openssl/ssl/ssl_ciph.c
Richard Levitte 26a3a48d65 There have been a number of complaints from a number of sources that names
like Malloc, Realloc and especially Free conflict with already existing names
on some operating systems or other packages.  That is reason enough to change
the names of the OpenSSL memory allocation macros to something that has a
better chance of being unique, like prepending them with OPENSSL_.

This change includes all the name changes needed throughout all C files.
2000-06-01 22:19:21 +00:00

1071 lines
27 KiB
C

/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <openssl/objects.h>
#include <openssl/comp.h>
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_eFZA_IDX 5
#define SSL_ENC_NULL_IDX 6
#define SSL_ENC_NUM_IDX 7
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={
NULL,NULL,NULL,NULL,NULL,NULL,
};
static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_NUM_IDX 2
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={
NULL,NULL,
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st
{
SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next,*prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[]={
/* Don't include eNULL unless specifically enabled */
{0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */
{0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0},
{0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0},
{0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
{0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
{0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK},
};
static int init_ciphers=1;
static void load_ciphers(void)
{
init_ciphers=0;
ssl_cipher_methods[SSL_ENC_DES_IDX]=
EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX]=
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX]=
EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX]=
EVP_get_cipherbyname(SN_rc2_cbc);
ssl_cipher_methods[SSL_ENC_IDEA_IDX]=
EVP_get_cipherbyname(SN_idea_cbc);
ssl_digest_methods[SSL_MD_MD5_IDX]=
EVP_get_digestbyname(SN_md5);
ssl_digest_methods[SSL_MD_SHA1_IDX]=
EVP_get_digestbyname(SN_sha1);
}
int ssl_cipher_get_evp(SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, SSL_COMP **comp)
{
int i;
SSL_CIPHER *c;
c=s->cipher;
if (c == NULL) return(0);
if (comp != NULL)
{
SSL_COMP ctmp;
if (s->compress_meth == 0)
*comp=NULL;
else if (ssl_comp_methods == NULL)
{
/* bad */
*comp=NULL;
}
else
{
ctmp.id=s->compress_meth;
i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp);
if (i >= 0)
*comp=sk_SSL_COMP_value(ssl_comp_methods,i);
else
*comp=NULL;
}
}
if ((enc == NULL) || (md == NULL)) return(0);
switch (c->algorithms & SSL_ENC_MASK)
{
case SSL_DES:
i=SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i=SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i=SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i=SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i=SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i=SSL_ENC_NULL_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_ENC_NUM_IDX))
*enc=NULL;
else
{
if (i == SSL_ENC_NULL_IDX)
*enc=EVP_enc_null();
else
*enc=ssl_cipher_methods[i];
}
switch (c->algorithms & SSL_MAC_MASK)
{
case SSL_MD5:
i=SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i=SSL_MD_SHA1_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_MD_NUM_IDX))
*md=NULL;
else
*md=ssl_digest_methods[i];
if ((*enc != NULL) && (*md != NULL))
return(1);
else
return(0);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail) return;
if (curr == *head)
*head=curr->next;
if (curr->prev != NULL)
curr->prev->next=curr->next;
if (curr->next != NULL) /* should always be true */
curr->next->prev=curr->prev;
(*tail)->next=curr;
curr->prev= *tail;
curr->next=NULL;
*tail=curr;
}
static unsigned long ssl_cipher_get_disabled(void)
{
unsigned long mask;
mask = SSL_kFZA;
#ifdef NO_RSA
mask |= SSL_aRSA|SSL_kRSA;
#endif
#ifdef NO_DSA
mask |= SSL_aDSS;
#endif
#ifdef NO_DH
mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH;
#endif
#ifdef SSL_FORBID_ENULL
mask |= SSL_eNULL;
#endif
mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0;
mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0;
mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0;
mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0;
mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0;
mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0;
mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0;
mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0;
return(mask);
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers, unsigned long mask, CIPHER_ORDER *list,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
int i, list_num;
SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++)
{
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if ((c != NULL) && c->valid && !(c->algorithms & mask))
{
list[list_num].cipher = c;
list[list_num].next = NULL;
list[list_num].prev = NULL;
list[list_num].active = 0;
list_num++;
/*
if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
for (i = 1; i < list_num - 1; i++)
{
list[i].prev = &(list[i-1]);
list[i].next = &(list[i+1]);
}
if (list_num > 0)
{
(*head_p) = &(list[0]);
(*head_p)->prev = NULL;
(*head_p)->next = &(list[1]);
(*tail_p) = &(list[list_num - 1]);
(*tail_p)->prev = &(list[list_num - 2]);
(*tail_p)->next = NULL;
}
}
static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list,
int num_of_group_aliases, unsigned long mask,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
SSL_CIPHER **ca_curr;
int i;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL)
{
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either an algorithm, that must be fully
* supported (not match any bit in mask) or represent a cipher
* strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++)
{
if ((i == 0) || /* always fetch "ALL" */
!(cipher_aliases[i].algorithms & mask))
{
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long algorithms, unsigned long mask,
unsigned long algo_strength, unsigned long mask_strength,
int rule, int strength_bits, CIPHER_ORDER *list,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2;
SSL_CIPHER *cp;
unsigned long ma, ma_s;
#ifdef CIPHER_DEBUG
printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n",
rule, algorithms, mask, algo_strength, mask_strength,
strength_bits);
#endif
curr = head = *head_p;
curr2 = head;
tail2 = tail = *tail_p;
for (;;)
{
if ((curr == NULL) || (curr == tail2)) break;
curr = curr2;
curr2 = curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the number of strength_bits
* or the algorithm used.
