openssl/ssl/ssl_lib.c
Dr. Stephen Henson cc7113e8de return error in ct_move_scts()
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
2016-05-31 13:02:20 +01:00

4197 lines
116 KiB
C

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <assert.h>
#include <stdio.h>
#include "ssl_locl.h"
#include <openssl/objects.h>
#include <openssl/lhash.h>
#include <openssl/x509v3.h>
#include <openssl/rand.h>
#include <openssl/ocsp.h>
#include <openssl/dh.h>
#include <openssl/engine.h>
#include <openssl/async.h>
#include <openssl/ct.h>
const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
SSL3_ENC_METHOD ssl3_undef_enc_method = {
/*
* evil casts, but these functions are only called if there's a library
* bug
*/
(int (*)(SSL *, SSL3_RECORD *, unsigned int, int))ssl_undefined_function,
(int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
ssl_undefined_function,
(int (*)(SSL *, unsigned char *, unsigned char *, int))
ssl_undefined_function,
(int (*)(SSL *, int))ssl_undefined_function,
(int (*)(SSL *, const char *, int, unsigned char *))
ssl_undefined_function,
0, /* finish_mac_length */
NULL, /* client_finished_label */
0, /* client_finished_label_len */
NULL, /* server_finished_label */
0, /* server_finished_label_len */
(int (*)(int))ssl_undefined_function,
(int (*)(SSL *, unsigned char *, size_t, const char *,
size_t, const unsigned char *, size_t,
int use_context))ssl_undefined_function,
};
struct ssl_async_args {
SSL *s;
void *buf;
int num;
enum { READFUNC, WRITEFUNC, OTHERFUNC} type;
union {
int (*func_read)(SSL *, void *, int);
int (*func_write)(SSL *, const void *, int);
int (*func_other)(SSL *);
} f;
};
static const struct {
uint8_t mtype;
uint8_t ord;
int nid;
} dane_mds[] = {
{ DANETLS_MATCHING_FULL, 0, NID_undef },
{ DANETLS_MATCHING_2256, 1, NID_sha256 },
{ DANETLS_MATCHING_2512, 2, NID_sha512 },
};
static int dane_ctx_enable(struct dane_ctx_st *dctx)
{
const EVP_MD **mdevp;
uint8_t *mdord;
uint8_t mdmax = DANETLS_MATCHING_LAST;
int n = ((int) mdmax) + 1; /* int to handle PrivMatch(255) */
size_t i;
mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
mdord = OPENSSL_zalloc(n * sizeof(*mdord));
if (mdord == NULL || mdevp == NULL) {
OPENSSL_free(mdord);
OPENSSL_free(mdevp);
SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
return 0;
}
/* Install default entries */
for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
const EVP_MD *md;
if (dane_mds[i].nid == NID_undef ||
(md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
continue;
mdevp[dane_mds[i].mtype] = md;
mdord[dane_mds[i].mtype] = dane_mds[i].ord;
}
dctx->mdevp = mdevp;
dctx->mdord = mdord;
dctx->mdmax = mdmax;
return 1;
}
static void dane_ctx_final(struct dane_ctx_st *dctx)
{
OPENSSL_free(dctx->mdevp);
dctx->mdevp = NULL;
OPENSSL_free(dctx->mdord);
dctx->mdord = NULL;
dctx->mdmax = 0;
}
static void tlsa_free(danetls_record *t)
{
if (t == NULL)
return;
OPENSSL_free(t->data);
EVP_PKEY_free(t->spki);
OPENSSL_free(t);
}
static void dane_final(SSL_DANE *dane)
{
sk_danetls_record_pop_free(dane->trecs, tlsa_free);
dane->trecs = NULL;
sk_X509_pop_free(dane->certs, X509_free);
dane->certs = NULL;
X509_free(dane->mcert);
dane->mcert = NULL;
dane->mtlsa = NULL;
dane->mdpth = -1;
dane->pdpth = -1;
}
/*
* dane_copy - Copy dane configuration, sans verification state.
*/
static int ssl_dane_dup(SSL *to, SSL *from)
{
int num;
int i;
if (!DANETLS_ENABLED(&from->dane))
return 1;
dane_final(&to->dane);
to->dane.dctx = &to->ctx->dane;
to->dane.trecs = sk_danetls_record_new_null();
if (to->dane.trecs == NULL) {
SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
return 0;
}
num = sk_danetls_record_num(from->dane.trecs);
for (i = 0; i < num; ++i) {
danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
t->data, t->dlen) <= 0)
return 0;
}
return 1;
}
static int dane_mtype_set(
struct dane_ctx_st *dctx,
const EVP_MD *md,
uint8_t mtype,
uint8_t ord)
{
int i;
if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
SSLerr(SSL_F_DANE_MTYPE_SET,
SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
return 0;
}
if (mtype > dctx->mdmax) {
const EVP_MD **mdevp;
uint8_t *mdord;
int n = ((int) mtype) + 1;
mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
if (mdevp == NULL) {
SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
return -1;
}
dctx->mdevp = mdevp;
mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
if (mdord == NULL) {
SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
return -1;
}
dctx->mdord = mdord;
/* Zero-fill any gaps */
for (i = dctx->mdmax+1; i < mtype; ++i) {
mdevp[i] = NULL;
mdord[i] = 0;
}
dctx->mdmax = mtype;
}
dctx->mdevp[mtype] = md;
/* Coerce ordinal of disabled matching types to 0 */
dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
return 1;
}
static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
{
if (mtype > dane->dctx->mdmax)
return NULL;
return dane->dctx->mdevp[mtype];
}
static int dane_tlsa_add(
SSL_DANE *dane,
uint8_t usage,
uint8_t selector,
uint8_t mtype,
unsigned char *data,
size_t dlen)
{
danetls_record *t;
const EVP_MD *md = NULL;
int ilen = (int)dlen;
int i;
int num;
if (dane->trecs == NULL) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
return -1;
}
if (ilen < 0 || dlen != (size_t)ilen) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
return 0;
}
if (usage > DANETLS_USAGE_LAST) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
return 0;
}
if (selector > DANETLS_SELECTOR_LAST) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
return 0;
}
if (mtype != DANETLS_MATCHING_FULL) {
md = tlsa_md_get(dane, mtype);
if (md == NULL) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
return 0;
}
}
if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
return 0;
}
if (!data) {
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
return 0;
}
if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
return -1;
}
t->usage = usage;
t->selector = selector;
t->mtype = mtype;
t->data = OPENSSL_malloc(ilen);
if (t->data == NULL) {
tlsa_free(t);
SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
return -1;
}
memcpy(t->data, data, ilen);
t->dlen = ilen;
/* Validate and cache full certificate or public key */
if (mtype == DANETLS_MATCHING_FULL) {
const unsigned char *p = data;
X509 *cert = NULL;
EVP_PKEY *pkey = NULL;
switch (selector) {
case DANETLS_SELECTOR_CERT:
if (!d2i_X509(&cert, &p, dlen) || p < data ||
dlen != (size_t)(p - data)) {
tlsa_free(t);
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
return 0;
}
if (X509_get0_pubkey(cert) == NULL) {
tlsa_free(t);
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
return 0;
}
if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
X509_free(cert);
break;
}
/*
* For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
* records that contain full certificates of trust-anchors that are
* not present in the wire chain. For usage PKIX-TA(0), we augment
* the chain with untrusted Full(0) certificates from DNS, in case
* they are missing from the chain.
*/
if ((dane->certs == NULL &&
(dane->certs = sk_X509_new_null()) == NULL) ||
!sk_X509_push(dane->certs, cert)) {
SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
X509_free(cert);
tlsa_free(t);
return -1;
}
break;
case DANETLS_SELECTOR_SPKI:
if (!d2i_PUBKEY(&pkey, &p, dlen) || p < data ||
dlen != (size_t)(p - data)) {
tlsa_free(t);
SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
return 0;
}
/*
* For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
* records that contain full bare keys of trust-anchors that are
* not present in the wire chain.
*/
if (usage == DANETLS_USAGE_DANE_TA)
t->spki = pkey;
else
EVP_PKEY_free(pkey);
break;
}
}
/*-
* Find the right insertion point for the new record.
*
* See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
* they can be processed first, as they require no chain building, and no
* expiration or hostname checks. Because DANE-EE(3) is numerically
* largest, this is accomplished via descending sort by "usage".
*
* We also sort in descending order by matching ordinal to simplify
* the implementation of digest agility in the verification code.
*
* The choice of order for the selector is not significant, so we
* use the same descending order for consistency.
*/
num = sk_danetls_record_num(dane->trecs);
for (i = 0; i < num; ++i) {
danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
if (rec->usage > usage)
continue;
if (rec->usage < usage)
break;
if (rec->selector > selector)
continue;
if (rec->selector < selector)
break;
if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
continue;
break;
}
if (!sk_danetls_record_insert(dane->trecs, t, i)) {
tlsa_free(t);
SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
return -1;
}
dane->umask |= DANETLS_USAGE_BIT(usage);
return 1;
}
static void clear_ciphers(SSL *s)
{
/* clear the current cipher */
ssl_clear_cipher_ctx(s);
ssl_clear_hash_ctx(&s->read_hash);
ssl_clear_hash_ctx(&s->write_hash);
}
int SSL_clear(SSL *s)
{
if (s->method == NULL) {
SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
return (0);
}
if (ssl_clear_bad_session(s)) {
SSL_SESSION_free(s->session);
s->session = NULL;
}
s->error = 0;
s->hit = 0;
s->shutdown = 0;
if (s->renegotiate) {
SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
return 0;
}
ossl_statem_clear(s);
s->version = s->method->version;
s->client_version = s->version;
s->rwstate = SSL_NOTHING;
BUF_MEM_free(s->init_buf);
s->init_buf = NULL;
clear_ciphers(s);
s->first_packet = 0;
/* Reset DANE verification result state */
s->dane.mdpth = -1;
s->dane.pdpth = -1;
X509_free(s->dane.mcert);
s->dane.mcert = NULL;
s->dane.mtlsa = NULL;
/* Clear the verification result peername */
X509_VERIFY_PARAM_move_peername(s->param, NULL);
/*
* Check to see if we were changed into a different method, if so, revert
* back if we are not doing session-id reuse.
*/
if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
&& (s->method != s->ctx->method)) {
s->method->ssl_free(s);
s->method = s->ctx->method;
if (!s->method->ssl_new(s))
return (0);
} else
s->method->ssl_clear(s);
RECORD_LAYER_clear(&s->rlayer);
return (1);
}
/** Used to change an SSL_CTXs default SSL method type */
int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
{
STACK_OF(SSL_CIPHER) *sk;
ctx->method = meth;
sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
&(ctx->cipher_list_by_id),
SSL_DEFAULT_CIPHER_LIST, ctx->cert);
if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION,
SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
return (0);
}
return (1);
}
SSL *SSL_new(SSL_CTX *ctx)
{
SSL *s;
if (ctx == NULL) {
SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
return (NULL);
}
if (ctx->method == NULL) {
SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
return (NULL);
}
s = OPENSSL_zalloc(sizeof(*s));
if (s == NULL)
goto err;
s->lock = CRYPTO_THREAD_lock_new();
if (s->lock == NULL) {
SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
OPENSSL_free(s);
return NULL;
}
RECORD_LAYER_init(&s->rlayer, s);
s->options = ctx->options;
s->min_proto_version = ctx->min_proto_version;
s->max_proto_version = ctx->max_proto_version;
s->mode = ctx->mode;
s->max_cert_list = ctx->max_cert_list;
s->references = 1;
/*
* Earlier library versions used to copy the pointer to the CERT, not
* its contents; only when setting new parameters for the per-SSL
* copy, ssl_cert_new would be called (and the direct reference to
* the per-SSL_CTX settings would be lost, but those still were
* indirectly accessed for various purposes, and for that reason they
* used to be known as s->ctx->default_cert). Now we don't look at the
* SSL_CTX's CERT after having duplicated it once.
