30c22fa8b1
The cofactor argument to EC_GROUP_set_generator is optional, and SCA mitigations for ECC currently use it. So the library currently falls back to very old SCA-vulnerable code if the cofactor is not present. This PR allows EC_GROUP_set_generator to compute the cofactor for all curves of cryptographic interest. Steering scalar multiplication to more SCA-robust code. This issue affects persisted private keys in explicit parameter form, where the (optional) cofactor field is zero or absent. It also affects curves not built-in to the library, but constructed programatically with explicit parameters, then calling EC_GROUP_set_generator with a nonsensical value (NULL, zero). The very old scalar multiplication code is known to be vulnerable to local uarch attacks, outside of the OpenSSL threat model. New results suggest the code path is also vulnerable to traditional wall clock timing attacks. CVE-2019-1547 Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/9781)
1209 lines
33 KiB
C
1209 lines
33 KiB
C
/*
|
|
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/opensslv.h>
|
|
|
|
#include "ec_lcl.h"
|
|
|
|
/* functions for EC_GROUP objects */
|
|
|
|
EC_GROUP *EC_GROUP_new(const EC_METHOD *meth)
|
|
{
|
|
EC_GROUP *ret;
|
|
|
|
if (meth == NULL) {
|
|
ECerr(EC_F_EC_GROUP_NEW, EC_R_SLOT_FULL);
|
|
return NULL;
|
|
}
|
|
if (meth->group_init == 0) {
|
|
ECerr(EC_F_EC_GROUP_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return NULL;
|
|
}
|
|
|
|
ret = OPENSSL_zalloc(sizeof(*ret));
|
|
if (ret == NULL) {
|
|
ECerr(EC_F_EC_GROUP_NEW, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
ret->meth = meth;
|
|
if ((ret->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) {
|
|
ret->order = BN_new();
|
|
if (ret->order == NULL)
|
|
goto err;
|
|
ret->cofactor = BN_new();
|
|
if (ret->cofactor == NULL)
|
|
goto err;
|
|
}
|
|
ret->asn1_flag = OPENSSL_EC_NAMED_CURVE;
|
|
ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED;
|
|
if (!meth->group_init(ret))
|
|
goto err;
|
|
return ret;
|
|
|
|
err:
|
|
BN_free(ret->order);
|
|
BN_free(ret->cofactor);
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
void EC_pre_comp_free(EC_GROUP *group)
|
|
{
|
|
switch (group->pre_comp_type) {
|
|
case PCT_none:
|
|
break;
|
|
case PCT_nistz256:
|
|
#ifdef ECP_NISTZ256_ASM
|
|
EC_nistz256_pre_comp_free(group->pre_comp.nistz256);
|
|
#endif
|
|
break;
|
|
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
|
|
case PCT_nistp224:
|
|
EC_nistp224_pre_comp_free(group->pre_comp.nistp224);
|
|
break;
|
|
case PCT_nistp256:
|
|
EC_nistp256_pre_comp_free(group->pre_comp.nistp256);
|
|
break;
|
|
case PCT_nistp521:
|
|
EC_nistp521_pre_comp_free(group->pre_comp.nistp521);
|
|
break;
|
|
#else
|
|
case PCT_nistp224:
|
|
case PCT_nistp256:
|
|
case PCT_nistp521:
|
|
break;
|
|
#endif
|
|
case PCT_ec:
|
|
EC_ec_pre_comp_free(group->pre_comp.ec);
|
|
break;
|
|
}
|
|
group->pre_comp.ec = NULL;
|
|
}
|
|
|
|
void EC_GROUP_free(EC_GROUP *group)
|
|
{
|
|
if (!group)
|
|
return;
|
|
|
|
if (group->meth->group_finish != 0)
|
|
group->meth->group_finish(group);
|
|
|
|
EC_pre_comp_free(group);
|
|
BN_MONT_CTX_free(group->mont_data);
|
|
EC_POINT_free(group->generator);
|
|
BN_free(group->order);
|
|
BN_free(group->cofactor);
|
|
OPENSSL_free(group->seed);
|
|
OPENSSL_free(group);
|
|
}
|
|
|
|
void EC_GROUP_clear_free(EC_GROUP *group)
|
|
{
|
|
if (!group)
|
|
return;
|
|
|
|
if (group->meth->group_clear_finish != 0)
|
|
group->meth->group_clear_finish(group);
|
|
else if (group->meth->group_finish != 0)
|
|
group->meth->group_finish(group);
|
|
|
|
EC_pre_comp_free(group);
|
|
BN_MONT_CTX_free(group->mont_data);