*/
if (strength_bits == -1)
{
ma = mask & cp->algorithms;
ma_s = mask_strength & cp->algo_strength;
#ifdef CIPHER_DEBUG
printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength);
printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength);
#endif
/*
* Select: if none of the mask bit was met from the
* cipher or not all of the bits were met, the
* selection does not apply.
*/
if (((ma == 0) && (ma_s == 0)) ||
((ma & algorithms) != ma) ||
((ma_s & algo_strength) != ma_s))
continue; /* does not apply */
}
else if (strength_bits != cp->strength_bits)
continue; /* does not apply */
#ifdef CIPHER_DEBUG
printf("Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD)
{
if (!curr->active)
{
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD)
{
if (curr->active)
{
ll_append_tail(&head, curr, &tail);
}
}
else if (rule == CIPHER_DEL)
curr->active = 0;
else if (rule == CIPHER_KILL)
{
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER *list, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL)
{
if (curr->active &&
(curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses)
{
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE);
return(0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL)
{
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, CIPHER_ORD, i,
list, head_p, tail_p);
OPENSSL_free(number_uses);
return(1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER *list, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list)
{
unsigned long algorithms, mask, algo_strength, mask_strength;
const char *l, *start, *buf;
int j, multi, found, rule, retval, ok, buflen;
char ch;
retval = 1;
l = rule_str;
for (;;)
{
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-')
{ rule = CIPHER_DEL; l++; }
else if (ch == '+')
{ rule = CIPHER_ORD; l++; }
else if (ch == '!')
{ rule = CIPHER_KILL; l++; }
else if (ch == '@')
{ rule = CIPHER_SPECIAL; l++; }
else
{ rule = CIPHER_ADD; }
if (ITEM_SEP(ch))
{
l++;
continue;
}
algorithms = mask = algo_strength = mask_strength = 0;
start=l;
for (;;)
{
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while ( ((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-'))
#else
while ( isalnum(ch) || (ch == '-'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0)
{
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL)
{
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+')
{
multi=1;
l++;
}
else
multi=0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway.
*/
j = found = 0;
while (ca_list[j])
{
if ((ca_list[j]->name[buflen] == '\0') &&
!strncmp(buf, ca_list[j]->name, buflen))
{
found = 1;
break;
}
else
j++;
}
if (!found)
break; /* ignore this entry */
algorithms |= ca_list[j]->algorithms;
mask |= ca_list[j]->mask;
algo_strength |= ca_list[j]->algo_strength;
mask_strength |= ca_list[j]->mask_strength;
if (!multi) break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL)
{ /* special command */
ok = 0;
if ((buflen == 8) &&
!strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(list,
head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && ITEM_SEP(*l))
l++;
}
else if (found)
{
ssl_cipher_apply_rule(algorithms, mask,
algo_strength, mask_strength, rule, -1,
list, head_p, tail_p);
}
else
{
while ((*l != '\0') && ITEM_SEP(*l))
l++;
}
if (*l == '\0') break; /* done */
}
return(retval);
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mask;
STACK_OF(SSL_CIPHER) *cipherstack;
const char *rule_p;
CIPHER_ORDER *list = NULL, *head = NULL, *tail = NULL, *curr;
SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL) return(NULL);
if (init_ciphers) load_ciphers();
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
disabled_mask = ssl_cipher_get_disabled();
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (list == NULL)
{
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask,
list, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list =
(SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
if (ca_list == NULL)
{
OPENSSL_free(list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mask,
head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str,"DEFAULT",7) == 0)
{
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
list, &head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, list, &head, &tail,
ca_list);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok)
{ /* Rule processing failure */
OPENSSL_free(list);
return(NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new(NULL)) == NULL)
{
OPENSSL_free(list);
return(NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next)
{
if (curr->active)
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
printf("<%s>\n",curr->cipher->name);
#endif
}
}
OPENSSL_free(list); /* Not needed any longer */
/*
* The following passage is a little bit odd. If pointer variables
* were supplied to hold STACK_OF(SSL_CIPHER) return information,
* the old memory pointed to is free()ed. Then, however, the
* cipher_list entry will be assigned just a copy of the returned
* cipher stack. For cipher_list_by_id a copy of the cipher stack
* will be created. See next comment...