*/
s->cert = ssl_cert_dup(ctx->cert);
if (s->cert == NULL)
goto err;
RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
s->msg_callback = ctx->msg_callback;
s->msg_callback_arg = ctx->msg_callback_arg;
s->verify_mode = ctx->verify_mode;
s->not_resumable_session_cb = ctx->not_resumable_session_cb;
s->sid_ctx_length = ctx->sid_ctx_length;
OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
s->verify_callback = ctx->default_verify_callback;
s->generate_session_id = ctx->generate_session_id;
s->param = X509_VERIFY_PARAM_new();
if (s->param == NULL)
goto err;
X509_VERIFY_PARAM_inherit(s->param, ctx->param);
s->quiet_shutdown = ctx->quiet_shutdown;
s->max_send_fragment = ctx->max_send_fragment;
s->split_send_fragment = ctx->split_send_fragment;
s->max_pipelines = ctx->max_pipelines;
if (s->max_pipelines > 1)
RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
if (ctx->default_read_buf_len > 0)
SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
SSL_CTX_up_ref(ctx);
s->ctx = ctx;
s->tlsext_debug_cb = 0;
s->tlsext_debug_arg = NULL;
s->tlsext_ticket_expected = 0;
s->tlsext_status_type = ctx->tlsext_status_type;
s->tlsext_status_expected = 0;
s->tlsext_ocsp_ids = NULL;
s->tlsext_ocsp_exts = NULL;
s->tlsext_ocsp_resp = NULL;
s->tlsext_ocsp_resplen = -1;
SSL_CTX_up_ref(ctx);
s->initial_ctx = ctx;
# ifndef OPENSSL_NO_EC
if (ctx->tlsext_ecpointformatlist) {
s->tlsext_ecpointformatlist =
OPENSSL_memdup(ctx->tlsext_ecpointformatlist,
ctx->tlsext_ecpointformatlist_length);
if (!s->tlsext_ecpointformatlist)
goto err;
s->tlsext_ecpointformatlist_length =
ctx->tlsext_ecpointformatlist_length;
}
if (ctx->tlsext_ellipticcurvelist) {
s->tlsext_ellipticcurvelist =
OPENSSL_memdup(ctx->tlsext_ellipticcurvelist,
ctx->tlsext_ellipticcurvelist_length);
if (!s->tlsext_ellipticcurvelist)
goto err;
s->tlsext_ellipticcurvelist_length =
ctx->tlsext_ellipticcurvelist_length;
}
# endif
# ifndef OPENSSL_NO_NEXTPROTONEG
s->next_proto_negotiated = NULL;
# endif
if (s->ctx->alpn_client_proto_list) {
s->alpn_client_proto_list =
OPENSSL_malloc(s->ctx->alpn_client_proto_list_len);
if (s->alpn_client_proto_list == NULL)
goto err;
memcpy(s->alpn_client_proto_list, s->ctx->alpn_client_proto_list,
s->ctx->alpn_client_proto_list_len);
s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
}
s->verified_chain = NULL;
s->verify_result = X509_V_OK;
s->default_passwd_callback = ctx->default_passwd_callback;
s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
s->method = ctx->method;
if (!s->method->ssl_new(s))
goto err;
s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
if (!SSL_clear(s))
goto err;
if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
goto err;
#ifndef OPENSSL_NO_PSK
s->psk_client_callback = ctx->psk_client_callback;
s->psk_server_callback = ctx->psk_server_callback;
#endif
s->job = NULL;
#ifndef OPENSSL_NO_CT
if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
ctx->ct_validation_callback_arg))
goto err;
#endif
return s;
err:
SSL_free(s);
SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
return NULL;
}
int SSL_up_ref(SSL *s)
{
int i;
if (CRYPTO_atomic_add(&s->references, 1, &i, s->lock) <= 0)
return 0;
REF_PRINT_COUNT("SSL", s);
REF_ASSERT_ISNT(i < 2);
return ((i > 1) ? 1 : 0);
}
int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
unsigned int sid_ctx_len)
{
if (sid_ctx_len > sizeof ctx->sid_ctx) {
SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
ctx->sid_ctx_length = sid_ctx_len;
memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
return 1;
}
int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
unsigned int sid_ctx_len)
{
if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
ssl->sid_ctx_length = sid_ctx_len;
memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
return 1;
}
int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
{
CRYPTO_THREAD_write_lock(ctx->lock);
ctx->generate_session_id = cb;
CRYPTO_THREAD_unlock(ctx->lock);
return 1;
}
int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
{
CRYPTO_THREAD_write_lock(ssl->lock);
ssl->generate_session_id = cb;
CRYPTO_THREAD_unlock(ssl->lock);
return 1;
}
int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
unsigned int id_len)
{
/*
* A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
* we can "construct" a session to give us the desired check - ie. to
* find if there's a session in the hash table that would conflict with
* any new session built out of this id/id_len and the ssl_version in use
* by this SSL.
*/
SSL_SESSION r, *p;
if (id_len > sizeof r.session_id)
return 0;
r.ssl_version = ssl->version;
r.session_id_length = id_len;
memcpy(r.session_id, id, id_len);
CRYPTO_THREAD_read_lock(ssl->ctx->lock);
p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
CRYPTO_THREAD_unlock(ssl->ctx->lock);
return (p != NULL);
}
int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
{
return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
}
int SSL_set_purpose(SSL *s, int purpose)
{
return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
}
int SSL_CTX_set_trust(SSL_CTX *s, int trust)
{
return X509_VERIFY_PARAM_set_trust(s->param, trust);
}
int SSL_set_trust(SSL *s, int trust)
{
return X509_VERIFY_PARAM_set_trust(s->param, trust);
}
int SSL_set1_host(SSL *s, const char *hostname)
{
return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
}
int SSL_add1_host(SSL *s, const char *hostname)
{
return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
}
void SSL_set_hostflags(SSL *s, unsigned int flags)
{
X509_VERIFY_PARAM_set_hostflags(s->param, flags);
}
const char *SSL_get0_peername(SSL *s)
{
return X509_VERIFY_PARAM_get0_peername(s->param);
}
int SSL_CTX_dane_enable(SSL_CTX *ctx)
{
return dane_ctx_enable(&ctx->dane);
}
int SSL_dane_enable(SSL *s, const char *basedomain)
{
SSL_DANE *dane = &s->dane;
if (s->ctx->dane.mdmax == 0) {
SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
return 0;
}
if (dane->trecs != NULL) {
SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
return 0;
}
/*
* Default SNI name. This rejects empty names, while set1_host below
* accepts them and disables host name checks. To avoid side-effects with
* invalid input, set the SNI name first.
*/
if (s->tlsext_hostname == NULL) {
if (!SSL_set_tlsext_host_name(s, basedomain)) {
SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
return -1;
}
}
/* Primary RFC6125 reference identifier */
if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
return -1;
}
dane->mdpth = -1;
dane->pdpth = -1;
dane->dctx = &s->ctx->dane;
dane->trecs = sk_danetls_record_new_null();
if (dane->trecs == NULL) {
SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
return -1;
}
return 1;
}
int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
{
SSL_DANE *dane = &s->dane;
if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
return -1;
if (dane->mtlsa) {
if (mcert)
*mcert = dane->mcert;
if (mspki)
*mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
}
return dane->mdpth;
}
int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
uint8_t *mtype, unsigned const char **data, size_t *dlen)
{
SSL_DANE *dane = &s->dane;
if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
return -1;
if (dane->mtlsa) {
if (usage)
*usage = dane->mtlsa->usage;
if (selector)
*selector = dane->mtlsa->selector;
if (mtype)
*mtype = dane->mtlsa->mtype;
if (data)
*data = dane->mtlsa->data;
if (dlen)
*dlen = dane->mtlsa->dlen;
}
return dane->mdpth;
}
SSL_DANE *SSL_get0_dane(SSL *s)
{
return &s->dane;
}
int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
uint8_t mtype, unsigned char *data, size_t dlen)
{
return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
}
int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord)
{
return dane_mtype_set(&ctx->dane, md, mtype, ord);
}
int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
{
return X509_VERIFY_PARAM_set1(ctx->param, vpm);
}
int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
{
return X509_VERIFY_PARAM_set1(ssl->param, vpm);
}
X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
{
return ctx->param;
}
X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
{
return ssl->param;
}
void SSL_certs_clear(SSL *s)
{
ssl_cert_clear_certs(s->cert);
}
void SSL_free(SSL *s)
{
int i;
if (s == NULL)
return;
CRYPTO_atomic_add(&s->references, -1, &i, s->lock);
REF_PRINT_COUNT("SSL", s);
if (i > 0)
return;
REF_ASSERT_ISNT(i < 0);
X509_VERIFY_PARAM_free(s->param);
dane_final(&s->dane);
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
if (s->bbio != NULL) {
/* If the buffering BIO is in place, pop it off */
if (s->bbio == s->wbio) {
s->wbio = BIO_pop(s->wbio);
}
BIO_free(s->bbio);
s->bbio = NULL;
}
BIO_free_all(s->rbio);
if (s->wbio != s->rbio)
BIO_free_all(s->wbio);
BUF_MEM_free(s->init_buf);
/* add extra stuff */
sk_SSL_CIPHER_free(s->cipher_list);
sk_SSL_CIPHER_free(s->cipher_list_by_id);
/* Make the next call work :-) */
if (s->session != NULL) {
ssl_clear_bad_session(s);
SSL_SESSION_free(s->session);
}
clear_ciphers(s);
ssl_cert_free(s->cert);
/* Free up if allocated */
OPENSSL_free(s->tlsext_hostname);
SSL_CTX_free(s->initial_ctx);
#ifndef OPENSSL_NO_EC
OPENSSL_free(s->tlsext_ecpointformatlist);
OPENSSL_free(s->tlsext_ellipticcurvelist);
#endif /* OPENSSL_NO_EC */
sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free);
#ifndef OPENSSL_NO_OCSP
sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free);
#endif
#ifndef OPENSSL_NO_CT
SCT_LIST_free(s->scts);
OPENSSL_free(s->tlsext_scts);
#endif
OPENSSL_free(s->tlsext_ocsp_resp);
OPENSSL_free(s->alpn_client_proto_list);
sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free);
sk_X509_pop_free(s->verified_chain, X509_free);
if (s->method != NULL)
s->method->ssl_free(s);
RECORD_LAYER_release(&s->rlayer);
SSL_CTX_free(s->ctx);
ASYNC_WAIT_CTX_free(s->waitctx);
#if !defined(OPENSSL_NO_NEXTPROTONEG)
OPENSSL_free(s->next_proto_negotiated);
#endif
#ifndef OPENSSL_NO_SRTP
sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
#endif
CRYPTO_THREAD_lock_free(s->lock);
OPENSSL_free(s);
}
void SSL_set_rbio(SSL *s, BIO *rbio)
{
if (s->rbio != rbio)
BIO_free_all(s->rbio);
s->rbio = rbio;
}
void SSL_set_wbio(SSL *s, BIO *wbio)
{
/*
* If the output buffering BIO is still in place, remove it
*/
if (s->bbio != NULL) {
if (s->wbio == s->bbio) {
s->wbio = BIO_next(s->wbio);
BIO_set_next(s->bbio, NULL);
}
}
if (s->wbio != wbio && s->rbio != s->wbio)
BIO_free_all(s->wbio);
s->wbio = wbio;
}
void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
{
SSL_set_wbio(s, wbio);
SSL_set_rbio(s, rbio);
}
BIO *SSL_get_rbio(const SSL *s)
{
return (s->rbio);
}
BIO *SSL_get_wbio(const SSL *s)
{
return (s->wbio);
}
int SSL_get_fd(const SSL *s)
{
return (SSL_get_rfd(s));
}
int SSL_get_rfd(const SSL *s)
{
int ret = -1;
BIO *b, *r;
b = SSL_get_rbio(s);
r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
if (r != NULL)
BIO_get_fd(r, &ret);
return (ret);
}
int SSL_get_wfd(const SSL *s)
{
int ret = -1;
BIO *b, *r;
b = SSL_get_wbio(s);
r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
if (r != NULL)
BIO_get_fd(r, &ret);
return (ret);
}
#ifndef OPENSSL_NO_SOCK
int SSL_set_fd(SSL *s, int fd)
{
int ret = 0;
BIO *bio = NULL;
bio = BIO_new(BIO_s_socket());
if (bio == NULL) {
SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, bio, bio);
ret = 1;
err:
return (ret);
}
int SSL_set_wfd(SSL *s, int fd)
{
int ret = 0;
BIO *bio = NULL;
if ((s->rbio == NULL) || (BIO_method_type(s->rbio) != BIO_TYPE_SOCKET)
|| ((int)BIO_get_fd(s->rbio, NULL) != fd)) {
bio = BIO_new(BIO_s_socket());
if (bio == NULL) {
SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, SSL_get_rbio(s), bio);
} else
SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s));
ret = 1;
err:
return (ret);
}
int SSL_set_rfd(SSL *s, int fd)
{
int ret = 0;
BIO *bio = NULL;
if ((s->wbio == NULL) || (BIO_method_type(s->wbio) != BIO_TYPE_SOCKET)
|| ((int)BIO_get_fd(s->wbio, NULL) != fd)) {
bio = BIO_new(BIO_s_socket());
if (bio == NULL) {
SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, bio, SSL_get_wbio(s));
} else
SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s));
ret = 1;
err:
return (ret);
}
#endif
/* return length of latest Finished message we sent, copy to 'buf' */
size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
{
size_t ret = 0;
if (s->s3 != NULL) {
ret = s->s3->tmp.finish_md_len;
if (count > ret)
count = ret;
memcpy(buf, s->s3->tmp.finish_md, count);
}
return ret;
}
/* return length of latest Finished message we expected, copy to 'buf' */
size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
{
size_t ret = 0;
if (s->s3 != NULL) {
ret = s->s3->tmp.peer_finish_md_len;
if (count > ret)
count = ret;
memcpy(buf, s->s3->tmp.peer_finish_md, count);
}
return ret;
}
int SSL_get_verify_mode(const SSL *s)
{
return (s->verify_mode);
}
int SSL_get_verify_depth(const SSL *s)
{
return X509_VERIFY_PARAM_get_depth(s->param);
}
int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
return (s->verify_callback);
}
int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
{
return (ctx->verify_mode);
}
int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
{
return X509_VERIFY_PARAM_get_depth(ctx->param);
}
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
return (ctx->default_verify_callback);
}
void SSL_set_verify(SSL *s, int mode,
int (*callback) (int ok, X509_STORE_CTX *ctx))
{
s->verify_mode = mode;
if (callback != NULL)
s->verify_callback = callback;
}
void SSL_set_verify_depth(SSL *s, int depth)
{
X509_VERIFY_PARAM_set_depth(s->param, depth);
}
void SSL_set_read_ahead(SSL *s, int yes)
{
RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
}
int SSL_get_read_ahead(const SSL *s)
{
return RECORD_LAYER_get_read_ahead(&s->rlayer);
}
int SSL_pending(const SSL *s)
{
/*
* SSL_pending cannot work properly if read-ahead is enabled
* (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
* impossible to fix since SSL_pending cannot report errors that may be
* observed while scanning the new data. (Note that SSL_pending() is
* often used as a boolean value, so we'd better not return -1.)