|
|
EC_POINT_clear_free(group->generator);
|
|
BN_clear_free(group->order);
|
|
BN_clear_free(group->cofactor);
|
|
OPENSSL_clear_free(group->seed, group->seed_len);
|
|
OPENSSL_clear_free(group, sizeof(*group));
|
|
}
|
|
|
|
int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src)
|
|
{
|
|
if (dest->meth->group_copy == 0) {
|
|
ECerr(EC_F_EC_GROUP_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (dest->meth != src->meth) {
|
|
ECerr(EC_F_EC_GROUP_COPY, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
if (dest == src)
|
|
return 1;
|
|
|
|
dest->curve_name = src->curve_name;
|
|
|
|
/* Copy precomputed */
|
|
dest->pre_comp_type = src->pre_comp_type;
|
|
switch (src->pre_comp_type) {
|
|
case PCT_none:
|
|
dest->pre_comp.ec = NULL;
|
|
break;
|
|
case PCT_nistz256:
|
|
#ifdef ECP_NISTZ256_ASM
|
|
dest->pre_comp.nistz256 = EC_nistz256_pre_comp_dup(src->pre_comp.nistz256);
|
|
#endif
|
|
break;
|
|
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
|
|
case PCT_nistp224:
|
|
dest->pre_comp.nistp224 = EC_nistp224_pre_comp_dup(src->pre_comp.nistp224);
|
|
break;
|
|
case PCT_nistp256:
|
|
dest->pre_comp.nistp256 = EC_nistp256_pre_comp_dup(src->pre_comp.nistp256);
|
|
break;
|
|
case PCT_nistp521:
|
|
dest->pre_comp.nistp521 = EC_nistp521_pre_comp_dup(src->pre_comp.nistp521);
|
|
break;
|
|
#else
|
|
case PCT_nistp224:
|
|
case PCT_nistp256:
|
|
case PCT_nistp521:
|
|
break;
|
|
#endif
|
|
case PCT_ec:
|
|
dest->pre_comp.ec = EC_ec_pre_comp_dup(src->pre_comp.ec);
|
|
break;
|
|
}
|
|
|
|
if (src->mont_data != NULL) {
|
|
if (dest->mont_data == NULL) {
|
|
dest->mont_data = BN_MONT_CTX_new();
|
|
if (dest->mont_data == NULL)
|
|
return 0;
|
|
}
|
|
if (!BN_MONT_CTX_copy(dest->mont_data, src->mont_data))
|
|
return 0;
|
|
} else {
|
|
/* src->generator == NULL */
|
|
BN_MONT_CTX_free(dest->mont_data);
|
|
dest->mont_data = NULL;
|
|
}
|
|
|
|
if (src->generator != NULL) {
|
|
if (dest->generator == NULL) {
|
|
dest->generator = EC_POINT_new(dest);
|
|
if (dest->generator == NULL)
|
|
return 0;
|
|
}
|
|
if (!EC_POINT_copy(dest->generator, src->generator))
|
|
return 0;
|
|
} else {
|
|
/* src->generator == NULL */
|
|
EC_POINT_clear_free(dest->generator);
|
|
dest->generator = NULL;
|
|
}
|
|
|
|
if ((src->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) {
|
|
if (!BN_copy(dest->order, src->order))
|
|
return 0;
|
|
if (!BN_copy(dest->cofactor, src->cofactor))
|
|
return 0;
|
|
}
|
|
|
|
dest->asn1_flag = src->asn1_flag;
|
|
dest->asn1_form = src->asn1_form;
|
|
|
|
if (src->seed) {
|
|
OPENSSL_free(dest->seed);
|
|
if ((dest->seed = OPENSSL_malloc(src->seed_len)) == NULL) {
|
|
ECerr(EC_F_EC_GROUP_COPY, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
if (!memcpy(dest->seed, src->seed, src->seed_len))
|
|
return 0;
|
|
dest->seed_len = src->seed_len;
|
|
} else {
|
|
OPENSSL_free(dest->seed);
|
|
dest->seed = NULL;
|
|
dest->seed_len = 0;
|
|
}
|
|
|
|
return dest->meth->group_copy(dest, src);
|
|
}
|
|
|
|
EC_GROUP *EC_GROUP_dup(const EC_GROUP *a)
|
|
{
|
|
EC_GROUP *t = NULL;
|
|
int ok = 0;
|
|
|
|
if (a == NULL)
|
|
return NULL;
|
|
|
|
if ((t = EC_GROUP_new(a->meth)) == NULL)
|
|
return NULL;
|
|
if (!EC_GROUP_copy(t, a))
|
|
goto err;
|
|
|
|
ok = 1;
|
|
|
|
err:
|
|
if (!ok) {
|
|
EC_GROUP_free(t);
|
|
return NULL;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group)
|
|
{
|
|
return group->meth;
|
|
}
|
|
|
|
int EC_METHOD_get_field_type(const EC_METHOD *meth)
|
|
{
|
|
return meth->field_type;
|
|
}
|
|
|
|
static int ec_precompute_mont_data(EC_GROUP *);
|
|
|
|
/*-
|
|
* Try computing cofactor from the generator order (n) and field cardinality (q).
