openssl/crypto/rsa/rsa_sp800_56b_check.c
Shane Lontis 8240d5fa65 FIPS 186-4 RSA Generation & Validation
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6652)
2019-03-12 12:00:52 +00:00

386 lines
11 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/bn.h>
#include "internal/bn_int.h"
#include "rsa_locl.h"
/*
* Part of the RSA keypair test.
* Check the Chinese Remainder Theorem components are valid.
*
* See SP800-5bBr1
* 6.4.1.2.3: rsakpv1-crt Step 7
* 6.4.1.3.3: rsakpv2-crt Step 7
*/
int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
/* check if only some of the crt components are set */
if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
return 0;
return 1; /* return ok if all components are NULL */
}
BN_CTX_start(ctx);
r = BN_CTX_get(ctx);
p1 = BN_CTX_get(ctx);
q1 = BN_CTX_get(ctx);
ret = (q1 != NULL)
/* p1 = p -1 */
&& (BN_copy(p1, rsa->p) != NULL)
&& BN_sub_word(p1, 1)
/* q1 = q - 1 */
&& (BN_copy(q1, rsa->q) != NULL)
&& BN_sub_word(q1, 1)
/* (a) 1 < dP < (p 1). */
&& (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
&& (BN_cmp(rsa->dmp1, p1) < 0)
/* (b) 1 < dQ < (q - 1). */
&& (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
&& (BN_cmp(rsa->dmq1, q1) < 0)
/* (c) 1 < qInv < p */
&& (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
&& (BN_cmp(rsa->iqmp, rsa->p) < 0)
/* (d) 1 = (dP . e) mod (p - 1)*/
&& BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
&& BN_is_one(r)
/* (e) 1 = (dQ . e) mod (q - 1) */
&& BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
&& BN_is_one(r)
/* (f) 1 = (qInv . q) mod p */
&& BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
&& BN_is_one(r);
BN_clear(p1);
BN_clear(q1);
BN_CTX_end(ctx);
return ret;
}
/*
* Part of the RSA keypair test.
* Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
*
* See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
*
* (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
* √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
* 0.B504F334 gives an approximation to 11 decimal places.
* The range is then from
* 0xB504F334_0000.......................000 to
* 0xFFFFFFFF_FFFF.......................FFF
*/
int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *tmp, *low;
nbits >>= 1;
/* Upper bound check */
if (BN_num_bits(p) != nbits)
return 0;
BN_CTX_start(ctx);
tmp = BN_CTX_get(ctx);
low = BN_CTX_get(ctx);
/* set low = (√2)(2^(nbits/2 - 1) */
if (low == NULL || !BN_set_word(tmp, 0xB504F334))
goto err;
if (nbits >= 32) {
if (!BN_lshift(low, tmp, nbits - 32))
goto err;
} else if (!BN_rshift(low, tmp, 32 - nbits)) {
goto err;
}
if (BN_cmp(p, low) < 0)
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Part of the RSA keypair test.
* Check the prime factor (for either p or q)
* i.e: p is prime AND GCD(p - 1, e) = 1
*
* See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
*/
int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
{
int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
int ret = 0;
BIGNUM *p1 = NULL, *gcd = NULL;
/* (Steps 5 a-b) prime test */
if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
/* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
|| rsa_check_prime_factor_range(p, nbits, ctx) != 1)
return 0;
BN_CTX_start(ctx);
p1 = BN_CTX_get(ctx);
gcd = BN_CTX_get(ctx);
ret = (gcd != NULL)
/* (Step 5d) GCD(p-1, e) = 1 */
&& (BN_copy(p1, p) != NULL)
&& BN_sub_word(p1, 1)
&& BN_gcd(gcd, p1, e, ctx)
&& BN_is_one(gcd);
BN_clear(p1);
BN_CTX_end(ctx);
return ret;
}
/*
* See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
* satisfies:
* (Step 6a) 2^(nBit/2) < d < LCM(p1, q1).
