2f2c9caa72
Add dummy pipline support to dasync for the aes128_cbc_hmac_sha1 cipher. This is treated as an AEAD cipher. Reviewed-by: Tim Hudson <tjh@openssl.org>
831 lines
27 KiB
C
831 lines
27 KiB
C
/*
|
|
* Written by Matt Caswell (matt@openssl.org) for the OpenSSL project.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/engine.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/async.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/ssl.h>
|
|
#include <openssl/modes.h>
|
|
|
|
#if (defined(OPENSSL_SYS_UNIX) || defined(OPENSSL_SYS_CYGWIN)) && defined(OPENSSL_THREADS)
|
|
# undef ASYNC_POSIX
|
|
# define ASYNC_POSIX
|
|
# include <unistd.h>
|
|
#elif defined(_WIN32)
|
|
# undef ASYNC_WIN
|
|
# define ASYNC_WIN
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#define DASYNC_LIB_NAME "DASYNC"
|
|
#include "e_dasync_err.c"
|
|
|
|
/* Engine Id and Name */
|
|
static const char *engine_dasync_id = "dasync";
|
|
static const char *engine_dasync_name = "Dummy Async engine support";
|
|
|
|
|
|
/* Engine Lifetime functions */
|
|
static int dasync_destroy(ENGINE *e);
|
|
static int dasync_init(ENGINE *e);
|
|
static int dasync_finish(ENGINE *e);
|
|
void engine_load_dasync_internal(void);
|
|
|
|
|
|
/* Set up digests. Just SHA1 for now */
|
|
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
|
|
const int **nids, int nid);
|
|
|
|
static void dummy_pause_job(void);
|
|
|
|
/* SHA1 */
|
|
static int dasync_sha1_init(EVP_MD_CTX *ctx);
|
|
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
|
|
size_t count);
|
|
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
|
|
|
|
static EVP_MD *_hidden_sha1_md = NULL;
|
|
static const EVP_MD *dasync_sha1(void)
|
|
{
|
|
if (_hidden_sha1_md == NULL) {
|
|
EVP_MD *md;
|
|
|
|
if ((md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption)) == NULL
|
|
|| !EVP_MD_meth_set_result_size(md, SHA_DIGEST_LENGTH)
|
|
|| !EVP_MD_meth_set_input_blocksize(md, SHA_CBLOCK)
|
|
|| !EVP_MD_meth_set_app_datasize(md,
|
|
sizeof(EVP_MD *) + sizeof(SHA_CTX))
|
|
|| !EVP_MD_meth_set_flags(md, EVP_MD_FLAG_DIGALGID_ABSENT)
|
|
|| !EVP_MD_meth_set_init(md, dasync_sha1_init)
|
|
|| !EVP_MD_meth_set_update(md, dasync_sha1_update)
|
|
|| !EVP_MD_meth_set_final(md, dasync_sha1_final)) {
|
|
EVP_MD_meth_free(md);
|
|
md = NULL;
|
|
}
|
|
_hidden_sha1_md = md;
|
|
}
|
|
return _hidden_sha1_md;
|
|
}
|
|
static void destroy_digests(void)
|
|
{
|
|
EVP_MD_meth_free(_hidden_sha1_md);
|
|
_hidden_sha1_md = NULL;
|
|
}
|
|
static int dasync_digest_nids(const int **nids)
|
|
{
|
|
static int digest_nids[2] = { 0, 0 };
|
|
static int pos = 0;
|
|
static int init = 0;
|
|
|
|
if (!init) {
|
|
const EVP_MD *md;
|
|
if ((md = dasync_sha1()) != NULL)
|
|
digest_nids[pos++] = EVP_MD_type(md);
|
|
digest_nids[pos] = 0;
|
|
init = 1;
|
|
}
|
|
*nids = digest_nids;
|
|
return pos;
|
|
}
|
|
|
|
/* RSA */
|
|
|
|
static int dasync_pub_enc(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding);
|
|
static int dasync_pub_dec(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding);
|
|
static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding);
|
|
static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding);
|
|
static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
|
|
BN_CTX *ctx);
|
|
|
|
static int dasync_rsa_init(RSA *rsa);
|
|
static int dasync_rsa_finish(RSA *rsa);
|
|
|
|
static RSA_METHOD dasync_rsa_method = {
|
|
"Dummy Async RSA method",
|
|
dasync_pub_enc, /* pub_enc */
|
|
dasync_pub_dec, /* pub_dec */
|
|
dasync_rsa_priv_enc, /* priv_enc */
|
|
dasync_rsa_priv_dec, /* priv_dec */
|
|
dasync_rsa_mod_exp, /* rsa_mod_exp */
|
|
BN_mod_exp_mont, /* bn_mod_exp */
|
|
dasync_rsa_init, /* init */
|
|
dasync_rsa_finish, /* finish */
|
|
0, /* flags */
|
|
NULL, /* app_data */
|
|
0, /* rsa_sign */
|
|
0, /* rsa_verify */
|
|
NULL /* rsa_keygen */
|
|
};
|
|
|
|
|
|
/* AES */
|
|
|
|
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