|
|
* This works for all curves of cryptographic interest.
|
|
*
|
|
* Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q)
|
|
* h_min = (q + 1 - 2*sqrt(q))/n
|
|
* h_max = (q + 1 + 2*sqrt(q))/n
|
|
* h_max - h_min = 4*sqrt(q)/n
|
|
* So if n > 4*sqrt(q) holds, there is only one possible value for h:
|
|
* h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil
|
|
*
|
|
* Otherwise, zero cofactor and return success.
|
|
*/
|
|
static int ec_guess_cofactor(EC_GROUP *group) {
|
|
int ret = 0;
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *q = NULL;
|
|
|
|
/*-
|
|
* If the cofactor is too large, we cannot guess it.
|
|
* The RHS of below is a strict overestimate of lg(4 * sqrt(q))
|
|
*/
|
|
if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) {
|
|
/* default to 0 */
|
|
BN_zero(group->cofactor);
|
|
/* return success */
|
|
return 1;
|
|
}
|
|
|
|
if ((ctx = BN_CTX_new()) == NULL)
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((q = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
/* set q = 2**m for binary fields; q = p otherwise */
|
|
if (group->meth->field_type == NID_X9_62_characteristic_two_field) {
|
|
BN_zero(q);
|
|
if (!BN_set_bit(q, BN_num_bits(group->field) - 1))
|
|
goto err;
|
|
} else {
|
|
if (!BN_copy(q, group->field))
|
|
goto err;
|
|
}
|
|
|
|
/* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */
|
|
if (!BN_rshift1(group->cofactor, group->order) /* n/2 */
|
|
|| !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */
|
|
/* q + 1 + n/2 */
|
|
|| !BN_add(group->cofactor, group->cofactor, BN_value_one())
|
|
/* (q + 1 + n/2)/n */
|
|
|| !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx))
|
|
goto err;
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
|
const BIGNUM *order, const BIGNUM *cofactor)
|
|
{
|
|
if (generator == NULL) {
|
|
ECerr(EC_F_EC_GROUP_SET_GENERATOR, ERR_R_PASSED_NULL_PARAMETER);
|
|
return 0;
|
|
}
|
|
|
|
/* require group->field >= 1 */
|
|
if (group->field == NULL || BN_is_zero(group->field)
|
|
|| BN_is_negative(group->field)) {
|
|
ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD);
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
* - require order >= 1
|
|
* - enforce upper bound due to Hasse thm: order can be no more than one bit
|
|
* longer than field cardinality
|
|
*/
|
|
if (order == NULL || BN_is_zero(order) || BN_is_negative(order)
|
|
|| BN_num_bits(order) > BN_num_bits(group->field) + 1) {
|
|
ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER);
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
* Unfortunately the cofactor is an optional field in many standards.
|
|
* Internally, the lib uses 0 cofactor as a marker for "unknown cofactor".
|
|
* So accept cofactor == NULL or cofactor >= 0.
