openssl/crypto/evp/e_sm4.c
Dr. Matthias St. Pierre 0c994d54af Reorganize private crypto header files
Currently, there are two different directories which contain internal
header files of libcrypto which are meant to be shared internally:

While header files in 'include/internal' are intended to be shared
between libcrypto and libssl, the files in 'crypto/include/internal'
are intended to be shared inside libcrypto only.

To make things complicated, the include search path is set up in such
a way that the directive #include "internal/file.h" could refer to
a file in either of these two directoroes. This makes it necessary
in some cases to add a '_int.h' suffix to some files to resolve this
ambiguity:

  #include "internal/file.h"      # located in 'include/internal'
  #include "internal/file_int.h"  # located in 'crypto/include/internal'

This commit moves the private crypto headers from

  'crypto/include/internal'  to  'include/crypto'

As a result, the include directives become unambiguous

  #include "internal/file.h"       # located in 'include/internal'
  #include "crypto/file.h"         # located in 'include/crypto'

hence the superfluous '_int.h' suffixes can be stripped.

The files 'store_int.h' and 'store.h' need to be treated specially;
they are joined into a single file.

Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9681)
2019-09-27 23:57:58 +02:00

100 lines
3.1 KiB
C

/*
* Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2017 Ribose Inc. All Rights Reserved.
* Ported from Ribose contributions from Botan.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#ifndef OPENSSL_NO_SM4
# include <openssl/evp.h>
# include <openssl/modes.h>
# include "crypto/sm4.h"
# include "crypto/evp.h"
typedef struct {
SM4_KEY ks;
} EVP_SM4_KEY;
static int sm4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
SM4_set_key(key, EVP_CIPHER_CTX_get_cipher_data(ctx));
return 1;
}
static void sm4_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const SM4_KEY *key,
unsigned char *ivec, const int enc)
{
if (enc)
CRYPTO_cbc128_encrypt(in, out, len, key, ivec,
(block128_f)SM4_encrypt);
else
CRYPTO_cbc128_decrypt(in, out, len, key, ivec,
(block128_f)SM4_decrypt);
}
static void sm4_cfb128_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const SM4_KEY *key,
unsigned char *ivec, int *num, const int enc)
{
CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc,
(block128_f)SM4_encrypt);
}
static void sm4_ecb_encrypt(const unsigned char *in, unsigned char *out,
const SM4_KEY *key, const int enc)
{
if (enc)
SM4_encrypt(in, out, key);
else
SM4_decrypt(in, out, key);
}
static void sm4_ofb128_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const SM4_KEY *key,
unsigned char *ivec, int *num)
{
CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num,
(block128_f)SM4_encrypt);
}
IMPLEMENT_BLOCK_CIPHER(sm4, ks, sm4, EVP_SM4_KEY, NID_sm4,
16, 16, 16, 128, EVP_CIPH_FLAG_DEFAULT_ASN1,
sm4_init_key, 0, 0, 0, 0)
static int sm4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
unsigned int num = EVP_CIPHER_CTX_num(ctx);
EVP_SM4_KEY *dat = EVP_C_DATA(EVP_SM4_KEY, ctx);
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_buf_noconst(ctx), &num,
(block128_f)SM4_encrypt);
EVP_CIPHER_CTX_set_num(ctx, num);
return 1;
}
static const EVP_CIPHER sm4_ctr_mode = {
NID_sm4_ctr, 1, 16, 16,
EVP_CIPH_CTR_MODE,
sm4_init_key,
sm4_ctr_cipher,
NULL,
sizeof(EVP_SM4_KEY),
NULL, NULL, NULL, NULL
};
const EVP_CIPHER *EVP_sm4_ctr(void)
{
return &sm4_ctr_mode;
}
#endif