openssl/crypto/evp/e_aes_cbc_hmac_sha1.c
Andy Polyakov 2893a302a9 crypto/evp/e_aes_cbc_hmac_sha[1|256].c: fix compiler warnings.
Reviewed-by: Dr. Stephen Henson <steve@openssl.org>
2014-08-20 22:18:14 +02:00

962 lines
25 KiB
C

/* ====================================================================
* Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <openssl/opensslconf.h>
#include <stdio.h>
#include <string.h>
#if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/aes.h>
#include <openssl/sha.h>
#include <openssl/rand.h>
#include "modes_lcl.h"
#ifndef EVP_CIPH_FLAG_AEAD_CIPHER
#define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
#define EVP_CTRL_AEAD_TLS1_AAD 0x16
#define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
#endif
#if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
#define EVP_CIPH_FLAG_DEFAULT_ASN1 0
#endif
#if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
#define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
#endif
#define TLS1_1_VERSION 0x0302
typedef struct
{
AES_KEY ks;
SHA_CTX head,tail,md;
size_t payload_length; /* AAD length in decrypt case */
union {
unsigned int tls_ver;
unsigned char tls_aad[16]; /* 13 used */
} aux;
} EVP_AES_HMAC_SHA1;
#define NO_PAYLOAD_LENGTH ((size_t)-1)
#if defined(AES_ASM) && ( \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(__INTEL__) )
extern unsigned int OPENSSL_ia32cap_P[3];
#define AESNI_CAPABLE (1<<(57-32))
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void aesni_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
unsigned char *ivec, int enc);
void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
const AES_KEY *key, unsigned char iv[16],
SHA_CTX *ctx,const void *in0);
void aesni256_cbc_sha1_dec (const void *inp, void *out, size_t blocks,
const AES_KEY *key, unsigned char iv[16],
SHA_CTX *ctx,const void *in0);
#define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
const unsigned char *inkey,
const unsigned char *iv, int enc)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
int ret;
if (enc)
ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
else
ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);
SHA1_Init(&key->head); /* handy when benchmarking */
key->tail = key->head;
key->md = key->head;
key->payload_length = NO_PAYLOAD_LENGTH;
return ret<0?0:1;
}
#define STITCHED_CALL
#undef STITCHED_DECRYPT_CALL
#if !defined(STITCHED_CALL)
#define aes_off 0
#endif
void sha1_block_data_order (void *c,const void *p,size_t len);
static void sha1_update(SHA_CTX *c,const void *data,size_t len)
{ const unsigned char *ptr = data;
size_t res;
if ((res = c->num)) {
res = SHA_CBLOCK-res;
if (len<res) res=len;
SHA1_Update (c,ptr,res);
ptr += res;
len -= res;
}
res = len % SHA_CBLOCK;
len -= res;
if (len) {
sha1_block_data_order(c,ptr,len/SHA_CBLOCK);
ptr += len;
c->Nh += len>>29;
c->Nl += len<<=3;
if (c->Nl<(unsigned int)len) c->Nh++;
}
if (res)
SHA1_Update(c,ptr,res);
}
#ifdef SHA1_Update
#undef SHA1_Update
#endif
#define SHA1_Update sha1_update
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
typedef struct { unsigned int A[8],B[8],C[8],D[8],E[8]; } SHA1_MB_CTX;
typedef struct { const unsigned char *ptr; int blocks; } HASH_DESC;
void sha1_multi_block(SHA1_MB_CTX *,const HASH_DESC *,int);
typedef struct { const unsigned char *inp; unsigned char *out;
int blocks; u64 iv[2]; } CIPH_DESC;
void aesni_multi_cbc_encrypt(CIPH_DESC *,void *,int);
static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
unsigned char *out, const unsigned char *inp, size_t inp_len,