|
|
*/
|
|
if (cofactor != NULL && BN_is_negative(cofactor)) {
|
|
ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR);
|
|
return 0;
|
|
}
|
|
|
|
if (group->generator == NULL) {
|
|
group->generator = EC_POINT_new(group);
|
|
if (group->generator == NULL)
|
|
return 0;
|
|
}
|
|
if (!EC_POINT_copy(group->generator, generator))
|
|
return 0;
|
|
|
|
if (!BN_copy(group->order, order))
|
|
return 0;
|
|
|
|
/* Either take the provided positive cofactor, or try to compute it */
|
|
if (cofactor != NULL && !BN_is_zero(cofactor)) {
|
|
if (!BN_copy(group->cofactor, cofactor))
|
|
return 0;
|
|
} else if (!ec_guess_cofactor(group)) {
|
|
BN_zero(group->cofactor);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some groups have an order with
|
|
* factors of two, which makes the Montgomery setup fail.
|
|
* |group->mont_data| will be NULL in this case.
|
|
*/
|
|
if (BN_is_odd(group->order)) {
|
|
return ec_precompute_mont_data(group);
|
|
}
|
|
|
|
BN_MONT_CTX_free(group->mont_data);
|
|
group->mont_data = NULL;
|
|
return 1;
|
|
}
|
|
|
|
const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group)
|
|
{
|
|
return group->generator;
|
|
}
|
|
|
|
BN_MONT_CTX *EC_GROUP_get_mont_data(const EC_GROUP *group)
|
|
{
|
|
return group->mont_data;
|
|
}
|
|
|
|
int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx)
|
|
{
|
|
if (group->order == NULL)
|
|
return 0;
|
|
if (!BN_copy(order, group->order))
|
|
return 0;
|
|
|
|
return !BN_is_zero(order);
|
|
}
|
|
|
|
const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group)
|
|
{
|
|
return group->order;
|
|
}
|
|
|
|
int EC_GROUP_order_bits(const EC_GROUP *group)
|
|
{
|
|
return group->meth->group_order_bits(group);
|
|
}
|
|
|
|
int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor,
|
|
BN_CTX *ctx)
|
|
{
|
|
|
|
if (group->cofactor == NULL)
|
|
return 0;
|
|
if (!BN_copy(cofactor, group->cofactor))
|
|
return 0;
|
|
|
|
return !BN_is_zero(group->cofactor);
|
|
}
|
|
|
|
const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group)
|
|
{
|
|
return group->cofactor;
|
|
}
|
|
|
|
void EC_GROUP_set_curve_name(EC_GROUP *group, int nid)
|
|
{
|
|
group->curve_name = nid;
|
|
}
|
|
|
|
int EC_GROUP_get_curve_name(const EC_GROUP *group)
|
|
{
|
|
return group->curve_name;
|
|
}
|
|
|
|
void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag)
|
|
{
|
|
group->asn1_flag = flag;
|
|
}
|
|
|
|
int EC_GROUP_get_asn1_flag(const EC_GROUP *group)
|
|
{
|
|
return group->asn1_flag;
|
|
}
|
|
|
|
void EC_GROUP_set_point_conversion_form(EC_GROUP *group,
|
|
point_conversion_form_t form)
|
|
{
|
|
group->asn1_form = form;
|
|
}
|
|
|
|
point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP
|
|
*group)
|
|
{
|
|
return group->asn1_form;
|
|
}
|
|
|
|
size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *p, size_t len)
|
|
{
|
|
OPENSSL_free(group->seed);
|
|
group->seed = NULL;
|
|
group->seed_len = 0;
|
|
|
|
if (!len || !p)
|
|
return 1;
|
|
|
|
if ((group->seed = OPENSSL_malloc(len)) == NULL) {
|
|
ECerr(EC_F_EC_GROUP_SET_SEED, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
memcpy(group->seed, p, len);
|
|
group->seed_len = len;
|
|
|
|
return len;
|
|
}
|
|
|
|
unsigned char *EC_GROUP_get0_seed(const EC_GROUP *group)
|
|
{
|
|
return group->seed;
|
|
}
|
|
|
|
size_t EC_GROUP_get_seed_len(const EC_GROUP *group)
|
|
{
|
|
return group->seed_len;
|
|
}
|
|
|
|
int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->group_set_curve == 0) {
|
|
ECerr(EC_F_EC_GROUP_SET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_set_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->group_get_curve == NULL) {
|
|
ECerr(EC_F_EC_GROUP_GET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_get_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
#if OPENSSL_API_COMPAT < 0x10200000L
|
|
int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
return EC_GROUP_set_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
return EC_GROUP_get_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_EC2M
|
|
int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
return EC_GROUP_set_curve(group, p, a, b, ctx);
|
|
}
|
|
|
|
int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
return EC_GROUP_get_curve(group, p, a, b, ctx);
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
int EC_GROUP_get_degree(const EC_GROUP *group)
|
|
{