*/
return (s->method->ssl_pending(s));
}
int SSL_has_pending(const SSL *s)
{
/*
* Similar to SSL_pending() but returns a 1 to indicate that we have
* unprocessed data available or 0 otherwise (as opposed to the number of
* bytes available). Unlike SSL_pending() this will take into account
* read_ahead data. A 1 return simply indicates that we have unprocessed
* data. That data may not result in any application data, or we may fail
* to parse the records for some reason.
*/
if (SSL_pending(s))
return 1;
return RECORD_LAYER_read_pending(&s->rlayer);
}
X509 *SSL_get_peer_certificate(const SSL *s)
{
X509 *r;
if ((s == NULL) || (s->session == NULL))
r = NULL;
else
r = s->session->peer;
if (r == NULL)
return (r);
X509_up_ref(r);
return (r);
}
STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
{
STACK_OF(X509) *r;
if ((s == NULL) || (s->session == NULL))
r = NULL;
else
r = s->session->peer_chain;
/*
* If we are a client, cert_chain includes the peer's own certificate; if
* we are a server, it does not.
*/
return (r);
}
/*
* Now in theory, since the calling process own 't' it should be safe to
* modify. We need to be able to read f without being hassled
*/
int SSL_copy_session_id(SSL *t, const SSL *f)
{
int i;
/* Do we need to to SSL locking? */
if (!SSL_set_session(t, SSL_get_session(f))) {
return 0;
}
/*
* what if we are setup for one protocol version but want to talk another
*/
if (t->method != f->method) {
t->method->ssl_free(t);
t->method = f->method;
if (t->method->ssl_new(t) == 0)
return 0;
}
CRYPTO_atomic_add(&f->cert->references, 1, &i, f->cert->lock);
ssl_cert_free(t->cert);
t->cert = f->cert;
if (!SSL_set_session_id_context(t, f->sid_ctx, f->sid_ctx_length)) {
return 0;
}
return 1;
}
/* Fix this so it checks all the valid key/cert options */
int SSL_CTX_check_private_key(const SSL_CTX *ctx)
{
if ((ctx == NULL) ||
(ctx->cert->key->x509 == NULL)) {
SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
SSL_R_NO_CERTIFICATE_ASSIGNED);
return (0);
}
if (ctx->cert->key->privatekey == NULL) {
SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return (0);
}
return (X509_check_private_key
(ctx->cert->key->x509, ctx->cert->key->privatekey));
}
/* Fix this function so that it takes an optional type parameter */
int SSL_check_private_key(const SSL *ssl)
{
if (ssl == NULL) {
SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
return (0);
}
if (ssl->cert->key->x509 == NULL) {
SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
return (0);
}
if (ssl->cert->key->privatekey == NULL) {
SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return (0);
}
return (X509_check_private_key(ssl->cert->key->x509,
ssl->cert->key->privatekey));
}
int SSL_waiting_for_async(SSL *s)
{
if(s->job)
return 1;
return 0;
}
int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
{
ASYNC_WAIT_CTX *ctx = s->waitctx;
if (ctx == NULL)
return 0;
return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
}
int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
OSSL_ASYNC_FD *delfd, size_t *numdelfds)
{
ASYNC_WAIT_CTX *ctx = s->waitctx;
if (ctx == NULL)
return 0;
return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
numdelfds);
}
int SSL_accept(SSL *s)
{
if (s->handshake_func == NULL) {
/* Not properly initialized yet */
SSL_set_accept_state(s);
}
return SSL_do_handshake(s);
}
int SSL_connect(SSL *s)
{
if (s->handshake_func == NULL) {
/* Not properly initialized yet */
SSL_set_connect_state(s);
}
return SSL_do_handshake(s);
}
long SSL_get_default_timeout(const SSL *s)
{
return (s->method->get_timeout());
}
static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
int (*func)(void *)) {
int ret;
if (s->waitctx == NULL) {
s->waitctx = ASYNC_WAIT_CTX_new();
if (s->waitctx == NULL)
return -1;
}
switch(ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
sizeof(struct ssl_async_args))) {
case ASYNC_ERR:
s->rwstate = SSL_NOTHING;
SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
return -1;
case ASYNC_PAUSE:
s->rwstate = SSL_ASYNC_PAUSED;
return -1;
case ASYNC_NO_JOBS:
s->rwstate = SSL_ASYNC_NO_JOBS;
return -1;
case ASYNC_FINISH:
s->job = NULL;
return ret;
default:
s->rwstate = SSL_NOTHING;
SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
/* Shouldn't happen */
return -1;
}
}
static int ssl_io_intern(void *vargs)
{
struct ssl_async_args *args;
SSL *s;
void *buf;
int num;
args = (struct ssl_async_args *)vargs;
s = args->s;
buf = args->buf;
num = args->num;
switch (args->type) {
case READFUNC:
return args->f.func_read(s, buf, num);
case WRITEFUNC:
return args->f.func_write(s, buf, num);
case OTHERFUNC:
return args->f.func_other(s);
}
return -1;
}
int SSL_read(SSL *s, void *buf, int num)
{
if (s->handshake_func == NULL) {
SSLerr(SSL_F_SSL_READ, SSL_R_UNINITIALIZED);
return -1;
}
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
s->rwstate = SSL_NOTHING;
return (0);
}
if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
struct ssl_async_args args;
args.s = s;
args.buf = buf;
args.num = num;
args.type = READFUNC;
args.f.func_read = s->method->ssl_read;
return ssl_start_async_job(s, &args, ssl_io_intern);
} else {
return s->method->ssl_read(s, buf, num);
}
}
int SSL_peek(SSL *s, void *buf, int num)
{
if (s->handshake_func == NULL) {
SSLerr(SSL_F_SSL_PEEK, SSL_R_UNINITIALIZED);
return -1;
}
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
return (0);
}
if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
struct ssl_async_args args;
args.s = s;
args.buf = buf;
args.num = num;
args.type = READFUNC;
args.f.func_read = s->method->ssl_peek;
return ssl_start_async_job(s, &args, ssl_io_intern);
} else {
return s->method->ssl_peek(s, buf, num);
}
}
int SSL_write(SSL *s, const void *buf, int num)
{
if (s->handshake_func == NULL) {
SSLerr(SSL_F_SSL_WRITE, SSL_R_UNINITIALIZED);
return -1;
}
if (s->shutdown & SSL_SENT_SHUTDOWN) {
s->rwstate = SSL_NOTHING;
SSLerr(SSL_F_SSL_WRITE, SSL_R_PROTOCOL_IS_SHUTDOWN);
return (-1);
}
if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
struct ssl_async_args args;
args.s = s;
args.buf = (void *)buf;
args.num = num;
args.type = WRITEFUNC;
args.f.func_write = s->method->ssl_write;
return ssl_start_async_job(s, &args, ssl_io_intern);
} else {
return s->method->ssl_write(s, buf, num);
}
}
int SSL_shutdown(SSL *s)
{
/*
* Note that this function behaves differently from what one might
* expect. Return values are 0 for no success (yet), 1 for success; but
* calling it once is usually not enough, even if blocking I/O is used
* (see ssl3_shutdown).