int n4x) /* n4x is 1 or 2 */
{
HASH_DESC hash_d[8], edges[8];
CIPH_DESC ciph_d[8];
unsigned char storage[sizeof(SHA1_MB_CTX)+32];
union { u64 q[16];
u32 d[32];
u8 c[128]; } blocks[8];
SHA1_MB_CTX *ctx;
unsigned int frag, last, packlen, i, x4=4*n4x, minblocks, processed=0;
size_t ret = 0;
u8 *IVs;
#if defined(BSWAP8)
u64 seqnum;
#endif
if (RAND_bytes((IVs=blocks[0].c),16*x4)<=0) /* ask for IVs in bulk */
return 0;
ctx = (SHA1_MB_CTX *)(storage+32-((size_t)storage%32)); /* align */
frag = (unsigned int)inp_len>>(1+n4x);
last = (unsigned int)inp_len+frag-(frag<<(1+n4x));
if (last>frag && ((last+13+9)%64)<(x4-1)) {
frag++;
last -= x4-1;
}
packlen = 5+16+((frag+20+16)&-16);
/* populate descriptors with pointers and IVs */
hash_d[0].ptr = inp;
ciph_d[0].inp = inp;
ciph_d[0].out = out+5+16; /* 5+16 is place for header and explicit IV */
memcpy(ciph_d[0].out-16,IVs,16);
memcpy(ciph_d[0].iv,IVs,16); IVs += 16;
for (i=1;i<x4;i++) {
ciph_d[i].inp = hash_d[i].ptr = hash_d[i-1].ptr+frag;
ciph_d[i].out = ciph_d[i-1].out+packlen;
memcpy(ciph_d[i].out-16,IVs,16);
memcpy(ciph_d[i].iv,IVs,16); IVs+=16;
}
#if defined(BSWAP8)
memcpy(blocks[0].c,key->md.data,8);
seqnum = BSWAP8(blocks[0].q[0]);
#endif
for (i=0;i<x4;i++) {
unsigned int len = (i==(x4-1)?last:frag);
#if !defined(BSWAP8)
unsigned int carry, j;
#endif
ctx->A[i] = key->md.h0;
ctx->B[i] = key->md.h1;
ctx->C[i] = key->md.h2;
ctx->D[i] = key->md.h3;
ctx->E[i] = key->md.h4;
/* fix seqnum */
#if defined(BSWAP8)
blocks[i].q[0] = BSWAP8(seqnum+i);
#else
for (carry=i,j=8;j--;) {
blocks[i].c[j] = ((u8*)key->md.data)[j]+carry;
carry = (blocks[i].c[j]-carry)>>(sizeof(carry)*8-1);
}
#endif
blocks[i].c[8] = ((u8*)key->md.data)[8];
blocks[i].c[9] = ((u8*)key->md.data)[9];
blocks[i].c[10] = ((u8*)key->md.data)[10];
/* fix length */
blocks[i].c[11] = (u8)(len>>8);
blocks[i].c[12] = (u8)(len);
memcpy(blocks[i].c+13,hash_d[i].ptr,64-13);
hash_d[i].ptr += 64-13;
hash_d[i].blocks = (len-(64-13))/64;
edges[i].ptr = blocks[i].c;
edges[i].blocks = 1;
}
/* hash 13-byte headers and first 64-13 bytes of inputs */
sha1_multi_block(ctx,edges,n4x);
/* hash bulk inputs */
#define MAXCHUNKSIZE 2048
#if MAXCHUNKSIZE%64
#error "MAXCHUNKSIZE is not divisible by 64"
#elif MAXCHUNKSIZE
/* goal is to minimize pressure on L1 cache by moving
* in shorter steps, so that hashed data is still in
* the cache by the time we encrypt it */
minblocks = ((frag<=last ? frag : last)-(64-13))/64;
if (minblocks>MAXCHUNKSIZE/64) {
for (i=0;i<x4;i++) {
edges[i].ptr = hash_d[i].ptr;
edges[i].blocks = MAXCHUNKSIZE/64;
ciph_d[i].blocks = MAXCHUNKSIZE/16;
}
do {
sha1_multi_block(ctx,edges,n4x);
aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x);
for (i=0;i<x4;i++) {
edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
hash_d[i].blocks -= MAXCHUNKSIZE/64;
edges[i].blocks = MAXCHUNKSIZE/64;
ciph_d[i].inp += MAXCHUNKSIZE;
ciph_d[i].out += MAXCHUNKSIZE;
ciph_d[i].blocks = MAXCHUNKSIZE/16;
memcpy(ciph_d[i].iv,ciph_d[i].out-16,16);
}
processed += MAXCHUNKSIZE;
minblocks -= MAXCHUNKSIZE/64;
} while (minblocks>MAXCHUNKSIZE/64);
}
#endif
#undef MAXCHUNKSIZE
sha1_multi_block(ctx,hash_d,n4x);
memset(blocks,0,sizeof(blocks));
for (i=0;i<x4;i++) {
unsigned int len = (i==(x4-1)?last:frag),
off = hash_d[i].blocks*64;
const unsigned char *ptr = hash_d[i].ptr+off;
off = (len-processed)-(64-13)-off; /* remainder actually */
memcpy(blocks[i].c,ptr,off);
blocks[i].c[off]=0x80;
len += 64+13; /* 64 is HMAC header */
len *= 8; /* convert to bits */
if (off<(64-8)) {