|
|
if (group->meth->group_get_degree == 0) {
|
|
ECerr(EC_F_EC_GROUP_GET_DEGREE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_get_degree(group);
|
|
}
|
|
|
|
int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->group_check_discriminant == 0) {
|
|
ECerr(EC_F_EC_GROUP_CHECK_DISCRIMINANT,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
return group->meth->group_check_discriminant(group, ctx);
|
|
}
|
|
|
|
int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx)
|
|
{
|
|
int r = 0;
|
|
BIGNUM *a1, *a2, *a3, *b1, *b2, *b3;
|
|
BN_CTX *ctx_new = NULL;
|
|
|
|
/* compare the field types */
|
|
if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) !=
|
|
EC_METHOD_get_field_type(EC_GROUP_method_of(b)))
|
|
return 1;
|
|
/* compare the curve name (if present in both) */
|
|
if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) &&
|
|
EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b))
|
|
return 1;
|
|
if (a->meth->flags & EC_FLAGS_CUSTOM_CURVE)
|
|
return 0;
|
|
|
|
if (ctx == NULL)
|
|
ctx_new = ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
return -1;
|
|
|
|
BN_CTX_start(ctx);
|
|
a1 = BN_CTX_get(ctx);
|
|
a2 = BN_CTX_get(ctx);
|
|
a3 = BN_CTX_get(ctx);
|
|
b1 = BN_CTX_get(ctx);
|
|
b2 = BN_CTX_get(ctx);
|
|
b3 = BN_CTX_get(ctx);
|
|
if (b3 == NULL) {
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx_new);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* XXX This approach assumes that the external representation of curves
|
|
* over the same field type is the same.
|
|
*/
|
|
if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) ||
|
|
!b->meth->group_get_curve(b, b1, b2, b3, ctx))
|
|
r = 1;
|
|
|
|
if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3))
|
|
r = 1;
|
|
|
|
/* XXX EC_POINT_cmp() assumes that the methods are equal */
|
|
if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a),
|
|
EC_GROUP_get0_generator(b), ctx))
|
|
r = 1;
|
|
|
|
if (!r) {
|
|
const BIGNUM *ao, *bo, *ac, *bc;
|
|
/* compare the order and cofactor */
|
|
ao = EC_GROUP_get0_order(a);
|
|
bo = EC_GROUP_get0_order(b);
|
|
ac = EC_GROUP_get0_cofactor(a);
|
|
bc = EC_GROUP_get0_cofactor(b);
|
|
if (ao == NULL || bo == NULL) {
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx_new);
|
|
return -1;
|
|
}
|
|
if (BN_cmp(ao, bo) || BN_cmp(ac, bc))
|
|
r = 1;
|
|
}
|
|
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx_new);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* functions for EC_POINT objects */
|
|
|
|
EC_POINT *EC_POINT_new(const EC_GROUP *group)
|
|
{
|
|
EC_POINT *ret;
|
|
|
|
if (group == NULL) {
|
|
ECerr(EC_F_EC_POINT_NEW, ERR_R_PASSED_NULL_PARAMETER);
|
|
return NULL;
|
|
}
|
|
if (group->meth->point_init == NULL) {
|
|
ECerr(EC_F_EC_POINT_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return NULL;
|
|
}
|
|
|
|
ret = OPENSSL_zalloc(sizeof(*ret));
|
|
if (ret == NULL) {
|
|
ECerr(EC_F_EC_POINT_NEW, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
ret->meth = group->meth;
|
|
ret->curve_name = group->curve_name;
|
|
|
|
if (!ret->meth->point_init(ret)) {
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void EC_POINT_free(EC_POINT *point)
|
|
{
|
|
if (!point)
|
|
return;
|
|
|
|
if (point->meth->point_finish != 0)
|
|
point->meth->point_finish(point);
|
|
OPENSSL_free(point);
|
|
}
|
|
|
|
void EC_POINT_clear_free(EC_POINT *point)
|
|
{
|
|
if (!point)
|
|
return;
|
|
|
|
if (point->meth->point_clear_finish != 0)
|
|
point->meth->point_clear_finish(point);
|
|
else if (point->meth->point_finish != 0)
|
|
point->meth->point_finish(point);
|
|
OPENSSL_clear_free(point, sizeof(*point));
|
|
}
|
|
|
|
int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src)
|
|
{
|
|
if (dest->meth->point_copy == 0) {
|
|
ECerr(EC_F_EC_POINT_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (dest->meth != src->meth
|
|
|| (dest->curve_name != src->curve_name
|
|
&& dest->curve_name != 0
|
|
&& src->curve_name != 0)) {
|
|
ECerr(EC_F_EC_POINT_COPY, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
if (dest == src)
|
|
return 1;
|
|
return dest->meth->point_copy(dest, src);
|
|
}
|
|
|
|
EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group)
|
|
{
|
|
EC_POINT *t;
|
|
int r;
|
|
|
|
if (a == NULL)
|
|
return NULL;
|
|
|
|
t = EC_POINT_new(group);
|
|
if (t == NULL)
|
|
return NULL;
|
|
r = EC_POINT_copy(t, a);
|
|