|
|
void *ptr);
|
|
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc);
|
|
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, size_t inl);
|
|
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
|
|
int arg, void *ptr);
|
|
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
|
|
const unsigned char *key,
|
|
const unsigned char *iv,
|
|
int enc);
|
|
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
|
|
unsigned char *out,
|
|
const unsigned char *in,
|
|
size_t inl);
|
|
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
|
|
|
|
struct aes_128_cbc_pipeline_ctx {
|
|
void *inner_cipher_data;
|
|
unsigned char dummy[256];
|
|
unsigned int numpipes;
|
|
unsigned char **inbufs;
|
|
unsigned char **outbufs;
|
|
size_t *lens;
|
|
int enc;
|
|
unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
|
|
unsigned int aadctr;
|
|
};
|
|
|
|
static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
|
|
static const EVP_CIPHER *dasync_aes_128_cbc(void)
|
|
{
|
|
if (_hidden_aes_128_cbc == NULL)
|
|
_hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
|
|
16 /* block size */,
|
|
16 /* key len */);
|
|
if (_hidden_aes_128_cbc == NULL
|
|
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
|
|
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
|
|
EVP_CIPH_FLAG_DEFAULT_ASN1
|
|
| EVP_CIPH_CBC_MODE
|
|
| EVP_CIPH_FLAG_PIPELINE)
|
|
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
|
|
dasync_aes128_init_key)
|
|
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
|
|
dasync_aes128_cbc_cipher)
|
|
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
|
|
dasync_aes128_cbc_cleanup)
|
|
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
|
|
dasync_aes128_cbc_ctrl)
|
|
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
|
|
sizeof(struct aes_128_cbc_pipeline_ctx))) {
|
|
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
|
|
_hidden_aes_128_cbc = NULL;
|
|
}
|
|
return _hidden_aes_128_cbc;
|
|
}
|
|
|
|
static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
|
|
static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
|
|
{
|
|
if (_hidden_aes_128_cbc_hmac_sha1 == NULL)
|
|
_hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
|
|
NID_aes_128_cbc_hmac_sha1,
|
|
16 /* block size */,
|
|
16 /* key len */);
|
|
if (_hidden_aes_128_cbc_hmac_sha1 == NULL
|
|
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
|
|
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
|
|
EVP_CIPH_CBC_MODE
|
|
| EVP_CIPH_FLAG_DEFAULT_ASN1
|
|
| EVP_CIPH_FLAG_AEAD_CIPHER
|
|
| EVP_CIPH_FLAG_PIPELINE)
|
|
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_init_key)
|
|
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_cipher)
|
|
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_cleanup)
|
|
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
|
|
dasync_aes128_cbc_hmac_sha1_ctrl)
|
|
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
|
|
sizeof(struct aes_128_cbc_pipeline_ctx))) {
|
|
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
|
|
_hidden_aes_128_cbc_hmac_sha1 = NULL;
|
|
}
|
|
return _hidden_aes_128_cbc_hmac_sha1;
|
|
}
|
|
|
|
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
|
|
const int **nids, int nid);
|
|
|
|
static int dasync_cipher_nids[] = {
|
|
NID_aes_128_cbc,
|
|
NID_aes_128_cbc_hmac_sha1,
|
|
0
|
|
};
|
|
|
|
static int bind_dasync(ENGINE *e)
|
|
{
|
|
/* Ensure the dasync error handling is set up */
|
|
ERR_load_DASYNC_strings();
|
|
|
|
if (!ENGINE_set_id(e, engine_dasync_id)
|
|
|| !ENGINE_set_name(e, engine_dasync_name)
|
|
|| !ENGINE_set_RSA(e, &dasync_rsa_method)
|
|
|| !ENGINE_set_digests(e, dasync_digests)
|
|
|| !ENGINE_set_ciphers(e, dasync_ciphers)
|
|
|| !ENGINE_set_destroy_function(e, dasync_destroy)
|
|
|| !ENGINE_set_init_function(e, dasync_init)
|
|
|| !ENGINE_set_finish_function(e, dasync_finish)) {
|
|
DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
|
|
static int bind_helper(ENGINE *e, const char *id)