#ifdef BSWAP4
blocks[i].d[15] = BSWAP4(len);
#else
PUTU32(blocks[i].c+60,len);
#endif
edges[i].blocks = 1;
} else {
#ifdef BSWAP4
blocks[i].d[31] = BSWAP4(len);
#else
PUTU32(blocks[i].c+124,len);
#endif
edges[i].blocks = 2;
}
edges[i].ptr = blocks[i].c;
}
/* hash input tails and finalize */
sha1_multi_block(ctx,edges,n4x);
memset(blocks,0,sizeof(blocks));
for (i=0;i<x4;i++) {
#ifdef BSWAP4
blocks[i].d[0] = BSWAP4(ctx->A[i]); ctx->A[i] = key->tail.h0;
blocks[i].d[1] = BSWAP4(ctx->B[i]); ctx->B[i] = key->tail.h1;
blocks[i].d[2] = BSWAP4(ctx->C[i]); ctx->C[i] = key->tail.h2;
blocks[i].d[3] = BSWAP4(ctx->D[i]); ctx->D[i] = key->tail.h3;
blocks[i].d[4] = BSWAP4(ctx->E[i]); ctx->E[i] = key->tail.h4;
blocks[i].c[20] = 0x80;
blocks[i].d[15] = BSWAP4((64+20)*8);
#else
PUTU32(blocks[i].c+0,ctx->A[i]); ctx->A[i] = key->tail.h0;
PUTU32(blocks[i].c+4,ctx->B[i]); ctx->B[i] = key->tail.h1;
PUTU32(blocks[i].c+8,ctx->C[i]); ctx->C[i] = key->tail.h2;
PUTU32(blocks[i].c+12,ctx->D[i]); ctx->D[i] = key->tail.h3;
PUTU32(blocks[i].c+16,ctx->E[i]); ctx->E[i] = key->tail.h4;
blocks[i].c[20] = 0x80;
PUTU32(blocks[i].c+60,(64+20)*8);
#endif
edges[i].ptr = blocks[i].c;
edges[i].blocks = 1;
}
/* finalize MACs */
sha1_multi_block(ctx,edges,n4x);
for (i=0;i<x4;i++) {
unsigned int len = (i==(x4-1)?last:frag), pad, j;
unsigned char *out0 = out;
memcpy(ciph_d[i].out,ciph_d[i].inp,len-processed);
ciph_d[i].inp = ciph_d[i].out;
out += 5+16+len;
/* write MAC */
PUTU32(out+0,ctx->A[i]);
PUTU32(out+4,ctx->B[i]);
PUTU32(out+8,ctx->C[i]);
PUTU32(out+12,ctx->D[i]);
PUTU32(out+16,ctx->E[i]);
out += 20;
len += 20;
/* pad */
pad = 15-len%16;
for (j=0;j<=pad;j++) *(out++) = pad;
len += pad+1;
ciph_d[i].blocks = (len-processed)/16;
len += 16; /* account for explicit iv */
/* arrange header */
out0[0] = ((u8*)key->md.data)[8];
out0[1] = ((u8*)key->md.data)[9];
out0[2] = ((u8*)key->md.data)[10];
out0[3] = (u8)(len>>8);
out0[4] = (u8)(len);
ret += len+5;
inp += frag;
}
aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x);
OPENSSL_cleanse(blocks,sizeof(blocks));
OPENSSL_cleanse(ctx,sizeof(*ctx));
return ret;
}
#endif
static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
unsigned int l;
size_t plen = key->payload_length,
iv = 0, /* explicit IV in TLS 1.1 and later */
sha_off = 0;
#if defined(STITCHED_CALL)
size_t aes_off = 0,
blocks;
sha_off = SHA_CBLOCK-key->md.num;
#endif
key->payload_length = NO_PAYLOAD_LENGTH;
if (len%AES_BLOCK_SIZE) return 0;
if (ctx->encrypt) {
if (plen==NO_PAYLOAD_LENGTH)
plen = len;
else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE))
return 0;
else if (key->aux.tls_ver >= TLS1_1_VERSION)
iv = AES_BLOCK_SIZE;
#if defined(STITCHED_CALL)
if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) {
SHA1_Update(&key->md,in+iv,sha_off);
aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
ctx->iv,&key->md,in+iv+sha_off);
blocks *= SHA_CBLOCK;
aes_off += blocks;
sha_off += blocks;
key->md.Nh += blocks>>29;
key->md.Nl += blocks<<=3;
if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
} else {
sha_off = 0;
}
#endif
sha_off += iv;
SHA1_Update(&key->md,in+sha_off,plen-sha_off);
if (plen!=len) { /* "TLS" mode of operation */
if (in!=out)
memcpy(out+aes_off,in+aes_off,plen-aes_off);
/* calculate HMAC and append it to payload */
SHA1_Final(out+plen,&key->md);
key->md = key->tail;
SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
SHA1_Final(out+plen,&key->md);
/* pad the payload|hmac */
plen += SHA_DIGEST_LENGTH;
for (l=len-plen-1;plen<len;plen++) out[plen]=l;