if (!r) {
|
|
EC_POINT_free(t);
|
|
return NULL;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
const EC_METHOD *EC_POINT_method_of(const EC_POINT *point)
|
|
{
|
|
return point->meth;
|
|
}
|
|
|
|
int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
|
|
{
|
|
if (group->meth->point_set_to_infinity == 0) {
|
|
ECerr(EC_F_EC_POINT_SET_TO_INFINITY,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (group->meth != point->meth) {
|
|
ECerr(EC_F_EC_POINT_SET_TO_INFINITY, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_set_to_infinity(group, point);
|
|
}
|
|
|
|
int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
|
EC_POINT *point, const BIGNUM *x,
|
|
const BIGNUM *y, const BIGNUM *z,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_set_Jprojective_coordinates_GFp == 0) {
|
|
ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP,
|
|
EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_set_Jprojective_coordinates_GFp(group, point, x,
|
|
y, z, ctx);
|
|
}
|
|
|
|
int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
|
const EC_POINT *point, BIGNUM *x,
|
|
BIGNUM *y, BIGNUM *z,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_get_Jprojective_coordinates_GFp == 0) {
|
|
ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP,
|
|
EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->point_get_Jprojective_coordinates_GFp(group, point, x,
|
|
y, z, ctx);
|
|
}
|
|
|
|
int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
|
|
const BIGNUM *x, const BIGNUM *y,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_set_affine_coordinates == NULL) {
|
|
ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx))
|
|
return 0;
|
|
|
|
if (EC_POINT_is_on_curve(group, point, ctx) <= 0) {
|
|
ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_POINT_IS_NOT_ON_CURVE);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#if OPENSSL_API_COMPAT < 0x10200000L
|
|
int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group,
|
|
EC_POINT *point, const BIGNUM *x,
|
|
const BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
return EC_POINT_set_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_EC2M
|
|
int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group,
|
|
EC_POINT *point, const BIGNUM *x,
|
|
const BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
return EC_POINT_set_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
int EC_POINT_get_affine_coordinates(const EC_GROUP *group,
|
|
const EC_POINT *point, BIGNUM *x, BIGNUM *y,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_get_affine_coordinates == NULL) {
|
|
ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
if (EC_POINT_is_at_infinity(group, point)) {
|
|
ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
|
|
return 0;
|
|
}
|
|
return group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
|
|
#if OPENSSL_API_COMPAT < 0x10200000L
|
|
int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
|
|
const EC_POINT *point, BIGNUM *x,
|
|
BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
return EC_POINT_get_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_EC2M
|
|
int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group,
|
|
const EC_POINT *point, BIGNUM *x,
|
|
BIGNUM *y, BN_CTX *ctx)
|
|
{
|
|
return EC_POINT_get_affine_coordinates(group, point, x, y, ctx);
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
|
const EC_POINT *b, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->add == 0) {
|
|
ECerr(EC_F_EC_POINT_ADD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)
|
|
|| !ec_point_is_compat(b, group)) {
|
|
ECerr(EC_F_EC_POINT_ADD, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->add(group, r, a, b, ctx);
|
|
}
|
|
|
|
int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->dbl == 0) {
|
|
ECerr(EC_F_EC_POINT_DBL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)) {
|
|
ECerr(EC_F_EC_POINT_DBL, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->dbl(group, r, a, ctx);
|
|
}
|
|
|
|
int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->invert == 0) {
|
|
ECerr(EC_F_EC_POINT_INVERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(a, group)) {
|
|
ECerr(EC_F_EC_POINT_INVERT, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->invert(group, a, ctx);
|
|
}
|
|
|
|
int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
|
|
{
|
|