* (Step 6b) 1 = (d*e) mod LCM(p1, q1)
*/
int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
{
int ret;
BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
/* (Step 6a) 2^(nbits/2) < d */
if (BN_num_bits(rsa->d) <= (nbits >> 1))
return 0;
BN_CTX_start(ctx);
r = BN_CTX_get(ctx);
p1 = BN_CTX_get(ctx);
q1 = BN_CTX_get(ctx);
lcm = BN_CTX_get(ctx);
p1q1 = BN_CTX_get(ctx);
gcd = BN_CTX_get(ctx);
ret = (gcd != NULL
/* LCM(p - 1, q - 1) */
&& (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
/* (Step 6a) d < LCM(p - 1, q - 1) */
&& (BN_cmp(rsa->d, lcm) < 0)
/* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
&& BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
&& BN_is_one(r));
BN_clear(p1);
BN_clear(q1);
BN_clear(lcm);
BN_clear(gcd);
BN_CTX_end(ctx);
return ret;
}
/* Check exponent is odd, and has a bitlen ranging from [17..256] */
int rsa_check_public_exponent(const BIGNUM *e)
{
int bitlen = BN_num_bits(e);
return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
}
/*
* SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
* i.e- numbits(p-q-1) > (nbits/2 -100)
*/
int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
int nbits)
{
int bitlen = (nbits >> 1) - 100;
if (!BN_sub(diff, p, q))
return -1;
BN_set_negative(diff, 0);
if (BN_is_zero(diff))
return 0;
if (!BN_sub_word(diff, 1))
return -1;
return (BN_num_bits(diff) > bitlen);
}
/* return LCM(p-1, q-1) */
int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
BIGNUM *p1q1)
{
return BN_sub(p1, p, BN_value_one()) /* p-1 */
&& BN_sub(q1, q, BN_value_one()) /* q-1 */
&& BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
&& BN_gcd(gcd, p1, q1, ctx)
&& BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
}
/*
* SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
* SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
* caveat is that the modulus must be as specified in SP800-56Br1
*/
int rsa_sp800_56b_check_public(const RSA *rsa)
{
int ret = 0, nbits, iterations, status;
BN_CTX *ctx = NULL;
BIGNUM *gcd = NULL;
if (rsa->n == NULL || rsa->e == NULL)
return 0;
/*
* (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
* NOTE: changed to allow keys >= 2048
*/
nbits = BN_num_bits(rsa->n);
if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
return 0;
}
if (!BN_is_odd(rsa->n)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
return 0;
}
/* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
if (!rsa_check_public_exponent(rsa->e)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
return 0;
}
ctx = BN_CTX_new();
gcd = BN_new();
if (ctx == NULL || gcd == NULL)
goto err;
iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
/* (Steps d-f):
* The modulus is composite, but not a power of a prime.
* The modulus has no factors smaller than 752.
*/
if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
goto err;
}
ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
ret = 0;
goto err;
}
ret = 1;
err:
BN_free(gcd);
BN_CTX_free(ctx);
return ret;
}
/*
* Perform validation of the RSA private key to check that 0 < D < N.
*/
int rsa_sp800_56b_check_private(const RSA *rsa)
{
if (rsa->d == NULL || rsa->n == NULL)
return 0;
return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
}
/*
* RSA key pair validation.
*
* SP800-56Br1.
* 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
* 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
*
* It uses:
* 6.4.1.2.3 "rsakpv1 - crt"
* 6.4.1.3.3 "rsakpv2 - crt"
*/
int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
int strength, int nbits)
{
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *r = NULL;
if (rsa->p == NULL
|| rsa->q == NULL
|| rsa->e == NULL
|| rsa->d == NULL
|| rsa->n == NULL) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
return 0;
}
/* (Step 1): Check Ranges */
if (!rsa_sp800_56b_validate_strength(nbits, strength))
return 0;
/* If the exponent is known */
if (efixed != NULL) {
/* (2): Check fixed exponent matches public exponent. */
if (BN_cmp(efixed, rsa->e) != 0) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
return 0;
}
}
/* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
if (!rsa_check_public_exponent(rsa->e)) {
/* exponent out of range */
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
return 0;
}
/* (Step 3.b): check the modulus */
if (nbits != BN_num_bits(rsa->n)) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
return 0;
}
ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
BN_CTX_start(ctx);
r = BN_CTX_get(ctx);
if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
goto err;
/* (Step 4.c): Check n = pq */
if (BN_cmp(rsa->n, r) != 0) {
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
goto err;
}
/* (Step 5): check prime factors p & q */
ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
&& rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
&& (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
/* (Step 6): Check the private exponent d */
&& rsa_check_private_exponent(rsa, nbits, ctx)
/* 6.4.1.2.3 (Step 7): Check the CRT components */
&& rsa_check_crt_components(rsa, ctx);
if (ret != 1)
RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
err:
BN_clear(r);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ret;
}