/* encrypt HMAC|padding at once */
aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
&key->ks,ctx->iv,1);
} else {
aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
&key->ks,ctx->iv,1);
}
} else {
union { unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;
/* arrange cache line alignment */
pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));
if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
size_t inp_len, mask, j, i;
unsigned int res, maxpad, pad, bitlen;
int ret = 1;
union { unsigned int u[SHA_LBLOCK];
unsigned char c[SHA_CBLOCK]; }
*data = (void *)key->md.data;
#if defined(STITCHED_DECRYPT_CALL)
unsigned char tail_iv[AES_BLOCK_SIZE];
int stitch=0;
#endif
if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3])
>= TLS1_1_VERSION) {
if (len<(AES_BLOCK_SIZE+SHA_DIGEST_LENGTH+1))
return 0;
/* omit explicit iv */
memcpy(ctx->iv,in,AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
len -= AES_BLOCK_SIZE;
}
else if (len<(SHA_DIGEST_LENGTH+1))
return 0;
#if defined(STITCHED_DECRYPT_CALL)
if (len>=1024 && ctx->key_len==32) {
/* decrypt last block */
memcpy(tail_iv,in+len-2*AES_BLOCK_SIZE,AES_BLOCK_SIZE);
aesni_cbc_encrypt(in+len-AES_BLOCK_SIZE,
out+len-AES_BLOCK_SIZE,AES_BLOCK_SIZE,
&key->ks,tail_iv,0);
stitch=1;
} else
#endif
/* decrypt HMAC|padding at once */
aesni_cbc_encrypt(in,out,len,
&key->ks,ctx->iv,0);
/* figure out payload length */
pad = out[len-1];
maxpad = len-(SHA_DIGEST_LENGTH+1);
maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
maxpad &= 255;
inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
inp_len &= mask;
ret &= (int)mask;
key->aux.tls_aad[plen-2] = inp_len>>8;
key->aux.tls_aad[plen-1] = inp_len;
/* calculate HMAC */
key->md = key->head;
SHA1_Update(&key->md,key->aux.tls_aad,plen);
#if defined(STITCHED_DECRYPT_CALL)
if (stitch) {
blocks = (len-(256+32+SHA_CBLOCK))/SHA_CBLOCK;
aes_off = len-AES_BLOCK_SIZE-blocks*SHA_CBLOCK;
sha_off = SHA_CBLOCK-plen;
aesni_cbc_encrypt(in,out,aes_off,
&key->ks,ctx->iv,0);
SHA1_Update(&key->md,out,sha_off);
aesni256_cbc_sha1_dec(in+aes_off,
out+aes_off,blocks,&key->ks,ctx->iv,
&key->md,out+sha_off);
sha_off += blocks*=SHA_CBLOCK;
out += sha_off;
len -= sha_off;
inp_len -= sha_off;
key->md.Nl += (blocks<<3); /* at most 18 bits */
memcpy(ctx->iv,tail_iv,AES_BLOCK_SIZE);
}
#endif
#if 1
len -= SHA_DIGEST_LENGTH; /* amend mac */
if (len>=(256+SHA_CBLOCK)) {
j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
j += SHA_CBLOCK-key->md.num;
SHA1_Update(&key->md,out,j);
out += j;
len -= j;
inp_len -= j;
}
/* but pretend as if we hashed padded payload */
bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bits */
#ifdef BSWAP4
bitlen = BSWAP4(bitlen);
#else
mac.c[0] = 0;
mac.c[1] = (unsigned char)(bitlen>>16);
mac.c[2] = (unsigned char)(bitlen>>8);
mac.c[3] = (unsigned char)bitlen;
bitlen = mac.u[0];
#endif
pmac->u[0]=0;
pmac->u[1]=0;
pmac->u[2]=0;
pmac->u[3]=0;
pmac->u[4]=0;
for (res=key->md.num, j=0;j<len;j++) {
size_t c = out[j];
mask = (j-inp_len)>>(sizeof(j)*8-8);
c &= mask;
c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
data->c[res++]=(unsigned char)c;
if (res!=SHA_CBLOCK) continue;
/* j is not incremented yet */
mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1));
data->u[SHA_LBLOCK-1] |= bitlen&mask;
sha1_block_data_order(&key->md,data,1);
mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
res=0;
}
for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;
if (res>SHA_CBLOCK-8) {
mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