*/
if (s->handshake_func == NULL) {
SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
return -1;
}
if (!SSL_in_init(s)) {
if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
struct ssl_async_args args;
args.s = s;
args.type = OTHERFUNC;
args.f.func_other = s->method->ssl_shutdown;
return ssl_start_async_job(s, &args, ssl_io_intern);
} else {
return s->method->ssl_shutdown(s);
}
} else {
SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
return -1;
}
}
int SSL_renegotiate(SSL *s)
{
if (s->renegotiate == 0)
s->renegotiate = 1;
s->new_session = 1;
return (s->method->ssl_renegotiate(s));
}
int SSL_renegotiate_abbreviated(SSL *s)
{
if (s->renegotiate == 0)
s->renegotiate = 1;
s->new_session = 0;
return (s->method->ssl_renegotiate(s));
}
int SSL_renegotiate_pending(SSL *s)
{
/*
* becomes true when negotiation is requested; false again once a
* handshake has finished
*/
return (s->renegotiate != 0);
}
long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
{
long l;
switch (cmd) {
case SSL_CTRL_GET_READ_AHEAD:
return (RECORD_LAYER_get_read_ahead(&s->rlayer));
case SSL_CTRL_SET_READ_AHEAD:
l = RECORD_LAYER_get_read_ahead(&s->rlayer);
RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
return (l);
case SSL_CTRL_SET_MSG_CALLBACK_ARG:
s->msg_callback_arg = parg;
return 1;
case SSL_CTRL_MODE:
return (s->mode |= larg);
case SSL_CTRL_CLEAR_MODE:
return (s->mode &= ~larg);
case SSL_CTRL_GET_MAX_CERT_LIST:
return (s->max_cert_list);
case SSL_CTRL_SET_MAX_CERT_LIST:
l = s->max_cert_list;
s->max_cert_list = larg;
return (l);
case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
return 0;
s->max_send_fragment = larg;
if (s->max_send_fragment < s->split_send_fragment)
s->split_send_fragment = s->max_send_fragment;
return 1;
case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
if ((unsigned int)larg > s->max_send_fragment || larg == 0)
return 0;
s->split_send_fragment = larg;
return 1;
case SSL_CTRL_SET_MAX_PIPELINES:
if (larg < 1 || larg > SSL_MAX_PIPELINES)
return 0;
s->max_pipelines = larg;
if (larg > 1)
RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
return 1;
case SSL_CTRL_GET_RI_SUPPORT:
if (s->s3)
return s->s3->send_connection_binding;
else
return 0;
case SSL_CTRL_CERT_FLAGS:
return (s->cert->cert_flags |= larg);
case SSL_CTRL_CLEAR_CERT_FLAGS:
return (s->cert->cert_flags &= ~larg);
case SSL_CTRL_GET_RAW_CIPHERLIST:
if (parg) {
if (s->s3->tmp.ciphers_raw == NULL)
return 0;
*(unsigned char **)parg = s->s3->tmp.ciphers_raw;
return (int)s->s3->tmp.ciphers_rawlen;
} else {
return TLS_CIPHER_LEN;
}
case SSL_CTRL_GET_EXTMS_SUPPORT:
if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
return -1;
if (s->session->flags & SSL_SESS_FLAG_EXTMS)
return 1;
else
return 0;
case SSL_CTRL_SET_MIN_PROTO_VERSION:
return ssl_set_version_bound(s->ctx->method->version, (int)larg,
&s->min_proto_version);
case SSL_CTRL_SET_MAX_PROTO_VERSION:
return ssl_set_version_bound(s->ctx->method->version, (int)larg,
&s->max_proto_version);
default:
return (s->method->ssl_ctrl(s, cmd, larg, parg));
}
}
long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
{
switch (cmd) {
case SSL_CTRL_SET_MSG_CALLBACK:
s->msg_callback = (void (*)
(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl,
void *arg))(fp);
return 1;
default:
return (s->method->ssl_callback_ctrl(s, cmd, fp));
}
}
LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
{
return ctx->sessions;
}
long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
{
long l;
/* For some cases with ctx == NULL perform syntax checks */
if (ctx == NULL) {
switch (cmd) {
#ifndef OPENSSL_NO_EC
case SSL_CTRL_SET_CURVES_LIST:
return tls1_set_curves_list(NULL, NULL, parg);
#endif
case SSL_CTRL_SET_SIGALGS_LIST:
case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
return tls1_set_sigalgs_list(NULL, parg, 0);
default:
return 0;
}
}
switch (cmd) {
case SSL_CTRL_GET_READ_AHEAD:
return (ctx->read_ahead);
case SSL_CTRL_SET_READ_AHEAD:
l = ctx->read_ahead;
ctx->read_ahead = larg;
return (l);
case SSL_CTRL_SET_MSG_CALLBACK_ARG:
ctx->msg_callback_arg = parg;
return 1;
case SSL_CTRL_GET_MAX_CERT_LIST:
return (ctx->max_cert_list);
case SSL_CTRL_SET_MAX_CERT_LIST:
l = ctx->max_cert_list;
ctx->max_cert_list = larg;
return (l);
case SSL_CTRL_SET_SESS_CACHE_SIZE:
l = ctx->session_cache_size;
ctx->session_cache_size = larg;
return (l);
case SSL_CTRL_GET_SESS_CACHE_SIZE:
return (ctx->session_cache_size);
case SSL_CTRL_SET_SESS_CACHE_MODE:
l = ctx->session_cache_mode;
ctx->session_cache_mode = larg;
return (l);
case SSL_CTRL_GET_SESS_CACHE_MODE:
return (ctx->session_cache_mode);
case SSL_CTRL_SESS_NUMBER:
return (lh_SSL_SESSION_num_items(ctx->sessions));
case SSL_CTRL_SESS_CONNECT:
return (ctx->stats.sess_connect);
case SSL_CTRL_SESS_CONNECT_GOOD:
return (ctx->stats.sess_connect_good);
case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
return (ctx->stats.sess_connect_renegotiate);
case SSL_CTRL_SESS_ACCEPT:
return (ctx->stats.sess_accept);
case SSL_CTRL_SESS_ACCEPT_GOOD:
return (ctx->stats.sess_accept_good);
case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
return (ctx->stats.sess_accept_renegotiate);
case SSL_CTRL_SESS_HIT:
return (ctx->stats.sess_hit);
case SSL_CTRL_SESS_CB_HIT:
return (ctx->stats.sess_cb_hit);
case SSL_CTRL_SESS_MISSES:
return (ctx->stats.sess_miss);
case SSL_CTRL_SESS_TIMEOUTS:
return (ctx->stats.sess_timeout);
case SSL_CTRL_SESS_CACHE_FULL:
return (ctx->stats.sess_cache_full);
case SSL_CTRL_MODE:
return (ctx->mode |= larg);
case SSL_CTRL_CLEAR_MODE:
return (ctx->mode &= ~larg);
case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
return 0;
ctx->max_send_fragment = larg;
if (ctx->max_send_fragment < ctx->split_send_fragment)
ctx->split_send_fragment = ctx->max_send_fragment;
return 1;
case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
if ((unsigned int)larg > ctx->max_send_fragment || larg == 0)
return 0;
ctx->split_send_fragment = larg;
return 1;
case SSL_CTRL_SET_MAX_PIPELINES:
if (larg < 1 || larg > SSL_MAX_PIPELINES)
return 0;
ctx->max_pipelines = larg;
return 1;
case SSL_CTRL_CERT_FLAGS:
return (ctx->cert->cert_flags |= larg);
case SSL_CTRL_CLEAR_CERT_FLAGS:
return (ctx->cert->cert_flags &= ~larg);
case SSL_CTRL_SET_MIN_PROTO_VERSION:
return ssl_set_version_bound(ctx->method->version, (int)larg,
&ctx->min_proto_version);
case SSL_CTRL_SET_MAX_PROTO_VERSION:
return ssl_set_version_bound(ctx->method->version, (int)larg,
&ctx->max_proto_version);
default:
return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
}
}
long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
{
switch (cmd) {
case SSL_CTRL_SET_MSG_CALLBACK:
ctx->msg_callback = (void (*)
(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl,
void *arg))(fp);
return 1;
default:
return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
}
}
int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
{
if (a->id > b->id)
return 1;
if (a->id < b->id)
return -1;
return 0;
}
int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
const SSL_CIPHER *const *bp)
{
if ((*ap)->id > (*bp)->id)
return 1;
if ((*ap)->id < (*bp)->id)
return -1;
return 0;
}
/** return a STACK of the ciphers available for the SSL and in order of
* preference */
STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
{
if (s != NULL) {
if (s->cipher_list != NULL) {
return (s->cipher_list);
} else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
return (s->ctx->cipher_list);
}
}
return (NULL);
}
STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
{
if ((s == NULL) || (s->session == NULL) || !s->server)
return NULL;
return s->session->ciphers;
}
STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
{
STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
int i;
ciphers = SSL_get_ciphers(s);
if (!ciphers)
return NULL;
ssl_set_client_disabled(s);
for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) {
if (!sk)
sk = sk_SSL_CIPHER_new_null();
if (!sk)
return NULL;
if (!sk_SSL_CIPHER_push(sk, c)) {
sk_SSL_CIPHER_free(sk);
return NULL;
}
}
}
return sk;
}
/** return a STACK of the ciphers available for the SSL and in order of
* algorithm id */
STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
{
if (s != NULL) {
if (s->cipher_list_by_id != NULL) {
return (s->cipher_list_by_id);
} else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
return (s->ctx->cipher_list_by_id);
}
}
return (NULL);
}
/** The old interface to get the same thing as SSL_get_ciphers() */
const char *SSL_get_cipher_list(const SSL *s, int n)
{
const SSL_CIPHER *c;
STACK_OF(SSL_CIPHER) *sk;
if (s == NULL)
return (NULL);
sk = SSL_get_ciphers(s);
if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
return (NULL);
c = sk_SSL_CIPHER_value(sk, n);
if (c == NULL)
return (NULL);
return (c->name);
}
/** return a STACK of the ciphers available for the SSL_CTX and in order of
* preference */
STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
{
if (ctx != NULL)
return ctx->cipher_list;
return NULL;
}
/** specify the ciphers to be used by default by the SSL_CTX */
int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
{
STACK_OF(SSL_CIPHER) *sk;
sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
&ctx->cipher_list_by_id, str, ctx->cert);
/*
* ssl_create_cipher_list may return an empty stack if it was unable to
* find a cipher matching the given rule string (for example if the rule
* string specifies a cipher which has been disabled). This is not an
* error as far as ssl_create_cipher_list is concerned, and hence
* ctx->cipher_list and ctx->cipher_list_by_id has been updated.
*/
if (sk == NULL)
return 0;
else if (sk_SSL_CIPHER_num(sk) == 0) {
SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
/** specify the ciphers to be used by the SSL */
int SSL_set_cipher_list(SSL *s, const char *str)
{
STACK_OF(SSL_CIPHER) *sk;
sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
&s->cipher_list_by_id, str, s->cert);
/* see comment in SSL_CTX_set_cipher_list */
if (sk == NULL)
return 0;
else if (sk_SSL_CIPHER_num(sk) == 0) {
SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
{
char *p;
STACK_OF(SSL_CIPHER) *sk;
const SSL_CIPHER *c;
int i;
if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
return (NULL);
p = buf;
sk = s->session->ciphers;
if (sk_SSL_CIPHER_num(sk) == 0)
return NULL;
for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
int n;
c = sk_SSL_CIPHER_value(sk, i);
n = strlen(c->name);
if (n + 1 > len) {
if (p != buf)
--p;
*p = '\0';
return buf;
}
memcpy(p, c->name, n + 1);
p += n;
*(p++) = ':';
len -= n + 1;
}
p[-1] = '\0';
return (buf);
}
/** return a servername extension value if provided in Client Hello, or NULL.
* So far, only host_name types are defined (RFC 3546).
*/
const char *SSL_get_servername(const SSL *s, const int type)
{
if (type != TLSEXT_NAMETYPE_host_name)
return NULL;
return s->session && !s->tlsext_hostname ?
s->session->tlsext_hostname : s->tlsext_hostname;
}
int SSL_get_servername_type(const SSL *s)
{
if (s->session
&& (!s->tlsext_hostname ? s->session->
tlsext_hostname : s->tlsext_hostname))
return TLSEXT_NAMETYPE_host_name;
return -1;
}
/*
* SSL_select_next_proto implements the standard protocol selection. It is
* expected that this function is called from the callback set by
* SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
* vector of 8-bit, length prefixed byte strings. The length byte itself is
* not included in the length. A byte string of length 0 is invalid. No byte
* string may be truncated. The current, but experimental algorithm for
* selecting the protocol is: 1) If the server doesn't support NPN then this
* is indicated to the callback. In this case, the client application has to
* abort the connection or have a default application level protocol. 2) If
* the server supports NPN, but advertises an empty list then the client
* selects the first protcol in its list, but indicates via the API that this
* fallback case was enacted. 3) Otherwise, the client finds the first
* protocol in the server's list that it supports and selects this protocol.
* This is because it's assumed that the server has better information about
* which protocol a client should use. 4) If the client doesn't support any
* of the server's advertised protocols, then this is treated the same as
* case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
* found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
*/
int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
const unsigned char *server,
unsigned int server_len,
const unsigned char *client,
unsigned int client_len)
{
unsigned int i, j;
const unsigned char *result;
int status = OPENSSL_NPN_UNSUPPORTED;
/*
* For each protocol in server preference order, see if we support it.
