = Time_F(STOP);
print_result(D_SHA256, j, count, d);
}
}
if (doit[D_SHA512]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
SHA512(buf, lengths[j], sha512);
d = Time_F(STOP);
print_result(D_SHA512, j, count, d);
}
}
#ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
WHIRLPOOL(buf, lengths[j], whirlpool);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RMD160
if (doit[D_RMD160]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL,
EVP_ripemd160(), NULL);
d = Time_F(STOP);
print_result(D_RMD160, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC4
if (doit[D_RC4]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf);
d = Time_F(STOP);
print_result(D_RC4, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
&DES_iv, DES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_DES, j, count, d);
}
}
if (doit[D_EDE3_DES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[j],
&sch, &sch2, &sch3,
&DES_iv, DES_ENCRYPT);
d = Time_F(STOP);
print_result(D_EDE3_DES, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_AES
if (doit[D_CBC_128_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks1,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_AES, j, count, d);
}
}
if (doit[D_CBC_192_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks2,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_AES, j, count, d);
}
}
if (doit[D_CBC_256_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &aes_ks3,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_AES, j, count, d);
}
}
if (doit[D_IGE_128_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks1,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_128_AES, j, count, d);
}
}
if (doit[D_IGE_192_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks2,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_192_AES, j, count, d);
}
}
if (doit[D_IGE_256_AES]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[j], &aes_ks3,
iv, AES_ENCRYPT);
d = Time_F(STOP);
print_result(D_IGE_256_AES, j, count, d);
}
}
if (doit[D_GHASH]) {
GCM128_CONTEXT *ctx =
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12);
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
d = Time_F(STOP);
print_result(D_GHASH, j, count, d);
}
CRYPTO_gcm128_release(ctx);
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks1,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_CML, j, count, d);
}
}
if (doit[D_CBC_192_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks2,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_CML, j, count, d);
}
}
if (doit[D_CBC_256_CML]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j],
lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
Camellia_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &camellia_ks3,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_CML, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
idea_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_IDEA, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_SEED
if (doit[D_CBC_SEED]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++)
SEED_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &seed_ks, iv, 1);
d = Time_F(STOP);
print_result(D_CBC_SEED, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
RC2_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC2, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++)
RC5_32_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC5, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
BF_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_BF, j, count, d);
}
}
#endif
#ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST]) {
for (j = 0; j < SIZE_NUM; j++) {
print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
CAST_cbc_encrypt(buf, buf,
(unsigned long)lengths[j], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_CAST, j, count, d);
}
}
#endif
if (doit[D_EVP]) {
#ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
if (multiblock && evp_cipher) {
if (!
(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
BIO_printf(bio_err, "%s is not multi-block capable\n",
OBJ_nid2ln(evp_cipher->nid));
goto end;
}
multiblock_speed(evp_cipher);
ret = 0;
goto end;
}
#endif
for (j = 0; j < SIZE_NUM; j++) {
if (evp_cipher) {
EVP_CIPHER_CTX ctx;
int outl;
names[D_EVP] = OBJ_nid2ln(evp_cipher->nid);
/*
* -O3 -fschedule-insns messes up an optimization here!
* names[D_EVP] somehow becomes NULL
*/
print_message(names[D_EVP], save_count, lengths[j]);
EVP_CIPHER_CTX_init(&ctx);
if (decrypt)
EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
else
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
EVP_CIPHER_CTX_set_padding(&ctx, 0);
Time_F(START);
if (decrypt)
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]);
count++)
EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
else
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]);
count++)
EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
if (decrypt)
EVP_DecryptFinal_ex(&ctx, buf, &outl);
else
EVP_EncryptFinal_ex(&ctx, buf, &outl);
d = Time_F(STOP);
EVP_CIPHER_CTX_cleanup(&ctx);
}
if (evp_md) {
names[D_EVP] = OBJ_nid2ln(evp_md->type);
print_message(names[D_EVP], save_count, lengths[j]);
Time_F(START);
for (count = 0, run = 1;
COND(save_count * 4 * lengths[0] / lengths[j]); count++)
EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);
d = Time_F(STOP);
}
print_result(D_EVP, j, count, d);
}
}
RAND_bytes(buf, 36);
#ifndef OPENSSL_NO_RSA
for (j = 0; j < RSA_NUM; j++) {
int st;
if (!rsa_doit[j])
continue;
st = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
if (st == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
rsa_c[j][0], rsa_bits[j], RSA_SECONDS);