|
|
{
|
|
if (id && (strcmp(id, engine_dasync_id) != 0))
|
|
return 0;
|
|
if (!bind_dasync(e))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
IMPLEMENT_DYNAMIC_CHECK_FN()
|
|
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
|
|
# endif
|
|
|
|
static ENGINE *engine_dasync(void)
|
|
{
|
|
ENGINE *ret = ENGINE_new();
|
|
if (!ret)
|
|
return NULL;
|
|
if (!bind_dasync(ret)) {
|
|
ENGINE_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void engine_load_dasync_internal(void)
|
|
{
|
|
ENGINE *toadd = engine_dasync();
|
|
if (!toadd)
|
|
return;
|
|
ENGINE_add(toadd);
|
|
ENGINE_free(toadd);
|
|
ERR_clear_error();
|
|
}
|
|
|
|
static int dasync_init(ENGINE *e)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int dasync_finish(ENGINE *e)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int dasync_destroy(ENGINE *e)
|
|
{
|
|
destroy_digests();
|
|
ERR_unload_DASYNC_strings();
|
|
return 1;
|
|
}
|
|
|
|
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
|
|
const int **nids, int nid)
|
|
{
|
|
int ok = 1;
|
|
if (!digest) {
|
|
/* We are returning a list of supported nids */
|
|
return dasync_digest_nids(nids);
|
|
}
|
|
/* We are being asked for a specific digest */
|
|
switch (nid) {
|
|
case NID_sha1:
|
|
*digest = dasync_sha1();
|
|
break;
|
|
default:
|
|
ok = 0;
|
|
*digest = NULL;
|
|
break;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
|
|
const int **nids, int nid)
|
|
{
|
|
int ok = 1;
|
|
if (!cipher) {
|
|
/* We are returning a list of supported nids */
|
|
*nids = dasync_cipher_nids;
|
|
return (sizeof(dasync_cipher_nids) -
|
|
1) / sizeof(dasync_cipher_nids[0]);
|
|
}
|
|
/* We are being asked for a specific cipher */
|
|
switch (nid) {
|
|
case NID_aes_128_cbc:
|
|
*cipher = dasync_aes_128_cbc();
|
|
break;
|
|
case NID_aes_128_cbc_hmac_sha1:
|
|
*cipher = dasync_aes_128_cbc_hmac_sha1();
|
|
break;
|
|
default:
|
|
ok = 0;
|
|
*cipher = NULL;
|
|
break;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
|
|
OSSL_ASYNC_FD readfd, void *pvwritefd)
|
|
{
|
|
OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
|
|
#if defined(ASYNC_WIN)
|
|
CloseHandle(readfd);
|
|
CloseHandle(*pwritefd);
|
|
#elif defined(ASYNC_POSIX)
|
|
close(readfd);
|
|
close(*pwritefd);
|
|
#endif
|
|
OPENSSL_free(pwritefd);
|
|
}
|
|
|
|
#define DUMMY_CHAR 'X'
|
|
|
|
static void dummy_pause_job(void) {
|
|
ASYNC_JOB *job;
|
|
ASYNC_WAIT_CTX *waitctx;
|
|
OSSL_ASYNC_FD pipefds[2] = {0, 0};
|
|
OSSL_ASYNC_FD *writefd;
|
|
#if defined(ASYNC_WIN)
|
|
DWORD numwritten, numread;
|
|
char buf = DUMMY_CHAR;
|
|
#elif defined(ASYNC_POSIX)
|
|
char buf = DUMMY_CHAR;
|
|
#endif
|
|
|
|
if ((job = ASYNC_get_current_job()) == NULL)
|
|
return;
|
|
|
|
waitctx = ASYNC_get_wait_ctx(job);
|
|
|
|
if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
|
|
(void **)&writefd)) {
|
|
pipefds[1] = *writefd;
|
|
} else {
|
|
writefd = OPENSSL_malloc(sizeof(*writefd));
|
|
if (writefd == NULL)
|
|
return;
|
|
#if defined(ASYNC_WIN)
|
|
if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
|
|
OPENSSL_free(writefd);
|
|
return;
|
|
}
|
|
#elif defined(ASYNC_POSIX)
|
|
if (pipe(pipefds) != 0) {
|
|
OPENSSL_free(writefd);
|
|
return;
|
|
}
|
|
#endif
|
|
*writefd = pipefds[1];
|
|
|
|
if(!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
|
|
writefd, wait_cleanup)) {
|
|
wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* In the Dummy async engine we are cheating. We signal that the job
|
|
* is complete by waking it before the call to ASYNC_pause_job(). A real
|
|
* async engine would only wake when the job was actually complete
|
|
*/
|
|
#if defined(ASYNC_WIN)
|
|
WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
|
|
#elif defined(ASYNC_POSIX)
|
|
if (write(pipefds[1], &buf, 1) < 0)
|
|
return;
|
|
#endif
|
|
|
|
/* Ignore errors - we carry on anyway */
|
|
ASYNC_pause_job();
|
|
|
|
/* Clear the wake signal */
|
|
#if defined(ASYNC_WIN)
|
|