*/
for (i = 0; i < server_len;) {
for (j = 0; j < client_len;) {
if (server[i] == client[j] &&
memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
/* We found a match */
result = &server[i];
status = OPENSSL_NPN_NEGOTIATED;
goto found;
}
j += client[j];
j++;
}
i += server[i];
i++;
}
/* There's no overlap between our protocols and the server's list. */
result = client;
status = OPENSSL_NPN_NO_OVERLAP;
found:
*out = (unsigned char *)result + 1;
*outlen = result[0];
return status;
}
#ifndef OPENSSL_NO_NEXTPROTONEG
/*
* SSL_get0_next_proto_negotiated sets *data and *len to point to the
* client's requested protocol for this connection and returns 0. If the
* client didn't request any protocol, then *data is set to NULL. Note that
* the client can request any protocol it chooses. The value returned from
* this function need not be a member of the list of supported protocols
* provided by the callback.
*/
void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
unsigned *len)
{
*data = s->next_proto_negotiated;
if (!*data) {
*len = 0;
} else {
*len = s->next_proto_negotiated_len;
}
}
/*
* SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when
* a TLS server needs a list of supported protocols for Next Protocol
* Negotiation. The returned list must be in wire format. The list is
* returned by setting |out| to point to it and |outlen| to its length. This
* memory will not be modified, but one should assume that the SSL* keeps a
* reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
* wishes to advertise. Otherwise, no such extension will be included in the
* ServerHello.
*/
void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *ctx,
int (*cb) (SSL *ssl,
const unsigned char
**out,
unsigned int *outlen,
void *arg), void *arg)
{
ctx->next_protos_advertised_cb = cb;
ctx->next_protos_advertised_cb_arg = arg;
}
/*
* SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
* client needs to select a protocol from the server's provided list. |out|
* must be set to point to the selected protocol (which may be within |in|).
* The length of the protocol name must be written into |outlen|. The
* server's advertised protocols are provided in |in| and |inlen|. The
* callback can assume that |in| is syntactically valid. The client must
* select a protocol. It is fatal to the connection if this callback returns
* a value other than SSL_TLSEXT_ERR_OK.
*/
void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx,
int (*cb) (SSL *s, unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
ctx->next_proto_select_cb = cb;
ctx->next_proto_select_cb_arg = arg;
}
#endif
/*
* SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
* |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
* length-prefixed strings). Returns 0 on success.
*/
int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
unsigned int protos_len)
{
OPENSSL_free(ctx->alpn_client_proto_list);
ctx->alpn_client_proto_list = OPENSSL_memdup(protos, protos_len);
if (ctx->alpn_client_proto_list == NULL) {
SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
return 1;
}
ctx->alpn_client_proto_list_len = protos_len;
return 0;
}
/*
* SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
* |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
* length-prefixed strings). Returns 0 on success.
*/
int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
unsigned int protos_len)
{
OPENSSL_free(ssl->alpn_client_proto_list);
ssl->alpn_client_proto_list = OPENSSL_memdup(protos, protos_len);
if (ssl->alpn_client_proto_list == NULL) {
SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
return 1;
}
ssl->alpn_client_proto_list_len = protos_len;
return 0;
}
/*
* SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
* called during ClientHello processing in order to select an ALPN protocol
* from the client's list of offered protocols.
*/
void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
int (*cb) (SSL *ssl,
const unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
ctx->alpn_select_cb = cb;
ctx->alpn_select_cb_arg = arg;
}
/*
* SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from
* |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name
* (not including the leading length-prefix byte). If the server didn't
* respond with a negotiated protocol then |*len| will be zero.
*/
void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
unsigned int *len)
{
*data = NULL;
if (ssl->s3)
*data = ssl->s3->alpn_selected;
if (*data == NULL)
*len = 0;
else
*len = ssl->s3->alpn_selected_len;
}
int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen,
const unsigned char *p, size_t plen,
int use_context)
{
if (s->version < TLS1_VERSION)
return -1;
return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
llen, p, plen,
use_context);
}
static unsigned long ssl_session_hash(const SSL_SESSION *a)
{
unsigned long l;
l = (unsigned long)
((unsigned int)a->session_id[0]) |
((unsigned int)a->session_id[1] << 8L) |
((unsigned long)a->session_id[2] << 16L) |
((unsigned long)a->session_id[3] << 24L);
return (l);
}
/*
* NB: If this function (or indeed the hash function which uses a sort of
* coarser function than this one) is changed, ensure
* SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
* being able to construct an SSL_SESSION that will collide with any existing
* session with a matching session ID.
*/
static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
{
if (a->ssl_version != b->ssl_version)
return (1);
if (a->session_id_length != b->session_id_length)
return (1);
return (memcmp(a->session_id, b->session_id, a->session_id_length));
}
/*
* These wrapper functions should remain rather than redeclaring
* SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
* variable. The reason is that the functions aren't static, they're exposed
* via ssl.h.
*/
SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
{
SSL_CTX *ret = NULL;
if (meth == NULL) {
SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
return (NULL);
}
if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
return NULL;
if (FIPS_mode() && (meth->version < TLS1_VERSION)) {
SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_AT_LEAST_TLS_1_0_NEEDED_IN_FIPS_MODE);
return NULL;
}
if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
goto err;
}
ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL)
goto err;
ret->method = meth;
ret->min_proto_version = 0;
ret->max_proto_version = 0;
ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
/* We take the system default. */
ret->session_timeout = meth->get_timeout();
ret->references = 1;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
OPENSSL_free(ret);
return NULL;
}
ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
ret->verify_mode = SSL_VERIFY_NONE;
if ((ret->cert = ssl_cert_new()) == NULL)
goto err;
ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
if (ret->sessions == NULL)
goto err;
ret->cert_store = X509_STORE_new();
if (ret->cert_store == NULL)
goto err;
#ifndef OPENSSL_NO_CT
ret->ctlog_store = CTLOG_STORE_new();
if (ret->ctlog_store == NULL)
goto err;
#endif
if (!ssl_create_cipher_list(ret->method,
&ret->cipher_list, &ret->cipher_list_by_id,
SSL_DEFAULT_CIPHER_LIST, ret->cert)
|| sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
goto err2;
}
ret->param = X509_VERIFY_PARAM_new();
if (ret->param == NULL)
goto err;
if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
goto err2;
}
if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
goto err2;
}
if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL)
goto err;
if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
goto err;
/* No compression for DTLS */
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
ret->comp_methods = SSL_COMP_get_compression_methods();
ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
/* Setup RFC5077 ticket keys */
if ((RAND_bytes(ret->tlsext_tick_key_name, sizeof(ret->tlsext_tick_key_name)) <= 0)
|| (RAND_bytes(ret->tlsext_tick_hmac_key, sizeof(ret->tlsext_tick_hmac_key)) <= 0)
|| (RAND_bytes(ret->tlsext_tick_aes_key, sizeof(ret->tlsext_tick_aes_key)) <= 0))
ret->options |= SSL_OP_NO_TICKET;
#ifndef OPENSSL_NO_SRP
if (!SSL_CTX_SRP_CTX_init(ret))
goto err;
#endif
#ifndef OPENSSL_NO_ENGINE
# ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
# define eng_strx(x) #x
# define eng_str(x) eng_strx(x)
/* Use specific client engine automatically... ignore errors */
{
ENGINE *eng;
eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
if (!eng) {
ERR_clear_error();
ENGINE_load_builtin_engines();
eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
}
if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
ERR_clear_error();
}
# endif
#endif
/*
* Default is to connect to non-RI servers. When RI is more widely
* deployed might change this.
*/
ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
/*
* Disable compression by default to prevent CRIME. Applications can
* re-enable compression by configuring
* SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
* or by using the SSL_CONF library.
*/
ret->options |= SSL_OP_NO_COMPRESSION;
ret->tlsext_status_type = -1;
return ret;
err:
SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
err2:
SSL_CTX_free(ret);
return NULL;
}
int SSL_CTX_up_ref(SSL_CTX *ctx)
{
int i;
if (CRYPTO_atomic_add(&ctx->references, 1, &i, ctx->lock) <= 0)
return 0;
REF_PRINT_COUNT("SSL_CTX", ctx);
REF_ASSERT_ISNT(i < 2);
return ((i > 1) ? 1 : 0);
}
void SSL_CTX_free(SSL_CTX *a)
{
int i;
if (a == NULL)
return;
CRYPTO_atomic_add(&a->references, -1, &i, a->lock);
REF_PRINT_COUNT("SSL_CTX", a);
if (i > 0)
return;
REF_ASSERT_ISNT(i < 0);
X509_VERIFY_PARAM_free(a->param);
dane_ctx_final(&a->dane);
/*
* Free internal session cache. However: the remove_cb() may reference
* the ex_data of SSL_CTX, thus the ex_data store can only be removed
* after the sessions were flushed.
* As the ex_data handling routines might also touch the session cache,
* the most secure solution seems to be: empty (flush) the cache, then
* free ex_data, then finally free the cache.
* (See ticket [openssl.org #212].)
*/
if (a->sessions != NULL)
SSL_CTX_flush_sessions(a, 0);
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
lh_SSL_SESSION_free(a->sessions);
X509_STORE_free(a->cert_store);
#ifndef OPENSSL_NO_CT
CTLOG_STORE_free(a->ctlog_store);
#endif
sk_SSL_CIPHER_free(a->cipher_list);
sk_SSL_CIPHER_free(a->cipher_list_by_id);
ssl_cert_free(a->cert);
sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free);
sk_X509_pop_free(a->extra_certs, X509_free);
a->comp_methods = NULL;
#ifndef OPENSSL_NO_SRTP
sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
#endif
#ifndef OPENSSL_NO_SRP
SSL_CTX_SRP_CTX_free(a);
#endif
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(a->client_cert_engine);
#endif
#ifndef OPENSSL_NO_EC
OPENSSL_free(a->tlsext_ecpointformatlist);
OPENSSL_free(a->tlsext_ellipticcurvelist);
#endif
OPENSSL_free(a->alpn_client_proto_list);
CRYPTO_THREAD_lock_free(a->lock);
OPENSSL_free(a);
}
void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
{
ctx->default_passwd_callback = cb;
}
void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
{
ctx->default_passwd_callback_userdata = u;
}
pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
{
return ctx->default_passwd_callback;
}
void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
{
return ctx->default_passwd_callback_userdata;
}
void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
{
s->default_passwd_callback = cb;
}
void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
{
s->default_passwd_callback_userdata = u;
}
pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
{
return s->default_passwd_callback;
}
void *SSL_get_default_passwd_cb_userdata(SSL *s)
{
return s->default_passwd_callback_userdata;
}
void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
int (*cb) (X509_STORE_CTX *, void *),
void *arg)
{
ctx->app_verify_callback = cb;
ctx->app_verify_arg = arg;
}
void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*cb) (int, X509_STORE_CTX *))
{
ctx->verify_mode = mode;
ctx->default_verify_callback = cb;
}
void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
{
X509_VERIFY_PARAM_set_depth(ctx->param, depth);
}
void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg),
void *arg)
{
ssl_cert_set_cert_cb(c->cert, cb, arg);
}
void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
{
ssl_cert_set_cert_cb(s->cert, cb, arg);
}
void ssl_set_masks(SSL *s)
{
#if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_GOST)
CERT_PKEY *cpk;
#endif
CERT *c = s->cert;
uint32_t *pvalid = s->s3->tmp.valid_flags;
int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
unsigned long mask_k, mask_a;
#ifndef OPENSSL_NO_EC
int have_ecc_cert, ecdsa_ok;
X509 *x = NULL;
#endif
if (c == NULL)
return;
#ifndef OPENSSL_NO_DH
dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
#else
dh_tmp = 0;
#endif
rsa_enc = pvalid[SSL_PKEY_RSA_ENC] & CERT_PKEY_VALID;
rsa_sign = pvalid[SSL_PKEY_RSA_SIGN] & CERT_PKEY_SIGN;
dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_SIGN;
#ifndef OPENSSL_NO_EC
have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
#endif
mask_k = 0;
mask_a = 0;
#ifdef CIPHER_DEBUG
fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
dh_tmp, rsa_enc, rsa_sign, dsa_sign);
#endif
#ifndef OPENSSL_NO_GOST
cpk = &(c->pkeys[SSL_PKEY_GOST12_512]);
if (cpk->x509 != NULL && cpk->privatekey != NULL) {
mask_k |= SSL_kGOST;
mask_a |= SSL_aGOST12;
}
cpk = &(c->pkeys[SSL_PKEY_GOST12_256]);
if (cpk->x509 != NULL && cpk->privatekey != NULL) {
mask_k |= SSL_kGOST;
mask_a |= SSL_aGOST12;
}
cpk = &(c->pkeys[SSL_PKEY_GOST01]);
if (cpk->x509 != NULL && cpk->privatekey != NULL) {
mask_k |= SSL_kGOST;
mask_a |= SSL_aGOST01;
}
#endif
if (rsa_enc)
mask_k |= SSL_kRSA;
if (dh_tmp)
mask_k |= SSL_kDHE;
if (rsa_enc || rsa_sign) {
mask_a |= SSL_aRSA;
}
if (dsa_sign) {
mask_a |= SSL_aDSS;
}
mask_a |= SSL_aNULL;
/*
* An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
* depending on the key usage extension.