if (group->meth->is_at_infinity == 0) {
|
|
ECerr(EC_F_EC_POINT_IS_AT_INFINITY,
|
|
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_IS_AT_INFINITY, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->is_at_infinity(group, point);
|
|
}
|
|
|
|
/*
|
|
* Check whether an EC_POINT is on the curve or not. Note that the return
|
|
* value for this function should NOT be treated as a boolean. Return values:
|
|
* 1: The point is on the curve
|
|
* 0: The point is not on the curve
|
|
* -1: An error occurred
|
|
*/
|
|
int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->is_on_curve == 0) {
|
|
ECerr(EC_F_EC_POINT_IS_ON_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_IS_ON_CURVE, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->is_on_curve(group, point, ctx);
|
|
}
|
|
|
|
int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
|
|
BN_CTX *ctx)
|
|
{
|
|
if (group->meth->point_cmp == 0) {
|
|
ECerr(EC_F_EC_POINT_CMP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return -1;
|
|
}
|
|
if (!ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) {
|
|
ECerr(EC_F_EC_POINT_CMP, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return -1;
|
|
}
|
|
return group->meth->point_cmp(group, a, b, ctx);
|
|
}
|
|
|
|
int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->make_affine == 0) {
|
|
ECerr(EC_F_EC_POINT_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
if (!ec_point_is_compat(point, group)) {
|
|
ECerr(EC_F_EC_POINT_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
return group->meth->make_affine(group, point, ctx);
|
|
}
|
|
|
|
int EC_POINTs_make_affine(const EC_GROUP *group, size_t num,
|
|
EC_POINT *points[], BN_CTX *ctx)
|
|
{
|
|
size_t i;
|
|
|
|
if (group->meth->points_make_affine == 0) {
|
|
ECerr(EC_F_EC_POINTS_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < num; i++) {
|
|
if (!ec_point_is_compat(points[i], group)) {
|
|
ECerr(EC_F_EC_POINTS_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
}
|
|
return group->meth->points_make_affine(group, num, points, ctx);
|
|
}
|
|
|
|
/*
|
|
* Functions for point multiplication. If group->meth->mul is 0, we use the
|
|
* wNAF-based implementations in ec_mult.c; otherwise we dispatch through
|
|
* methods.
|
|
*/
|
|
|
|
int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
|
size_t num, const EC_POINT *points[],
|
|
const BIGNUM *scalars[], BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
size_t i = 0;
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
if ((scalar == NULL) && (num == 0)) {
|
|
return EC_POINT_set_to_infinity(group, r);
|
|
}
|
|
|
|
if (!ec_point_is_compat(r, group)) {
|
|
ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < num; i++) {
|
|
if (!ec_point_is_compat(points[i], group)) {
|
|
ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) {
|
|
ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (group->meth->mul != NULL)
|
|
ret = group->meth->mul(group, r, scalar, num, points, scalars, ctx);
|
|
else
|
|
/* use default */
|
|
ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
|
|
|
|
BN_CTX_free(new_ctx);
|
|
return ret;
|
|
}
|
|
|
|
int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
|
|
const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
|
|
{
|
|
/* just a convenient interface to EC_POINTs_mul() */
|
|
|
|
const EC_POINT *points[1];
|
|
const BIGNUM *scalars[1];
|
|
|
|
points[0] = point;
|
|
scalars[0] = p_scalar;
|
|
|
|
return EC_POINTs_mul(group, r, g_scalar,
|
|
(point != NULL
|
|
&& p_scalar != NULL), points, scalars, ctx);
|
|
}
|
|
|
|
int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->mul == 0)
|
|
/* use default */
|
|
return ec_wNAF_precompute_mult(group, ctx);
|
|
|
|
if (group->meth->precompute_mult != 0)
|
|
return group->meth->precompute_mult(group, ctx);
|
|
else
|
|
return 1; /* nothing to do, so report success */
|
|
}
|
|
|
|
int EC_GROUP_have_precompute_mult(const EC_GROUP *group)
|
|
{
|
|
if (group->meth->mul == 0)
|
|
/* use default */
|
|
return ec_wNAF_have_precompute_mult(group);
|
|
|
|
if (group->meth->have_precompute_mult != 0)
|
|
return group->meth->have_precompute_mult(group);
|
|
else
|
|
return 0; /* cannot tell whether precomputation has
|
|
* been performed */
|
|
}
|
|
|
|
/*
|
|
* ec_precompute_mont_data sets |group->mont_data| from |group->order| and
|
|
* returns one on success. On error it returns zero.