/* RSA_blinding_on(rsa_key[j],NULL); */
Time_F(START);
for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
st = RSA_sign(NID_md5_sha1, buf, 36, buf2,
&rsa_num, rsa_key[j]);
if (st == 0) {
BIO_printf(bio_err, "RSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %d bit private RSA's in %.2fs\n",
count, rsa_bits[j], d);
rsa_results[j][0] = d / (double)count;
rsa_count = count;
}
st = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[j] = 0;
} else {
pkey_print_message("public", "rsa",
rsa_c[j][1], rsa_bits[j], RSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
st = RSA_verify(NID_md5_sha1, buf, 36, buf2,
rsa_num, rsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %d bit public RSA's in %.2fs\n",
count, rsa_bits[j], d);
rsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < RSA_NUM; j++)
rsa_doit[j] = 0;
}
}
#endif
RAND_bytes(buf, 20);
#ifndef OPENSSL_NO_DSA
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < DSA_NUM; j++) {
unsigned int kk;
int st;
if (!dsa_doit[j])
continue;
/* DSA_generate_key(dsa_key[j]); */
/* DSA_sign_setup(dsa_key[j],NULL); */
st = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
if (st == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_c[j][0], dsa_bits[j], DSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
st = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
if (st == 0) {
BIO_printf(bio_err, "DSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %d bit DSA signs in %.2fs\n",
count, dsa_bits[j], d);
dsa_results[j][0] = d / (double)count;
rsa_count = count;
}
st = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[j] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_c[j][1], dsa_bits[j], DSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
st = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
if (st <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %d bit DSA verify in %.2fs\n",
count, dsa_bits[j], d);
dsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < DSA_NUM; j++)
dsa_doit[j] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef OPENSSL_NO_EC
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < EC_NUM; j++) {
int st;
if (!ecdsa_doit[j])
continue; /* Ignore Curve */
ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if (ecdsa[j] == NULL) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
EC_KEY_precompute_mult(ecdsa[j], NULL);
/* Perform ECDSA signature test */
EC_KEY_generate_key(ecdsa[j]);
st = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]);
if (st == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[j][0],
test_curves_bits[j], ECDSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) {
st = ECDSA_sign(0, buf, 20,
ecdsasig, &ecdsasiglen, ecdsa[j]);
if (st == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%d:%.2f\n" :
"%ld %d bit ECDSA signs in %.2fs \n",
count, test_curves_bits[j], d);
ecdsa_results[j][0] = d / (double)count;
rsa_count = count;
}
/* Perform ECDSA verification test */
st = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
if (st != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[j] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[j][1],
test_curves_bits[j], ECDSA_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
st = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
ecdsa[j]);
if (st != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count = 1;
break;
}
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%d:%.2f\n"
: "%ld %d bit ECDSA verify in %.2fs\n",
count, test_curves_bits[j], d);
ecdsa_results[j][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < EC_NUM; j++)
ecdsa_doit[j] = 0;
}
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef OPENSSL_NO_EC
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (j = 0; j < EC_NUM; j++) {
if (!ecdh_doit[j])
continue;
ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
BIO_printf(bio_err, "ECDH failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/* generate two ECDH key pairs */
if (!EC_KEY_generate_key(ecdh_a[j]) ||
!EC_KEY_generate_key(ecdh_b[j])) {
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/*
* If field size is not more than 24 octets, then use SHA-1
* hash of result; otherwise, use result (see section 4.8 of
* draft-ietf-tls-ecc-03.txt).
*/
int field_size, outlen;
void *(*kdf) (const void *in, size_t inlen, void *out,
size_t *xoutlen);
field_size =
EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
if (field_size <= 24 * 8) {
outlen = KDF1_SHA1_len;
kdf = KDF1_SHA1;
} else {
outlen = (field_size + 7) / 8;
kdf = NULL;
}
secret_size_a =
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
secret_size_b =
ECDH_compute_key(secret_b, outlen,
EC_KEY_get0_public_key(ecdh_a[j]),
ecdh_b[j], kdf);
if (secret_size_a != secret_size_b)
ecdh_checks = 0;
else
ecdh_checks = 1;
for (secret_idx = 0; (secret_idx < secret_size_a)
&& (ecdh_checks == 1); secret_idx++) {
if (secret_a[secret_idx] != secret_b[secret_idx])
ecdh_checks = 0;
}
if (ecdh_checks == 0) {
BIO_printf(bio_err, "ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
}
pkey_print_message("", "ecdh",
ecdh_c[j][0],
test_curves_bits[j], ECDH_SECONDS);
Time_F(START);
for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) {
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[j]),
ecdh_a[j], kdf);
}
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %d-bit ECDH ops in %.2fs\n", count,
test_curves_bits[j], d);
ecdh_results[j][0] = d / (double)count;
rsa_count = count;
}
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (j++; j < EC_NUM; j++)
ecdh_doit[j] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef NO_FORK
show_res:
#endif
if (!mr) {