*/
#ifndef OPENSSL_NO_EC
if (have_ecc_cert) {
uint32_t ex_kusage;
cpk = &c->pkeys[SSL_PKEY_ECC];
x = cpk->x509;
ex_kusage = X509_get_key_usage(x);
ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
ecdsa_ok = 0;
if (ecdsa_ok)
mask_a |= SSL_aECDSA;
}
#endif
#ifndef OPENSSL_NO_EC
mask_k |= SSL_kECDHE;
#endif
#ifndef OPENSSL_NO_PSK
mask_k |= SSL_kPSK;
mask_a |= SSL_aPSK;
if (mask_k & SSL_kRSA)
mask_k |= SSL_kRSAPSK;
if (mask_k & SSL_kDHE)
mask_k |= SSL_kDHEPSK;
if (mask_k & SSL_kECDHE)
mask_k |= SSL_kECDHEPSK;
#endif
s->s3->tmp.mask_k = mask_k;
s->s3->tmp.mask_a = mask_a;
}
#ifndef OPENSSL_NO_EC
int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
{
if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
/* key usage, if present, must allow signing */
if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
SSL_R_ECC_CERT_NOT_FOR_SIGNING);
return 0;
}
}
return 1; /* all checks are ok */
}
#endif
static int ssl_get_server_cert_index(const SSL *s)
{
int idx;
idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
if (idx == SSL_PKEY_RSA_ENC && !s->cert->pkeys[SSL_PKEY_RSA_ENC].x509)
idx = SSL_PKEY_RSA_SIGN;
if (idx == SSL_PKEY_GOST_EC) {
if (s->cert->pkeys[SSL_PKEY_GOST12_512].x509)
idx = SSL_PKEY_GOST12_512;
else if (s->cert->pkeys[SSL_PKEY_GOST12_256].x509)
idx = SSL_PKEY_GOST12_256;
else if (s->cert->pkeys[SSL_PKEY_GOST01].x509)
idx = SSL_PKEY_GOST01;
else
idx = -1;
}
if (idx == -1)
SSLerr(SSL_F_SSL_GET_SERVER_CERT_INDEX, ERR_R_INTERNAL_ERROR);
return idx;
}
CERT_PKEY *ssl_get_server_send_pkey(SSL *s)
{
CERT *c;
int i;
c = s->cert;
if (!s->s3 || !s->s3->tmp.new_cipher)
return NULL;
ssl_set_masks(s);
i = ssl_get_server_cert_index(s);
/* This may or may not be an error. */
if (i < 0)
return NULL;
/* May be NULL. */
return &c->pkeys[i];
}
EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *cipher,
const EVP_MD **pmd)
{
unsigned long alg_a;
CERT *c;
int idx = -1;
alg_a = cipher->algorithm_auth;
c = s->cert;
if ((alg_a & SSL_aDSS) &&
(c->pkeys[SSL_PKEY_DSA_SIGN].privatekey != NULL))
idx = SSL_PKEY_DSA_SIGN;
else if (alg_a & SSL_aRSA) {
if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL)
idx = SSL_PKEY_RSA_SIGN;
else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL)
idx = SSL_PKEY_RSA_ENC;
} else if ((alg_a & SSL_aECDSA) &&
(c->pkeys[SSL_PKEY_ECC].privatekey != NULL))
idx = SSL_PKEY_ECC;
if (idx == -1) {
SSLerr(SSL_F_SSL_GET_SIGN_PKEY, ERR_R_INTERNAL_ERROR);
return (NULL);
}
if (pmd)
*pmd = s->s3->tmp.md[idx];
return c->pkeys[idx].privatekey;
}
int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
size_t *serverinfo_length)
{
CERT *c = NULL;
int i = 0;
*serverinfo_length = 0;
c = s->cert;
i = ssl_get_server_cert_index(s);
if (i == -1)
return 0;
if (c->pkeys[i].serverinfo == NULL)
return 0;
*serverinfo = c->pkeys[i].serverinfo;
*serverinfo_length = c->pkeys[i].serverinfo_length;
return 1;
}
void ssl_update_cache(SSL *s, int mode)
{
int i;
/*
* If the session_id_length is 0, we are not supposed to cache it, and it
* would be rather hard to do anyway :-)
*/
if (s->session->session_id_length == 0)
return;
i = s->session_ctx->session_cache_mode;
if ((i & mode) && (!s->hit)
&& ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
|| SSL_CTX_add_session(s->session_ctx, s->session))
&& (s->session_ctx->new_session_cb != NULL)) {
SSL_SESSION_up_ref(s->session);
if (!s->session_ctx->new_session_cb(s, s->session))
SSL_SESSION_free(s->session);
}
/* auto flush every 255 connections */
if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
if ((((mode & SSL_SESS_CACHE_CLIENT)
? s->session_ctx->stats.sess_connect_good
: s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
}
}
}
const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
{
return ctx->method;
}
const SSL_METHOD *SSL_get_ssl_method(SSL *s)
{
return (s->method);
}
int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
{
int ret = 1;
if (s->method != meth) {
const SSL_METHOD *sm = s->method;
int (*hf)(SSL *) = s->handshake_func;
if (sm->version == meth->version)
s->method = meth;
else {
sm->ssl_free(s);
s->method = meth;
ret = s->method->ssl_new(s);
}
if (hf == sm->ssl_connect)
s->handshake_func = meth->ssl_connect;
else if (hf == sm->ssl_accept)
s->handshake_func = meth->ssl_accept;
}
return (ret);
}
int SSL_get_error(const SSL *s, int i)
{
int reason;
unsigned long l;
BIO *bio;
if (i > 0)
return (SSL_ERROR_NONE);
/*
* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
* where we do encode the error
*/
if ((l = ERR_peek_error()) != 0) {
if (ERR_GET_LIB(l) == ERR_LIB_SYS)
return (SSL_ERROR_SYSCALL);
else
return (SSL_ERROR_SSL);
}
if (i < 0) {
if (SSL_want_read(s)) {
bio = SSL_get_rbio(s);
if (BIO_should_read(bio))
return (SSL_ERROR_WANT_READ);
else if (BIO_should_write(bio))
/*
* This one doesn't make too much sense ... We never try to write
* to the rbio, and an application program where rbio and wbio
* are separate couldn't even know what it should wait for.
* However if we ever set s->rwstate incorrectly (so that we have
* SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
* wbio *are* the same, this test works around that bug; so it
* might be safer to keep it.
*/
return (SSL_ERROR_WANT_WRITE);
else if (BIO_should_io_special(bio)) {
reason = BIO_get_retry_reason(bio);
if (reason == BIO_RR_CONNECT)
return (SSL_ERROR_WANT_CONNECT);
else if (reason == BIO_RR_ACCEPT)
return (SSL_ERROR_WANT_ACCEPT);
else
return (SSL_ERROR_SYSCALL); /* unknown */
}
}
if (SSL_want_write(s)) {
bio = SSL_get_wbio(s);
if (BIO_should_write(bio))
return (SSL_ERROR_WANT_WRITE);
else if (BIO_should_read(bio))
/*
* See above (SSL_want_read(s) with BIO_should_write(bio))
*/
return (SSL_ERROR_WANT_READ);
else if (BIO_should_io_special(bio)) {
reason = BIO_get_retry_reason(bio);
if (reason == BIO_RR_CONNECT)
return (SSL_ERROR_WANT_CONNECT);
else if (reason == BIO_RR_ACCEPT)
return (SSL_ERROR_WANT_ACCEPT);
else
return (SSL_ERROR_SYSCALL);
}
}
if (SSL_want_x509_lookup(s)) {
return (SSL_ERROR_WANT_X509_LOOKUP);
}
if (SSL_want_async(s)) {
return SSL_ERROR_WANT_ASYNC;
}
if (SSL_want_async_job(s)) {
return SSL_ERROR_WANT_ASYNC_JOB;
}
}
if (i == 0) {
if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
(s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
return (SSL_ERROR_ZERO_RETURN);
}
return (SSL_ERROR_SYSCALL);
}
static int ssl_do_handshake_intern(void *vargs)
{
struct ssl_async_args *args;
SSL *s;
args = (struct ssl_async_args *)vargs;
s = args->s;
return s->handshake_func(s);
}
int SSL_do_handshake(SSL *s)
{
int ret = 1;
if (s->handshake_func == NULL) {
SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
return -1;
}
s->method->ssl_renegotiate_check(s);
if (SSL_in_init(s) || SSL_in_before(s)) {
if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
struct ssl_async_args args;
args.s = s;
ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
} else {
ret = s->handshake_func(s);
}
}
return ret;
}
void SSL_set_accept_state(SSL *s)
{
s->server = 1;
s->shutdown = 0;
ossl_statem_clear(s);
s->handshake_func = s->method->ssl_accept;
clear_ciphers(s);
}
void SSL_set_connect_state(SSL *s)
{
s->server = 0;
s->shutdown = 0;
ossl_statem_clear(s);
s->handshake_func = s->method->ssl_connect;
clear_ciphers(s);
}
int ssl_undefined_function(SSL *s)
{
SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return (0);
}
int ssl_undefined_void_function(void)
{
SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return (0);
}
int ssl_undefined_const_function(const SSL *s)
{
return (0);
}
const SSL_METHOD *ssl_bad_method(int ver)
{
SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return (NULL);
}
const char *ssl_protocol_to_string(int version)
{
if (version == TLS1_2_VERSION)
return "TLSv1.2";
else if (version == TLS1_1_VERSION)
return "TLSv1.1";
else if (version == TLS1_VERSION)
return "TLSv1";
else if (version == SSL3_VERSION)
return "SSLv3";
else if (version == DTLS1_BAD_VER)
return "DTLSv0.9";
else if (version == DTLS1_VERSION)
return "DTLSv1";
else if (version == DTLS1_2_VERSION)
return "DTLSv1.2";
else
return ("unknown");
}
const char *SSL_get_version(const SSL *s)
{
return ssl_protocol_to_string(s->version);
}
SSL *SSL_dup(SSL *s)
{
STACK_OF(X509_NAME) *sk;
X509_NAME *xn;
SSL *ret;
int i;
/* If we're not quiescent, just up_ref! */
if (!SSL_in_init(s) || !SSL_in_before(s)) {
CRYPTO_atomic_add(&s->references, 1, &i, s->lock);
return s;
}
/*
* Otherwise, copy configuration state, and session if set.
*/
if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
return (NULL);
if (s->session != NULL) {
/*
* Arranges to share the same session via up_ref. This "copies"
* session-id, SSL_METHOD, sid_ctx, and 'cert'
*/
if (!SSL_copy_session_id(ret, s))
goto err;
} else {
/*
* No session has been established yet, so we have to expect that
* s->cert or ret->cert will be changed later -- they should not both
* point to the same object, and thus we can't use
* SSL_copy_session_id.