*/
if (cipher_list != NULL)
{
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
}
if (cipher_list_by_id != NULL)
{
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = sk_SSL_CIPHER_dup(cipherstack);
}
/*
* Now it is getting really strange. If something failed during
* the previous pointer assignment or if one of the pointers was
* not requested, the error condition is met. That might be
* discussable. The strange thing is however that in this case
* the memory "ret" pointed to is "free()ed" and hence the pointer
* cipher_list becomes wild. The memory reserved for
* cipher_list_by_id however is not "free()ed" and stays intact.
*/
if ( (cipher_list_by_id == NULL) ||
(*cipher_list_by_id == NULL) ||
(cipher_list == NULL) ||
(*cipher_list == NULL))
{
sk_SSL_CIPHER_free(cipherstack);
return(NULL);
}
sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp);
return(cipherstack);
}
char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int len)
{
int is_export,pkl,kl;
char *ver,*exp;
char *kx,*au,*enc,*mac;
unsigned long alg,alg2,alg_s;
static char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
alg=cipher->algorithms;
alg_s=cipher->algo_strength;
alg2=cipher->algorithm2;
is_export=SSL_C_IS_EXPORT(cipher);
pkl=SSL_C_EXPORT_PKEYLENGTH(cipher);
kl=SSL_C_EXPORT_KEYLENGTH(cipher);
exp=is_export?" export":"";
if (alg & SSL_SSLV2)
ver="SSLv2";
else if (alg & SSL_SSLV3)
ver="SSLv3";
else
ver="unknown";
switch (alg&SSL_MKEY_MASK)
{
case SSL_kRSA:
kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA";
break;
case SSL_kDHr:
kx="DH/RSA";
break;
case SSL_kDHd:
kx="DH/DSS";
break;
case SSL_kFZA:
kx="Fortezza";
break;
case SSL_kEDH:
kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH";
break;
default:
kx="unknown";
}
switch (alg&SSL_AUTH_MASK)
{
case SSL_aRSA:
au="RSA";
break;
case SSL_aDSS:
au="DSS";
break;
case SSL_aDH:
au="DH";
break;
case SSL_aFZA:
case SSL_aNULL:
au="None";
break;
default:
au="unknown";
break;
}
switch (alg&SSL_ENC_MASK)
{
case SSL_DES:
enc=(is_export && kl == 5)?"DES(40)":"DES(56)";
break;
case SSL_3DES:
enc="3DES(168)";
break;
case SSL_RC4:
enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)")
:((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)");
break;
case SSL_RC2:
enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)";
break;
case SSL_IDEA:
enc="IDEA(128)";
break;
case SSL_eFZA:
enc="Fortezza";
break;
case SSL_eNULL:
enc="None";
break;
default:
enc="unknown";
break;
}
switch (alg&SSL_MAC_MASK)
{
case SSL_MD5:
mac="MD5";
break;
case SSL_SHA1:
mac="SHA1";
break;
default:
mac="unknown";
break;
}
if (buf == NULL)
{
len=128;
buf=OPENSSL_malloc(len);
if (buf == NULL) return("OPENSSL_malloc Error");
}
else if (len < 128)
return("Buffer too small");
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp);
return(buf);
}
char *SSL_CIPHER_get_version(SSL_CIPHER *c)
{
int i;
if (c == NULL) return("(NONE)");
i=(int)(c->id>>24L);
if (i == 3)
return("TLSv1/SSLv3");
else if (i == 2)
return("SSLv2");
else
return("unknown");
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(SSL_CIPHER *c)
{
if (c != NULL)
return(c->name);
return("(NONE)");
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(SSL_CIPHER *c, int *alg_bits)
{
int ret=0;
if (c != NULL)
{
if (alg_bits != NULL) *alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return(ret);
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i,nn;
if ((n == 0) || (sk == NULL)) return(NULL);
nn=sk_SSL_COMP_num(sk);
for (i=0; i<nn; i++)
{
ctmp=sk_SSL_COMP_value(sk,i);
if (ctmp->id == n)
return(ctmp);
}
return(NULL);
}
static int sk_comp_cmp(const SSL_COMP * const *a,
const SSL_COMP * const *b)
{
return((*a)->id-(*b)->id);
}
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
return(ssl_comp_methods);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
STACK_OF(SSL_COMP) *sk;
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id=id;
comp->method=cm;
if (ssl_comp_methods == NULL)
sk=ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp);
else
sk=ssl_comp_methods;
if ((sk == NULL) || !sk_SSL_COMP_push(sk,comp))
{
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE);
return(0);
}
else
return(1);
}