34e3edbf3a
If a client renegotiates using an invalid signature algorithms extension it will crash a server with a NULL pointer dereference. Thanks to David Ramos of Stanford University for reporting this bug. CVE-2015-0291 Reviewed-by: Tim Hudson <tjh@openssl.org>
4262 lines
135 KiB
C
4262 lines
135 KiB
C
/* ssl/t1_lib.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/ocsp.h>
|
|
#include <openssl/rand.h>
|
|
#ifndef OPENSSL_NO_DH
|
|
# include <openssl/dh.h>
|
|
# include <openssl/bn.h>
|
|
#endif
|
|
#include "ssl_locl.h"
|
|
|
|
const char tls1_version_str[] = "TLSv1" OPENSSL_VERSION_PTEXT;
|
|
|
|
#ifndef OPENSSL_NO_TLSEXT
|
|
static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen,
|
|
const unsigned char *sess_id, int sesslen,
|
|
SSL_SESSION **psess);
|
|
static int ssl_check_clienthello_tlsext_early(SSL *s);
|
|
int ssl_check_serverhello_tlsext(SSL *s);
|
|
#endif
|
|
|
|
SSL3_ENC_METHOD const TLSv1_enc_data = {
|
|
tls1_enc,
|
|
tls1_mac,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
TLS1_FINISH_MAC_LENGTH,
|
|
tls1_cert_verify_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
0,
|
|
SSL3_HM_HEADER_LENGTH,
|
|
ssl3_set_handshake_header,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
|
|
tls1_enc,
|
|
tls1_mac,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
TLS1_FINISH_MAC_LENGTH,
|
|
tls1_cert_verify_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
SSL_ENC_FLAG_EXPLICIT_IV,
|
|
SSL3_HM_HEADER_LENGTH,
|
|
ssl3_set_handshake_header,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
|
|
tls1_enc,
|
|
tls1_mac,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
TLS1_FINISH_MAC_LENGTH,
|
|
tls1_cert_verify_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
|
|
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
|
|
SSL3_HM_HEADER_LENGTH,
|
|
ssl3_set_handshake_header,
|
|
ssl3_handshake_write
|
|
};
|
|
|
|
long tls1_default_timeout(void)
|
|
{
|
|
/*
|
|
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
|
|
* http, the cache would over fill
|
|
*/
|
|
return (60 * 60 * 2);
|
|
}
|
|
|
|
int tls1_new(SSL *s)
|
|
{
|
|
if (!ssl3_new(s))
|
|
return (0);
|
|
s->method->ssl_clear(s);
|
|
return (1);
|
|
}
|
|
|
|
void tls1_free(SSL *s)
|
|
{
|
|
#ifndef OPENSSL_NO_TLSEXT
|
|
if (s->tlsext_session_ticket) {
|
|
OPENSSL_free(s->tlsext_session_ticket);
|
|
}
|
|
#endif /* OPENSSL_NO_TLSEXT */
|
|
ssl3_free(s);
|
|
}
|
|
|
|
void tls1_clear(SSL *s)
|
|
{
|
|
ssl3_clear(s);
|
|
s->version = s->method->version;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
|
|
typedef struct {
|
|
int nid; /* Curve NID */
|
|
int secbits; /* Bits of security (from SP800-57) */
|
|
unsigned int flags; /* Flags: currently just field type */
|
|
} tls_curve_info;
|
|
|
|
# define TLS_CURVE_CHAR2 0x1
|
|
# define TLS_CURVE_PRIME 0x0
|
|
|
|
static const tls_curve_info nid_list[] = {
|
|
{NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
|
|
{NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
|
|
{NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
|
|
{NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
|
|
{NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
|
|
{NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
|
|
{NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
|
|
{NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
|
|
{NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
|
|
{NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
|
|
{NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
|
|
{NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
|
|
{NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
|
|
{NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
|
|
{NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
|
|
{NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
|
|
{NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
|
|
{NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
|
|
{NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
|
|
{NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
|
|
{NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
|
|
{NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
|
|
{NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
|
|
{NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
|
|
{NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
|
|
{NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
|
|
{NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
|
|
{NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
|
|
};
|
|
|
|
static const unsigned char ecformats_default[] = {
|
|
TLSEXT_ECPOINTFORMAT_uncompressed,
|
|
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
|
|
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
|
|
};
|
|
|
|
static const unsigned char eccurves_default[] = {
|
|
0, 14, /* sect571r1 (14) */
|
|
0, 13, /* sect571k1 (13) */
|
|
0, 25, /* secp521r1 (25) */
|
|
0, 28, /* brainpool512r1 (28) */
|
|
0, 11, /* sect409k1 (11) */
|
|
0, 12, /* sect409r1 (12) */
|
|
0, 27, /* brainpoolP384r1 (27) */
|
|
0, 24, /* secp384r1 (24) */
|
|
0, 9, /* sect283k1 (9) */
|
|
0, 10, /* sect283r1 (10) */
|
|
0, 26, /* brainpoolP256r1 (26) */
|
|
0, 22, /* secp256k1 (22) */
|
|
0, 23, /* secp256r1 (23) */
|
|
0, 8, /* sect239k1 (8) */
|
|
0, 6, /* sect233k1 (6) */
|
|
0, 7, /* sect233r1 (7) */
|
|
0, 20, /* secp224k1 (20) */
|
|
0, 21, /* secp224r1 (21) */
|
|
0, 4, /* sect193r1 (4) */
|
|
0, 5, /* sect193r2 (5) */
|
|
0, 18, /* secp192k1 (18) */
|
|
0, 19, /* secp192r1 (19) */
|
|
0, 1, /* sect163k1 (1) */
|
|
0, 2, /* sect163r1 (2) */
|
|
0, 3, /* sect163r2 (3) */
|
|
0, 15, /* secp160k1 (15) */
|
|
0, 16, /* secp160r1 (16) */
|
|
0, 17, /* secp160r2 (17) */
|
|
};
|
|
|
|
static const unsigned char suiteb_curves[] = {
|
|
0, TLSEXT_curve_P_256,
|
|
0, TLSEXT_curve_P_384
|
|
};
|
|
|
|
int tls1_ec_curve_id2nid(int curve_id)
|
|
{
|
|
/* ECC curves from RFC 4492 and RFC 7027 */
|
|
if ((curve_id < 1) || ((unsigned int)curve_id >
|
|
sizeof(nid_list) / sizeof(nid_list[0])))
|
|
return 0;
|
|
return nid_list[curve_id - 1].nid;
|
|
}
|
|
|
|
int tls1_ec_nid2curve_id(int nid)
|
|
{
|
|
/* ECC curves from RFC 4492 and RFC 7027 */
|
|
switch (nid) {
|
|
case NID_sect163k1: /* sect163k1 (1) */
|
|
return 1;
|
|
case NID_sect163r1: /* sect163r1 (2) */
|
|
return 2;
|
|
case NID_sect163r2: /* sect163r2 (3) */
|
|
return 3;
|
|
case NID_sect193r1: /* sect193r1 (4) */
|
|
return 4;
|
|
case NID_sect193r2: /* sect193r2 (5) */
|
|
return 5;
|
|
case NID_sect233k1: /* sect233k1 (6) */
|
|
return 6;
|
|
case NID_sect233r1: /* sect233r1 (7) */
|
|
return 7;
|
|
case NID_sect239k1: /* sect239k1 (8) */
|
|
return 8;
|
|
case NID_sect283k1: /* sect283k1 (9) */
|
|
return 9;
|
|
case NID_sect283r1: /* sect283r1 (10) */
|
|
return 10;
|
|
case NID_sect409k1: /* sect409k1 (11) */
|
|
return 11;
|
|
case NID_sect409r1: /* sect409r1 (12) */
|
|
return 12;
|
|
case NID_sect571k1: /* sect571k1 (13) */
|
|
return 13;
|
|
case NID_sect571r1: /* sect571r1 (14) */
|
|
return 14;
|
|
case NID_secp160k1: /* secp160k1 (15) */
|
|
return 15;
|
|
case NID_secp160r1: /* secp160r1 (16) */
|
|
return 16;
|
|
case NID_secp160r2: /* secp160r2 (17) */
|
|
return 17;
|
|
case NID_secp192k1: /* secp192k1 (18) */
|
|
return 18;
|
|
case NID_X9_62_prime192v1: /* secp192r1 (19) */
|
|
return 19;
|
|
case NID_secp224k1: /* secp224k1 (20) */
|
|
return 20;
|
|
case NID_secp224r1: /* secp224r1 (21) */
|
|
return 21;
|
|
case NID_secp256k1: /* secp256k1 (22) */
|
|
return 22;
|
|
case NID_X9_62_prime256v1: /* secp256r1 (23) */