ReadFile(pipefds[0], &buf, 1, &numread, NULL);
|
|
#elif defined(ASYNC_POSIX)
|
|
if (read(pipefds[0], &buf, 1) < 0)
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* SHA1 implementation. At the moment we just defer to the standard
|
|
* implementation
|
|
*/
|
|
#undef data
|
|
#define data(ctx) ((SHA_CTX *)EVP_MD_CTX_md_data(ctx))
|
|
static int dasync_sha1_init(EVP_MD_CTX *ctx)
|
|
{
|
|
dummy_pause_job();
|
|
|
|
return SHA1_Init(data(ctx));
|
|
}
|
|
|
|
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
|
|
size_t count)
|
|
{
|
|
dummy_pause_job();
|
|
|
|
return SHA1_Update(data(ctx), data, (size_t)count);
|
|
}
|
|
|
|
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
|
|
{
|
|
dummy_pause_job();
|
|
|
|
return SHA1_Final(md, data(ctx));
|
|
}
|
|
|
|
/*
|
|
* RSA implementation
|
|
*/
|
|
|
|
static int dasync_pub_enc(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding) {
|
|
/* Ignore errors - we carry on anyway */
|
|
dummy_pause_job();
|
|
return RSA_PKCS1_OpenSSL()->rsa_pub_enc(flen, from, to, rsa, padding);
|
|
}
|
|
|
|
static int dasync_pub_dec(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding) {
|
|
/* Ignore errors - we carry on anyway */
|
|
dummy_pause_job();
|
|
return RSA_PKCS1_OpenSSL()->rsa_pub_dec(flen, from, to, rsa, padding);
|
|
}
|
|
|
|
static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding)
|
|
{
|
|
/* Ignore errors - we carry on anyway */
|
|
dummy_pause_job();
|
|
return RSA_PKCS1_OpenSSL()->rsa_priv_enc(flen, from, to, rsa, padding);
|
|
}
|
|
|
|
static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
|
|
unsigned char *to, RSA *rsa, int padding)
|
|
{
|
|
/* Ignore errors - we carry on anyway */
|
|
dummy_pause_job();
|
|
return RSA_PKCS1_OpenSSL()->rsa_priv_dec(flen, from, to, rsa, padding);
|
|
}
|
|
|
|
static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
|
|
{
|
|
/* Ignore errors - we carry on anyway */
|
|
dummy_pause_job();
|
|
return RSA_PKCS1_OpenSSL()->rsa_mod_exp(r0, I, rsa, ctx);
|
|
}
|
|
|
|
static int dasync_rsa_init(RSA *rsa)
|
|
{
|
|
return RSA_PKCS1_OpenSSL()->init(rsa);
|
|
}
|
|
static int dasync_rsa_finish(RSA *rsa)
|
|
{
|
|
return RSA_PKCS1_OpenSSL()->finish(rsa);
|
|
}
|
|
|
|
/*
|
|
* AES128 Implementation
|
|
*/
|
|
|
|
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
|
|
void *ptr)
|
|
{
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
if (pipe_ctx == NULL)
|
|
return 0;
|
|
|
|
switch (type) {
|
|
case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->outbufs = (unsigned char **)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->inbufs = (unsigned char **)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->lens = (size_t *)ptr;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc)
|
|
{
|
|
int ret;
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
if (pipe_ctx->inner_cipher_data == NULL
|
|
&& EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc()) != 0) {
|
|
pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
|
|
EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc()));
|
|
if (pipe_ctx->inner_cipher_data == NULL) {
|
|
DASYNCerr(DASYNC_F_DASYNC_AES128_INIT_KEY,
|
|
ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
pipe_ctx->numpipes = 0;
|
|
pipe_ctx->aadctr = 0;
|
|
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
ret = EVP_CIPHER_meth_get_init(EVP_aes_128_cbc())(ctx, key, iv, enc);
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, size_t inl)
|
|
{
|
|
int ret = 1;
|
|
unsigned int i, pipes;
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
pipes = pipe_ctx->numpipes;
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
if (pipes == 0) {
|
|
ret = EVP_CIPHER_meth_get_do_cipher(EVP_aes_128_cbc())
|
|
(ctx, out, in, inl);
|
|
} else {
|
|
for (i = 0; i < pipes; i++) {
|
|
ret = ret && EVP_CIPHER_meth_get_do_cipher(EVP_aes_128_cbc())
|
|
(ctx, pipe_ctx->outbufs[i],
|
|
pipe_ctx->inbufs[i],
|
|
pipe_ctx->lens[i]);
|