*/
if (!SSL_set_ssl_method(ret, s->method))
goto err;
if (s->cert != NULL) {
ssl_cert_free(ret->cert);
ret->cert = ssl_cert_dup(s->cert);
if (ret->cert == NULL)
goto err;
}
if (!SSL_set_session_id_context(ret, s->sid_ctx, s->sid_ctx_length))
goto err;
}
if (!ssl_dane_dup(ret, s))
goto err;
ret->version = s->version;
ret->options = s->options;
ret->mode = s->mode;
SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
ret->msg_callback = s->msg_callback;
ret->msg_callback_arg = s->msg_callback_arg;
SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
ret->generate_session_id = s->generate_session_id;
SSL_set_info_callback(ret, SSL_get_info_callback(s));
/* copy app data, a little dangerous perhaps */
if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
goto err;
/* setup rbio, and wbio */
if (s->rbio != NULL) {
if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
goto err;
}
if (s->wbio != NULL) {
if (s->wbio != s->rbio) {
if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
goto err;
} else
ret->wbio = ret->rbio;
}
ret->server = s->server;
if (s->handshake_func) {
if (s->server)
SSL_set_accept_state(ret);
else
SSL_set_connect_state(ret);
}
ret->shutdown = s->shutdown;
ret->hit = s->hit;
ret->default_passwd_callback = s->default_passwd_callback;
ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
X509_VERIFY_PARAM_inherit(ret->param, s->param);
/* dup the cipher_list and cipher_list_by_id stacks */
if (s->cipher_list != NULL) {
if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
goto err;
}
if (s->cipher_list_by_id != NULL)
if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
== NULL)
goto err;
/* Dup the client_CA list */
if (s->client_CA != NULL) {
if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL)
goto err;
ret->client_CA = sk;
for (i = 0; i < sk_X509_NAME_num(sk); i++) {
xn = sk_X509_NAME_value(sk, i);
if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
X509_NAME_free(xn);
goto err;
}
}
}
return ret;
err:
SSL_free(ret);
return NULL;
}
void ssl_clear_cipher_ctx(SSL *s)
{
if (s->enc_read_ctx != NULL) {
EVP_CIPHER_CTX_free(s->enc_read_ctx);
s->enc_read_ctx = NULL;
}
if (s->enc_write_ctx != NULL) {
EVP_CIPHER_CTX_free(s->enc_write_ctx);
s->enc_write_ctx = NULL;
}
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->expand);
s->expand = NULL;
COMP_CTX_free(s->compress);
s->compress = NULL;
#endif
}
X509 *SSL_get_certificate(const SSL *s)
{
if (s->cert != NULL)
return (s->cert->key->x509);
else
return (NULL);
}
EVP_PKEY *SSL_get_privatekey(const SSL *s)
{
if (s->cert != NULL)
return (s->cert->key->privatekey);
else
return (NULL);
}
X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
{
if (ctx->cert != NULL)
return ctx->cert->key->x509;
else
return NULL;
}
EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
{
if (ctx->cert != NULL)
return ctx->cert->key->privatekey;
else
return NULL;
}
const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
{
if ((s->session != NULL) && (s->session->cipher != NULL))
return (s->session->cipher);
return (NULL);
}
const COMP_METHOD *SSL_get_current_compression(SSL *s)
{
#ifndef OPENSSL_NO_COMP
return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
#else
return NULL;
#endif
}
const COMP_METHOD *SSL_get_current_expansion(SSL *s)
{
#ifndef OPENSSL_NO_COMP
return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
#else
return NULL;
#endif
}
int ssl_init_wbio_buffer(SSL *s)
{
BIO *bbio;
if (s->bbio == NULL) {
bbio = BIO_new(BIO_f_buffer());
if (bbio == NULL)
return 0;
s->bbio = bbio;
s->wbio = BIO_push(bbio, s->wbio);
} else {
bbio = s->bbio;
(void)BIO_reset(bbio);
}
if (!BIO_set_read_buffer_size(bbio, 1)) {
SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
return 0;
}
return 1;
}
void ssl_free_wbio_buffer(SSL *s)
{
/* callers ensure s is never null */
if (s->bbio == NULL)
return;
if (s->bbio == s->wbio) {
/* remove buffering */
s->wbio = BIO_pop(s->wbio);
assert(s->wbio != NULL);
}
BIO_free(s->bbio);
s->bbio = NULL;
}
void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
{
ctx->quiet_shutdown = mode;
}
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
{
return (ctx->quiet_shutdown);
}
void SSL_set_quiet_shutdown(SSL *s, int mode)
{
s->quiet_shutdown = mode;
}
int SSL_get_quiet_shutdown(const SSL *s)
{
return (s->quiet_shutdown);
}
void SSL_set_shutdown(SSL *s, int mode)
{
s->shutdown = mode;
}
int SSL_get_shutdown(const SSL *s)
{
return s->shutdown;
}
int SSL_version(const SSL *s)
{
return s->version;
}
int SSL_client_version(const SSL *s)
{
return s->client_version;
}
SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
{
return ssl->ctx;
}
SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
{
CERT *new_cert;
if (ssl->ctx == ctx)
return ssl->ctx;
if (ctx == NULL)
ctx = ssl->initial_ctx;
new_cert = ssl_cert_dup(ctx->cert);
if (new_cert == NULL) {
return NULL;
}
ssl_cert_free(ssl->cert);
ssl->cert = new_cert;
/*
* Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
* so setter APIs must prevent invalid lengths from entering the system.
*/
OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
/*
* If the session ID context matches that of the parent SSL_CTX,
* inherit it from the new SSL_CTX as well. If however the context does
* not match (i.e., it was set per-ssl with SSL_set_session_id_context),
* leave it unchanged.
*/
if ((ssl->ctx != NULL) &&
(ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
(memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
ssl->sid_ctx_length = ctx->sid_ctx_length;
memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
}
SSL_CTX_up_ref(ctx);
SSL_CTX_free(ssl->ctx); /* decrement reference count */
ssl->ctx = ctx;
return ssl->ctx;
}
int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
{
return (X509_STORE_set_default_paths(ctx->cert_store));
}
int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
{
X509_LOOKUP *lookup;
lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
if (lookup == NULL)
return 0;
X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
/* Clear any errors if the default directory does not exist */
ERR_clear_error();
return 1;
}
int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
{
X509_LOOKUP *lookup;
lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
if (lookup == NULL)
return 0;
X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
/* Clear any errors if the default file does not exist */
ERR_clear_error();
return 1;
}
int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath)
{
return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
}
void SSL_set_info_callback(SSL *ssl,
void (*cb) (const SSL *ssl, int type, int val))
{
ssl->info_callback = cb;
}
/*
* One compiler (Diab DCC) doesn't like argument names in returned function
* pointer.
*/
void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
int /* type */ ,
int /* val */ ) {
return ssl->info_callback;
}
void SSL_set_verify_result(SSL *ssl, long arg)
{
ssl->verify_result = arg;
}
long SSL_get_verify_result(const SSL *ssl)
{
return (ssl->verify_result);
}
size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
{
if (outlen == 0)
return sizeof(ssl->s3->client_random);
if (outlen > sizeof(ssl->s3->client_random))
outlen = sizeof(ssl->s3->client_random);
memcpy(out, ssl->s3->client_random, outlen);
return outlen;
}
size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
{
if (outlen == 0)
return sizeof(ssl->s3->server_random);
if (outlen > sizeof(ssl->s3->server_random))
outlen = sizeof(ssl->s3->server_random);
memcpy(out, ssl->s3->server_random, outlen);
return outlen;
}
size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
unsigned char *out, size_t outlen)
{
if (session->master_key_length < 0) {
/* Should never happen */
return 0;
}
if (outlen == 0)
return session->master_key_length;
if (outlen > (size_t)session->master_key_length)
outlen = session->master_key_length;
memcpy(out, session->master_key, outlen);
return outlen;
}
int SSL_set_ex_data(SSL *s, int idx, void *arg)
{
return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
}
void *SSL_get_ex_data(const SSL *s, int idx)
{
return (CRYPTO_get_ex_data(&s->ex_data, idx));
}
int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
{
return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
}
void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
{
return (CRYPTO_get_ex_data(&s->ex_data, idx));
}
int ssl_ok(SSL *s)
{
return (1);
}
X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
{
return (ctx->cert_store);
}
void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
{
X509_STORE_free(ctx->cert_store);
ctx->cert_store = store;
}
int SSL_want(const SSL *s)
{
return (s->rwstate);
}
/**
* \brief Set the callback for generating temporary DH keys.
* \param ctx the SSL context.
* \param dh the callback
*/
#ifndef OPENSSL_NO_DH
void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*dh) (SSL *ssl, int is_export,
int keylength))
{
SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
}
void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
int keylength))
{
SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
}
#endif
#ifndef OPENSSL_NO_PSK
int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
{
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT,
SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
OPENSSL_free(ctx->cert->psk_identity_hint);
if (identity_hint != NULL) {
ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
if (ctx->cert->psk_identity_hint == NULL)
return 0;
} else
ctx->cert->psk_identity_hint = NULL;
return 1;
}
int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
{
if (s == NULL)
return 0;
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
OPENSSL_free(s->cert->psk_identity_hint);
if (identity_hint != NULL) {
s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
if (s->cert->psk_identity_hint == NULL)
return 0;
} else
s->cert->psk_identity_hint = NULL;
return 1;
}
const char *SSL_get_psk_identity_hint(const SSL *s)
{
if (s == NULL || s->session == NULL)
return NULL;
return (s->session->psk_identity_hint);
}
const char *SSL_get_psk_identity(const SSL *s)
{
if (s == NULL || s->session == NULL)
return NULL;
return (s->session->psk_identity);
}
void SSL_set_psk_client_callback(SSL *s,
unsigned int (*cb) (SSL *ssl,
const char *hint,
char *identity,
unsigned int
max_identity_len,
unsigned char *psk,
unsigned int
max_psk_len))
{
s->psk_client_callback = cb;
}
void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
unsigned int (*cb) (SSL *ssl,
const char *hint,
char *identity,
unsigned int
max_identity_len,
unsigned char *psk,
unsigned int
max_psk_len))
{
ctx->psk_client_callback = cb;
}
void SSL_set_psk_server_callback(SSL *s,
unsigned int (*cb) (SSL *ssl,
const char *identity,
unsigned char *psk,
unsigned int
max_psk_len))
{
s->psk_server_callback = cb;
}
void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
unsigned int (*cb) (SSL *ssl,
const char *identity,
unsigned char *psk,
unsigned int
max_psk_len))
{
ctx->psk_server_callback = cb;
}
#endif
void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
void (*cb) (int write_p, int version,
int content_type, const void *buf,
size_t len, SSL *ssl, void *arg))
{
SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
}
void SSL_set_msg_callback(SSL *ssl,
void (*cb) (int write_p, int version,
int content_type, const void *buf,
size_t len, SSL *ssl, void *arg))
{
SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
}
void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
int (*cb) (SSL *ssl,
int
is_forward_secure))
{
SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
(void (*)(void))cb);
}
void SSL_set_not_resumable_session_callback(SSL *ssl,
int (*cb) (SSL *ssl,
int is_forward_secure))
{
SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
(void (*)(void))cb);
}
/*
* Allocates new EVP_MD_CTX and sets pointer to it into given pointer
* variable, freeing EVP_MD_CTX previously stored in that variable, if any.