|
|
return 23;
|
|
case NID_secp384r1: /* secp384r1 (24) */
|
|
return 24;
|
|
case NID_secp521r1: /* secp521r1 (25) */
|
|
return 25;
|
|
case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */
|
|
return 26;
|
|
case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */
|
|
return 27;
|
|
case NID_brainpoolP512r1: /* brainpool512r1 (28) */
|
|
return 28;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get curves list, if "sess" is set return client curves otherwise
|
|
* preferred list.
|
|
* Sets |num_curves| to the number of curves in the list, i.e.,
|
|
* the length of |pcurves| is 2 * num_curves.
|
|
* Returns 1 on success and 0 if the client curves list has invalid format.
|
|
* The latter indicates an internal error: we should not be accepting such
|
|
* lists in the first place.
|
|
* TODO(emilia): we should really be storing the curves list in explicitly
|
|
* parsed form instead. (However, this would affect binary compatibility
|
|
* so cannot happen in the 1.0.x series.)
|
|
*/
|
|
static int tls1_get_curvelist(SSL *s, int sess,
|
|
const unsigned char **pcurves,
|
|
size_t *num_curves)
|
|
{
|
|
size_t pcurveslen = 0;
|
|
if (sess) {
|
|
*pcurves = s->session->tlsext_ellipticcurvelist;
|
|
pcurveslen = s->session->tlsext_ellipticcurvelist_length;
|
|
} else {
|
|
/* For Suite B mode only include P-256, P-384 */
|
|
switch (tls1_suiteb(s)) {
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS:
|
|
*pcurves = suiteb_curves;
|
|
pcurveslen = sizeof(suiteb_curves);
|
|
break;
|
|
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
|
*pcurves = suiteb_curves;
|
|
pcurveslen = 2;
|
|
break;
|
|
|
|
case SSL_CERT_FLAG_SUITEB_192_LOS:
|
|
*pcurves = suiteb_curves + 2;
|
|
pcurveslen = 2;
|
|
break;
|
|
default:
|
|
*pcurves = s->tlsext_ellipticcurvelist;
|
|
pcurveslen = s->tlsext_ellipticcurvelist_length;
|
|
}
|
|
if (!*pcurves) {
|
|
*pcurves = eccurves_default;
|
|
pcurveslen = sizeof(eccurves_default);
|
|
}
|
|
}
|
|
|
|
/* We do not allow odd length arrays to enter the system. */
|
|
if (pcurveslen & 1) {
|
|
SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
|
|
*num_curves = 0;
|
|
return 0;
|
|
} else {
|
|
*num_curves = pcurveslen / 2;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* See if curve is allowed by security callback */
|
|
static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
|
|
{
|
|
const tls_curve_info *cinfo;
|
|
if (curve[0])
|
|
return 1;
|
|
if ((curve[1] < 1) || ((size_t)curve[1] >
|
|
sizeof(nid_list) / sizeof(nid_list[0])))
|
|
return 0;
|
|
cinfo = &nid_list[curve[1] - 1];
|
|
# ifdef OPENSSL_NO_EC2M
|
|
if (cinfo->flags & TLS_CURVE_CHAR2)
|
|
return 0;
|
|
# endif
|
|
return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
|
|
}
|
|
|
|
/* Check a curve is one of our preferences */
|
|
int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
|
|
{
|
|
const unsigned char *curves;
|
|
size_t num_curves, i;
|
|
unsigned int suiteb_flags = tls1_suiteb(s);
|
|
if (len != 3 || p[0] != NAMED_CURVE_TYPE)
|
|
return 0;
|
|
/* Check curve matches Suite B preferences */
|
|
if (suiteb_flags) {
|
|
unsigned long cid = s->s3->tmp.new_cipher->id;
|
|
if (p[1])
|
|
return 0;
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
|
|
if (p[2] != TLSEXT_curve_P_256)
|
|
return 0;
|
|
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
|
|
if (p[2] != TLSEXT_curve_P_384)
|
|
return 0;
|
|
} else /* Should never happen */
|
|
return 0;
|
|
}
|
|
if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
|
|
return 0;
|
|
for (i = 0; i < num_curves; i++, curves += 2) {
|
|
if (p[1] == curves[0] && p[2] == curves[1])
|
|
return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
* Return |nmatch|th shared curve or NID_undef if there is no match.