|
}
|
|
pipe_ctx->numpipes = 0;
|
|
}
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
|
|
{
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
|
|
EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc()));
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* AES128 CBC HMAC SHA1 Implementation
|
|
*/
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
|
|
int arg, void *ptr)
|
|
{
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
int ret;
|
|
|
|
if (pipe_ctx == NULL)
|
|
return 0;
|
|
|
|
switch (type) {
|
|
case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->outbufs = (unsigned char **)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->inbufs = (unsigned char **)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
|
|
pipe_ctx->numpipes = arg;
|
|
pipe_ctx->lens = (size_t *)ptr;
|
|
break;
|
|
|
|
case EVP_CTRL_AEAD_SET_MAC_KEY:
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, type, arg, ptr);
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
return ret;
|
|
|
|
case EVP_CTRL_AEAD_TLS1_AAD:
|
|
{
|
|
unsigned char *p = ptr;
|
|
unsigned int len;
|
|
|
|
if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
|
return -1;
|
|
|
|
if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
|
|
return -1;
|
|
|
|
memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
|
|
EVP_AEAD_TLS1_AAD_LEN);
|
|
pipe_ctx->aadctr++;
|
|
|
|
len = p[arg - 2] << 8 | p[arg - 1];
|
|
|
|
if (pipe_ctx->enc) {
|
|
if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
|
|
len -= AES_BLOCK_SIZE;
|
|
}
|
|
|
|
return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
|
|
& -AES_BLOCK_SIZE) - len;
|
|
} else {
|
|
return SHA_DIGEST_LENGTH;
|
|
}
|
|
}
|
|
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
|
|
const unsigned char *key,
|
|
const unsigned char *iv,
|
|
int enc)
|
|
{
|
|
int ret;
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
if (pipe_ctx->inner_cipher_data == NULL
|
|
&& EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc_hmac_sha1())
|
|
!= 0) {
|
|
pipe_ctx->inner_cipher_data =
|
|
OPENSSL_zalloc(EVP_CIPHER_impl_ctx_size(
|
|
EVP_aes_128_cbc_hmac_sha1()));
|
|
if (pipe_ctx->inner_cipher_data == NULL) {
|
|
DASYNCerr(DASYNC_F_DASYNC_AES128_CBC_HMAC_SHA1_INIT_KEY,
|
|
ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
pipe_ctx->numpipes = 0;
|
|
pipe_ctx->enc = enc;
|
|
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
ret = EVP_CIPHER_meth_get_init(EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, key, iv, enc);
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
|
|
unsigned char *out,
|
|
const unsigned char *in,
|
|
size_t inl)
|
|
{
|
|
int ret = 1;
|
|
unsigned int i, pipes;
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
pipes = pipe_ctx->numpipes;
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
|
|
if (pipes == 0) {
|
|
if (pipe_ctx->aadctr != 0) {
|
|
if (pipe_ctx->aadctr != 1)
|
|
return -1;
|
|
EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN,
|
|
pipe_ctx->tlsaad[0]);
|
|
}
|
|
ret = EVP_CIPHER_meth_get_do_cipher(EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, out, in, inl);
|
|
} else {
|
|
if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
|
|
return -1;
|
|
for (i = 0; i < pipes; i++) {
|
|
if (pipe_ctx->aadctr > 0) {
|
|
EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN,
|
|
pipe_ctx->tlsaad[i]);
|
|
}
|
|
ret = ret && EVP_CIPHER_meth_get_do_cipher(
|
|
EVP_aes_128_cbc_hmac_sha1())
|
|
(ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
|
|
pipe_ctx->lens[i]);
|
|
}
|
|
pipe_ctx->numpipes = 0;
|
|
}
|
|
pipe_ctx->aadctr = 0;
|
|
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
|
|
{
|
|
struct aes_128_cbc_pipeline_ctx *pipe_ctx =
|
|
(struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
|
|
|
|
OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
|
|
EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc_hmac_sha1()));
|
|
|
|
return 1;
|
|
}
|