printf("%s\n", SSLeay_version(SSLEAY_VERSION));
printf("%s\n", SSLeay_version(SSLEAY_BUILT_ON));
printf("options:");
printf("%s ", BN_options());
#ifndef OPENSSL_NO_MD2
printf("%s ", MD2_options());
#endif
#ifndef OPENSSL_NO_RC4
printf("%s ", RC4_options());
#endif
#ifndef OPENSSL_NO_DES
printf("%s ", DES_options());
#endif
#ifndef OPENSSL_NO_AES
printf("%s ", AES_options());
#endif
#ifndef OPENSSL_NO_IDEA
printf("%s ", idea_options());
#endif
#ifndef OPENSSL_NO_BF
printf("%s ", BF_options());
#endif
printf("\n%s\n", SSLeay_version(SSLEAY_CFLAGS));
}
if (pr_header) {
if (mr)
printf("+H");
else {
printf
("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
for (j = 0; j < SIZE_NUM; j++)
printf(mr ? ":%d" : "%7d bytes", lengths[j]);
printf("\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
if (!doit[k])
continue;
if (mr)
printf("+F:%d:%s", k, names[k]);
else
printf("%-13s", names[k]);
for (j = 0; j < SIZE_NUM; j++) {
if (results[k][j] > 10000 && !mr)
printf(" %11.2fk", results[k][j] / 1e3);
else
printf(mr ? ":%.2f" : " %11.2f ", results[k][j]);
}
printf("\n");
}
#ifndef OPENSSL_NO_RSA
j = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (j && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
else
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_DSA
j = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (j && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
j = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdsa_doit[k])
continue;
if (j && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
j = 0;
}
if (mr)
printf("+F4:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdsa_results[k][0], ecdsa_results[k][1],
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
j = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (j && !mr) {
printf("%30sop op/s\n", " ");
j = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
}
#endif
ret = 0;
end:
ERR_print_errors(bio_err);
OPENSSL_free(buf_malloc);
OPENSSL_free(buf2_malloc);
#ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++)
RSA_free(rsa_key[i]);
#endif
#ifndef OPENSSL_NO_DSA
for (i = 0; i < DSA_NUM; i++)
DSA_free(dsa_key[i]);
#endif
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++) {
EC_KEY_free(ecdsa[i]);
EC_KEY_free(ecdh_a[i]);
EC_KEY_free(ecdh_b[i]);
}
#endif
return (ret);
}
static void print_message(const char *s, long num, int length)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
(void)BIO_flush(bio_err);
alarm(SECONDS);
#else
BIO_printf(bio_err,
mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ", s, num, length);
(void)BIO_flush(bio_err);
#endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
int bits, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
(void)BIO_flush(bio_err);
#endif
}
static void print_result(int alg, int run_no, int count, double time_used)
{
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
#ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof isdelim);
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)]) {
(*string)++;
}
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi)
{
int n;
int fd[2];
int *fds;
static char sep[] = ":";
fds = malloc(sizeof(*fds) * multi);
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
BIO_printf(bio_err, "pipe failure\n");
exit(1);
}
fflush(stdout);
(void)BIO_flush(bio_err);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
BIO_printf(bio_err, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
f = fdopen(fds[n], "r");
while (fgets(buf, sizeof buf, f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
buf, n);
continue;
}
printf("Got: %s from %d\n", buf, n);
if (strncmp(buf, "+F:", 3) == 0) {
int alg;
int j;
p = buf + 3;
alg = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
for (j = 0; j < SIZE_NUM; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
} else if (strncmp(buf, "+F2:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
else
rsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
else
rsa_results[k][1] = d;
}
# ifndef OPENSSL_NO_DSA
else if (strncmp(buf, "+F3:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
else
dsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
else
dsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F4:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][0] =
1 / (1 / ecdsa_results[k][0] + 1 / d);
else
ecdsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][1] =
1 / (1 / ecdsa_results[k][1] + 1 / d);
else
ecdsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F5:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
else
ecdh_results[k][0] = d;
}
# endif
else if (strncmp(buf, "+H:", 3) == 0) {
;
} else
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
}
fclose(f);
}
free(fds);
return 1;
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher)
{
static int mblengths[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
int j, count, num = OSSL_NELEM(lengths);
const char *alg_name;
unsigned char *inp, *out, no_key[32], no_iv[16];
EVP_CIPHER_CTX ctx;
double d = 0.0;
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, no_key, no_iv);
EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
no_key);
alg_name = OBJ_nid2ln(evp_cipher->nid);
for (j = 0; j < num; j++) {
print_message(alg_name, 0, mblengths[j]);
Time_F(START);
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
RAND_bytes(out, 16);
len += 16;
aad[11] = len >> 8;
aad[12] = len;
pad = EVP_CIPHER_CTX_ctrl(&ctx,
EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
EVP_Cipher(&ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, "evp", d);
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
OPENSSL_free(inp);
OPENSSL_free(out);
}