* If EVP_MD pointer is passed, initializes ctx with this md Returns newly
* allocated ctx;
*/
EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
{
ssl_clear_hash_ctx(hash);
*hash = EVP_MD_CTX_new();
if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
EVP_MD_CTX_free(*hash);
*hash = NULL;
return NULL;
}
return *hash;
}
void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
{
if (*hash)
EVP_MD_CTX_free(*hash);
*hash = NULL;
}
/* Retrieve handshake hashes */
int ssl_handshake_hash(SSL *s, unsigned char *out, int outlen)
{
EVP_MD_CTX *ctx = NULL;
EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
int ret = EVP_MD_CTX_size(hdgst);
if (ret < 0 || ret > outlen) {
ret = 0;
goto err;
}
ctx = EVP_MD_CTX_new();
if (ctx == NULL) {
ret = 0;
goto err;
}
if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
|| EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
ret = 0;
err:
EVP_MD_CTX_free(ctx);
return ret;
}
int SSL_session_reused(SSL *s)
{
return s->hit;
}
int SSL_is_server(SSL *s)
{
return s->server;
}
#if OPENSSL_API_COMPAT < 0x10100000L
void SSL_set_debug(SSL *s, int debug)
{
/* Old function was do-nothing anyway... */
(void)s;
(void)debug;
}
#endif
void SSL_set_security_level(SSL *s, int level)
{
s->cert->sec_level = level;
}
int SSL_get_security_level(const SSL *s)
{
return s->cert->sec_level;
}
void SSL_set_security_callback(SSL *s,
int (*cb) (const SSL *s, const SSL_CTX *ctx, int op,
int bits, int nid, void *other,
void *ex))
{
s->cert->sec_cb = cb;
}
int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, const SSL_CTX *ctx, int op,
int bits, int nid,
void *other, void *ex) {
return s->cert->sec_cb;
}
void SSL_set0_security_ex_data(SSL *s, void *ex)
{
s->cert->sec_ex = ex;
}
void *SSL_get0_security_ex_data(const SSL *s)
{
return s->cert->sec_ex;
}
void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
{
ctx->cert->sec_level = level;
}
int SSL_CTX_get_security_level(const SSL_CTX *ctx)
{
return ctx->cert->sec_level;
}
void SSL_CTX_set_security_callback(SSL_CTX *ctx,
int (*cb) (const SSL *s, const SSL_CTX *ctx, int op,
int bits, int nid, void *other,
void *ex))
{
ctx->cert->sec_cb = cb;
}
int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
const SSL_CTX *ctx,
int op, int bits,
int nid,
void *other,
void *ex) {
return ctx->cert->sec_cb;
}
void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
{
ctx->cert->sec_ex = ex;
}
void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
{
return ctx->cert->sec_ex;
}
/*
* Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
* can return unsigned long, instead of the generic long return value from the
* control interface.
*/
unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
{
return ctx->options;
}
unsigned long SSL_get_options(const SSL* s)
{
return s->options;
}
unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
{
return ctx->options |= op;
}
unsigned long SSL_set_options(SSL *s, unsigned long op)
{
return s->options |= op;
}
unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
{
return ctx->options &= ~op;
}
unsigned long SSL_clear_options(SSL *s, unsigned long op)
{
return s->options &= ~op;
}
STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
{
return s->verified_chain;
}
IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
#ifndef OPENSSL_NO_CT
/*
* Moves SCTs from the |src| stack to the |dst| stack.
* The source of each SCT will be set to |origin|.
* If |dst| points to a NULL pointer, a new stack will be created and owned by
* the caller.
* Returns the number of SCTs moved, or a negative integer if an error occurs.
*/
static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, sct_source_t origin)
{
int scts_moved = 0;
SCT *sct = NULL;
if (*dst == NULL) {
*dst = sk_SCT_new_null();
if (*dst == NULL) {
SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
goto err;
}
}
while ((sct = sk_SCT_pop(src)) != NULL) {
if (SCT_set_source(sct, origin) != 1)
goto err;
if (sk_SCT_push(*dst, sct) <= 0)
goto err;
scts_moved += 1;
}
return scts_moved;
err:
if (sct != NULL)
sk_SCT_push(src, sct); /* Put the SCT back */
return -1;
}
/*
* Look for data collected during ServerHello and parse if found.
* Return 1 on success, 0 on failure.
*/
static int ct_extract_tls_extension_scts(SSL *s)
{
int scts_extracted = 0;
if (s->tlsext_scts != NULL) {
const unsigned char *p = s->tlsext_scts;
STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->tlsext_scts_len);
scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
SCT_LIST_free(scts);
}
return scts_extracted;
}
/*
* Checks for an OCSP response and then attempts to extract any SCTs found if it
* contains an SCT X509 extension. They will be stored in |s->scts|.
* Returns:
* - The number of SCTs extracted, assuming an OCSP response exists.
* - 0 if no OCSP response exists or it contains no SCTs.
* - A negative integer if an error occurs.
*/
static int ct_extract_ocsp_response_scts(SSL *s)
{
#ifndef OPENSSL_NO_OCSP
int scts_extracted = 0;
const unsigned char *p;
OCSP_BASICRESP *br = NULL;
OCSP_RESPONSE *rsp = NULL;
STACK_OF(SCT) *scts = NULL;
int i;
if (s->tlsext_ocsp_resp == NULL || s->tlsext_ocsp_resplen == 0)
goto err;
p = s->tlsext_ocsp_resp;
rsp = d2i_OCSP_RESPONSE(NULL, &p, s->tlsext_ocsp_resplen);
if (rsp == NULL)
goto err;
br = OCSP_response_get1_basic(rsp);
if (br == NULL)
goto err;
for (i = 0; i < OCSP_resp_count(br); ++i) {
OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
if (single == NULL)
continue;
scts = OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
scts_extracted = ct_move_scts(&s->scts, scts,
SCT_SOURCE_OCSP_STAPLED_RESPONSE);
if (scts_extracted < 0)
goto err;
}
err:
SCT_LIST_free(scts);
OCSP_BASICRESP_free(br);
OCSP_RESPONSE_free(rsp);
return scts_extracted;
#else
/* Behave as if no OCSP response exists */
return 0;
#endif
}
/*
* Attempts to extract SCTs from the peer certificate.
* Return the number of SCTs extracted, or a negative integer if an error
* occurs.
*/
static int ct_extract_x509v3_extension_scts(SSL *s)
{
int scts_extracted = 0;
X509 *cert = s->session != NULL ? s->session->peer : NULL;
if (cert != NULL) {
STACK_OF(SCT) *scts =
X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
scts_extracted =
ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
SCT_LIST_free(scts);
}
return scts_extracted;
}
/*
* Attempts to find all received SCTs by checking TLS extensions, the OCSP
* response (if it exists) and X509v3 extensions in the certificate.
* Returns NULL if an error occurs.
*/
const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
{
if (!s->scts_parsed) {
if (ct_extract_tls_extension_scts(s) < 0 ||
ct_extract_ocsp_response_scts(s) < 0 ||
ct_extract_x509v3_extension_scts(s) < 0)
goto err;
s->scts_parsed = 1;
}
return s->scts;
err:
return NULL;
}
static int ct_permissive(const CT_POLICY_EVAL_CTX *ctx,
const STACK_OF(SCT) *scts, void *unused_arg)
{
return 1;
}
static int ct_strict(const CT_POLICY_EVAL_CTX *ctx,
const STACK_OF(SCT) *scts, void *unused_arg)
{
int count = scts != NULL ? sk_SCT_num(scts) : 0;
int i;
for (i = 0; i < count; ++i) {
SCT *sct = sk_SCT_value(scts, i);
int status = SCT_get_validation_status(sct);
if (status == SCT_VALIDATION_STATUS_VALID)
return 1;
}
SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
return 0;
}
int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
void *arg)
{
/*
* Since code exists that uses the custom extension handler for CT, look
* for this and throw an error if they have already registered to use CT.
*/
if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
TLSEXT_TYPE_signed_certificate_timestamp)) {
SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
return 0;
}
if (callback != NULL) {
/* If we are validating CT, then we MUST accept SCTs served via OCSP */
if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
return 0;
}
s->ct_validation_callback = callback;
s->ct_validation_callback_arg = arg;
return 1;
}
int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
ssl_ct_validation_cb callback,
void *arg)
{
/*
* Since code exists that uses the custom extension handler for CT, look for
* this and throw an error if they have already registered to use CT.
*/
if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
TLSEXT_TYPE_signed_certificate_timestamp)) {
SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
return 0;
}
ctx->ct_validation_callback = callback;
ctx->ct_validation_callback_arg = arg;
return 1;
}
int SSL_ct_is_enabled(const SSL *s)
{
return s->ct_validation_callback != NULL;
}
int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
{
return ctx->ct_validation_callback != NULL;
}
int ssl_validate_ct(SSL *s)
{
int ret = 0;
X509 *cert = s->session != NULL ? s->session->peer : NULL;
X509 *issuer;
SSL_DANE *dane = &s->dane;
CT_POLICY_EVAL_CTX *ctx = NULL;
const STACK_OF(SCT) *scts;
/*
* If no callback is set, the peer is anonymous, or its chain is invalid,
* skip SCT validation - just return success. Applications that continue
* handshakes without certificates, with unverified chains, or pinned leaf
* certificates are outside the scope of the WebPKI and CT.
*
* The above exclusions notwithstanding the vast majority of peers will
* have rather ordinary certificate chains validated by typical
* applications that perform certificate verification and therefore will
* process SCTs when enabled.
*/
if (s->ct_validation_callback == NULL || cert == NULL ||
s->verify_result != X509_V_OK ||
s->verified_chain == NULL ||
sk_X509_num(s->verified_chain) <= 1)
return 1;
/*
* CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
* trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
*/
if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
switch (dane->mtlsa->usage) {
case DANETLS_USAGE_DANE_TA:
case DANETLS_USAGE_DANE_EE:
return 1;
}
}
ctx = CT_POLICY_EVAL_CTX_new();
if (ctx == NULL) {
SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
goto end;
}
issuer = sk_X509_value(s->verified_chain, 1);
CT_POLICY_EVAL_CTX_set0_cert(ctx, cert);
CT_POLICY_EVAL_CTX_set0_issuer(ctx, issuer);
CT_POLICY_EVAL_CTX_set0_log_store(ctx, s->ctx->ctlog_store);
scts = SSL_get0_peer_scts(s);
/*
* This function returns success (> 0) only when all the SCTs are valid, 0
* when some are invalid, and < 0 on various internal errors (out of
* memory, etc.). Having some, or even all, invalid SCTs is not sufficient
* reason to abort the handshake, that decision is up to the callback.
* Therefore, we error out only in the unexpected case that the return
* value is negative.
*
* XXX: One might well argue that the return value of this function is an
* unforunate design choice. Its job is only to determine the validation
* status of each of the provided SCTs. So long as it correctly separates
* the wheat from the chaff it should return success. Failure in this case
* ought to correspond to an inability to carry out its duties.
*/
if (SCT_LIST_validate(scts, ctx) < 0) {
SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
goto end;
}
ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
if (ret < 0)
ret = 0; /* This function returns 0 on failure */
end:
CT_POLICY_EVAL_CTX_free(ctx);
/*
* With SSL_VERIFY_NONE the session may be cached and re-used despite a
* failure return code here. Also the application may wish the complete
* the handshake, and then disconnect cleanly at a higher layer, after
* checking the verification status of the completed connection.
*
* We therefore force a certificate verification failure which will be
* visible via SSL_get_verify_result() and cached as part of any resumed
* session.
*
* Note: the permissive callback is for information gathering only, always
* returns success, and does not affect verification status. Only the
* strict callback or a custom application-specified callback can trigger
* connection failure or record a verification error.
*/
if (ret <= 0)
s->verify_result = X509_V_ERR_NO_VALID_SCTS;
return ret;
}
int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
{
switch (validation_mode) {
default:
SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
return 0;
case SSL_CT_VALIDATION_PERMISSIVE:
return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
case SSL_CT_VALIDATION_STRICT:
return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
}
}
int SSL_enable_ct(SSL *s, int validation_mode)
{
switch (validation_mode) {
default:
SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
return 0;
case SSL_CT_VALIDATION_PERMISSIVE:
return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
case SSL_CT_VALIDATION_STRICT:
return SSL_set_ct_validation_callback(s, ct_strict, NULL);
}
}
int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
{
return CTLOG_STORE_load_default_file(ctx->ctlog_store);
}
int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
{
return CTLOG_STORE_load_file(ctx->ctlog_store, path);
}
void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE *logs)
{
CTLOG_STORE_free(ctx->ctlog_store);
ctx->ctlog_store = logs;
}
const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
{
return ctx->ctlog_store;
}
#endif