|
|
*/
|
|
static int ec_precompute_mont_data(EC_GROUP *group)
|
|
{
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
int ret = 0;
|
|
|
|
BN_MONT_CTX_free(group->mont_data);
|
|
group->mont_data = NULL;
|
|
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
group->mont_data = BN_MONT_CTX_new();
|
|
if (group->mont_data == NULL)
|
|
goto err;
|
|
|
|
if (!BN_MONT_CTX_set(group->mont_data, group->order, ctx)) {
|
|
BN_MONT_CTX_free(group->mont_data);
|
|
group->mont_data = NULL;
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
|
|
BN_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
int EC_KEY_set_ex_data(EC_KEY *key, int idx, void *arg)
|
|
{
|
|
return CRYPTO_set_ex_data(&key->ex_data, idx, arg);
|
|
}
|
|
|
|
void *EC_KEY_get_ex_data(const EC_KEY *key, int idx)
|
|
{
|
|
return CRYPTO_get_ex_data(&key->ex_data, idx);
|
|
}
|
|
|
|
int ec_group_simple_order_bits(const EC_GROUP *group)
|
|
{
|
|
if (group->order == NULL)
|
|
return 0;
|
|
return BN_num_bits(group->order);
|
|
}
|
|
|
|
static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r,
|
|
const BIGNUM *x, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *e = NULL;
|
|
BN_CTX *new_ctx = NULL;
|
|
int ret = 0;
|
|
|
|
if (group->mont_data == NULL)
|
|
return 0;
|
|
|
|
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((e = BN_CTX_get(ctx)) == NULL)
|
|
goto err;
|
|
|
|
/*-
|
|
* We want inverse in constant time, therefore we utilize the fact
|
|
* order must be prime and use Fermats Little Theorem instead.
|
|
*/
|
|
if (!BN_set_word(e, 2))
|
|
goto err;
|
|
if (!BN_sub(e, group->order, e))
|
|
goto err;
|
|
/*-
|
|
* Exponent e is public.
|
|
* No need for scatter-gather or BN_FLG_CONSTTIME.
|
|
*/
|
|
if (!BN_mod_exp_mont(r, x, e, group->order, ctx, group->mont_data))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(new_ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*-
|
|
* Default behavior, if group->meth->field_inverse_mod_ord is NULL:
|
|
* - When group->order is even, this function returns an error.
|
|
* - When group->order is otherwise composite, the correctness
|
|
* of the output is not guaranteed.
|
|
* - When x is outside the range [1, group->order), the correctness
|
|
* of the output is not guaranteed.
|
|
* - Otherwise, this function returns the multiplicative inverse in the
|
|
* range [1, group->order).
|
|
*
|
|
* EC_METHODs must implement their own field_inverse_mod_ord for
|
|
* other functionality.
|
|
*/
|
|
int ec_group_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
|
|
const BIGNUM *x, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->field_inverse_mod_ord != NULL)
|
|
return group->meth->field_inverse_mod_ord(group, res, x, ctx);
|
|
else
|
|
return ec_field_inverse_mod_ord(group, res, x, ctx);
|
|
}
|
|
|
|
/*-
|
|
* Coordinate blinding for EC_POINT.
|
|
*
|
|
* The underlying EC_METHOD can optionally implement this function:
|
|
* underlying implementations should return 0 on errors, or 1 on
|
|
* success.
|
|
*
|
|
* This wrapper returns 1 in case the underlying EC_METHOD does not
|
|
* support coordinate blinding.
|
|
*/
|
|
int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx)
|
|
{
|
|
if (group->meth->blind_coordinates == NULL)
|
|
return 1; /* ignore if not implemented */
|
|
|
|
return group->meth->blind_coordinates(group, p, ctx);
|
|
}
|