data->u[SHA_LBLOCK-1] |= bitlen&mask;
sha1_block_data_order(&key->md,data,1);
mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
memset(data,0,SHA_CBLOCK);
j+=64;
}
data->u[SHA_LBLOCK-1] = bitlen;
sha1_block_data_order(&key->md,data,1);
mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
pmac->u[0] |= key->md.h0 & mask;
pmac->u[1] |= key->md.h1 & mask;
pmac->u[2] |= key->md.h2 & mask;
pmac->u[3] |= key->md.h3 & mask;
pmac->u[4] |= key->md.h4 & mask;
#ifdef BSWAP4
pmac->u[0] = BSWAP4(pmac->u[0]);
pmac->u[1] = BSWAP4(pmac->u[1]);
pmac->u[2] = BSWAP4(pmac->u[2]);
pmac->u[3] = BSWAP4(pmac->u[3]);
pmac->u[4] = BSWAP4(pmac->u[4]);
#else
for (i=0;i<5;i++) {
res = pmac->u[i];
pmac->c[4*i+0]=(unsigned char)(res>>24);
pmac->c[4*i+1]=(unsigned char)(res>>16);
pmac->c[4*i+2]=(unsigned char)(res>>8);
pmac->c[4*i+3]=(unsigned char)res;
}
#endif
len += SHA_DIGEST_LENGTH;
#else
SHA1_Update(&key->md,out,inp_len);
res = key->md.num;
SHA1_Final(pmac->c,&key->md);
{
unsigned int inp_blocks, pad_blocks;
/* but pretend as if we hashed padded payload */
inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
res += (unsigned int)(len-inp_len);
pad_blocks = res / SHA_CBLOCK;
res %= SHA_CBLOCK;
pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
for (;inp_blocks<pad_blocks;inp_blocks++)
sha1_block_data_order(&key->md,data,1);
}
#endif
key->md = key->tail;
SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
SHA1_Final(pmac->c,&key->md);
/* verify HMAC */
out += inp_len;
len -= inp_len;
#if 1
{
unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
size_t off = out-p;
unsigned int c, cmask;
maxpad += SHA_DIGEST_LENGTH;
for (res=0,i=0,j=0;j<maxpad;j++) {
c = p[j];
cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeof(int)*8-1);
res |= (c^pad)&~cmask; /* ... and padding */
cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
res |= (c^pmac->c[i])&cmask;
i += 1&cmask;
}
maxpad -= SHA_DIGEST_LENGTH;
res = 0-((0-res)>>(sizeof(res)*8-1));
ret &= (int)~res;
}
#else
for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
res |= out[i]^pmac->c[i];
res = 0-((0-res)>>(sizeof(res)*8-1));
ret &= (int)~res;
/* verify padding */
pad = (pad&~res) | (maxpad&res);
out = out+len-1-pad;
for (res=0,i=0;i<pad;i++)
res |= out[i]^pad;
res = (0-res)>>(sizeof(res)*8-1);
ret &= (int)~res;
#endif
return ret;
} else {
#if defined(STITCHED_DECRYPT_CALL)
if (len>=1024 && ctx->key_len==32) {
if (sha_off%=SHA_CBLOCK)
blocks = (len-3*SHA_CBLOCK)/SHA_CBLOCK;
else
blocks = (len-2*SHA_CBLOCK)/SHA_CBLOCK;
aes_off = len-blocks*SHA_CBLOCK;
aesni_cbc_encrypt(in,out,aes_off,
&key->ks,ctx->iv,0);
SHA1_Update(&key->md,out,sha_off);
aesni256_cbc_sha1_dec(in+aes_off,
out+aes_off,blocks,&key->ks,ctx->iv,
&key->md,out+sha_off);
sha_off += blocks*=SHA_CBLOCK;
out += sha_off;
len -= sha_off;
key->md.Nh += blocks>>29;
key->md.Nl += blocks<<=3;
if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
} else
#endif
/* decrypt HMAC|padding at once */
aesni_cbc_encrypt(in,out,len,
&key->ks,ctx->iv,0);
SHA1_Update(&key->md,out,len);
}
}
return 1;
}
static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
EVP_AES_HMAC_SHA1 *key = data(ctx);
switch (type)
{
case EVP_CTRL_AEAD_SET_MAC_KEY:
{
unsigned int i;
unsigned char hmac_key[64];
memset (hmac_key,0,sizeof(hmac_key));
if (arg > (int)sizeof(hmac_key)) {
SHA1_Init(&key->head);
SHA1_Update(&key->head,ptr,arg);
SHA1_Final(hmac_key,&key->head);
} else {
memcpy(hmac_key,ptr,arg);
}
for (i=0;i<sizeof(hmac_key);i++)
hmac_key[i] ^= 0x36; /* ipad */
SHA1_Init(&key->head);
SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));
for (i=0;i<sizeof(hmac_key);i++)
hmac_key[i] ^= 0x36^0x5c; /* opad */
SHA1_Init(&key->tail);
SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));
OPENSSL_cleanse(hmac_key,sizeof(hmac_key));
return 1;
}
case EVP_CTRL_AEAD_TLS1_AAD:
{
unsigned char *p=ptr;
unsigned int len=p[arg-2]<<8|p[arg-1];
if (ctx->encrypt)
{
key->payload_length = len;
if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) {
len -= AES_BLOCK_SIZE;
p[arg-2] = len>>8;
p[arg-1] = len;
}
key->md = key->head;
SHA1_Update(&key->md,p,arg);
return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)
- len);
}
else
{
if (arg>13) arg = 13;
memcpy(key->aux.tls_aad,ptr,arg);
key->payload_length = arg;
return SHA_DIGEST_LENGTH;
}
}
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
return (int)(5+16+((arg+20+16)&-16));
case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
{
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr;
unsigned int n4x=1, x4;
unsigned int frag, last, packlen, inp_len;
if (arg<(int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) return -1;
inp_len = param->inp[11]<<8|param->inp[12];
if (ctx->encrypt)
{
if ((param->inp[9]<<8|param->inp[10]) < TLS1_1_VERSION)
return -1;
if (inp_len)
{
if (inp_len<4096) return 0; /* too short */
if (inp_len>=8192 && OPENSSL_ia32cap_P[2]&(1<<5))
n4x=2; /* AVX2 */
}
else if ((n4x=param->interleave/4) && n4x<=2)
inp_len = param->len;
else
return -1;
key->md = key->head;
SHA1_Update(&key->md,param->inp,13);
x4 = 4*n4x; n4x += 1;
frag = inp_len>>n4x;
last = inp_len+frag-(frag<<n4x);
if (last>frag && ((last+13+9)%64<(x4-1))) {
frag++;
last -= x4-1;
}
packlen = 5+16+((frag+20+16)&-16);
packlen = (packlen<<n4x)-packlen;
packlen += 5+16+((last+20+16)&-16);
param->interleave = x4;
return (int)packlen;
}
else
return -1; /* not yet */
}
case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
{
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr;
return (int)tls1_1_multi_block_encrypt(key,param->out,param->inp,
param->len,param->interleave/4);
}
case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
#endif
default:
return -1;
}
}
static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
{
#ifdef NID_aes_128_cbc_hmac_sha1
NID_aes_128_cbc_hmac_sha1,
#else
NID_undef,
#endif
16,16,16,
EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|
EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
aesni_cbc_hmac_sha1_init_key,
aesni_cbc_hmac_sha1_cipher,
NULL,
sizeof(EVP_AES_HMAC_SHA1),
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
aesni_cbc_hmac_sha1_ctrl,
NULL
};
static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
{
#ifdef NID_aes_256_cbc_hmac_sha1
NID_aes_256_cbc_hmac_sha1,
#else
NID_undef,
#endif
16,32,16,
EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|
EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
aesni_cbc_hmac_sha1_init_key,
aesni_cbc_hmac_sha1_cipher,
NULL,
sizeof(EVP_AES_HMAC_SHA1),
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
aesni_cbc_hmac_sha1_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
{
return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
&aesni_128_cbc_hmac_sha1_cipher:NULL);
}
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
{
return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
&aesni_256_cbc_hmac_sha1_cipher:NULL);
}
#else
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
{
return NULL;
}
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
{
return NULL;
}
#endif
#endif