|
|
* For nmatch == -1, return number of matches
|
|
* For nmatch == -2, return the NID of the curve to use for
|
|
* an EC tmp key, or NID_undef if there is no match.
|
|
*/
|
|
int tls1_shared_curve(SSL *s, int nmatch)
|
|
{
|
|
const unsigned char *pref, *supp;
|
|
size_t num_pref, num_supp, i, j;
|
|
int k;
|
|
/* Can't do anything on client side */
|
|
if (s->server == 0)
|
|
return -1;
|
|
if (nmatch == -2) {
|
|
if (tls1_suiteb(s)) {
|
|
/*
|
|
* For Suite B ciphersuite determines curve: we already know
|
|
* these are acceptable due to previous checks.
|
|
*/
|
|
unsigned long cid = s->s3->tmp.new_cipher->id;
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
|
return NID_X9_62_prime256v1; /* P-256 */
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
|
return NID_secp384r1; /* P-384 */
|
|
/* Should never happen */
|
|
return NID_undef;
|
|
}
|
|
/* If not Suite B just return first preference shared curve */
|
|
nmatch = 0;
|
|
}
|
|
/*
|
|
* Avoid truncation. tls1_get_curvelist takes an int
|
|
* but s->options is a long...
|
|
*/
|
|
if (!tls1_get_curvelist
|
|
(s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp,
|
|
&num_supp))
|
|
/* In practice, NID_undef == 0 but let's be precise. */
|
|
return nmatch == -1 ? 0 : NID_undef;
|
|
if (!tls1_get_curvelist
|
|
(s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref,
|
|
&num_pref))
|
|
return nmatch == -1 ? 0 : NID_undef;
|
|
k = 0;
|
|
for (i = 0; i < num_pref; i++, pref += 2) {
|
|
const unsigned char *tsupp = supp;
|
|
for (j = 0; j < num_supp; j++, tsupp += 2) {
|
|
if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
|
|
if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
|
|
continue;
|
|
if (nmatch == k) {
|
|
int id = (pref[0] << 8) | pref[1];
|
|
return tls1_ec_curve_id2nid(id);
|
|
}
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
if (nmatch == -1)
|
|
return k;
|
|
/* Out of range (nmatch > k). */
|
|
return NID_undef;
|
|
}
|
|
|
|
int tls1_set_curves(unsigned char **pext, size_t *pextlen,
|
|
int *curves, size_t ncurves)
|
|
{
|
|
unsigned char *clist, *p;
|
|
size_t i;
|
|
/*
|
|
* Bitmap of curves included to detect duplicates: only works while curve
|
|
* ids < 32
|
|
*/
|
|
unsigned long dup_list = 0;
|
|
clist = OPENSSL_malloc(ncurves * 2);
|
|
if (!clist)
|
|
return 0;
|
|
for (i = 0, p = clist; i < ncurves; i++) {
|
|
unsigned long idmask;
|
|
int id;
|
|
id = tls1_ec_nid2curve_id(curves[i]);
|
|
idmask = 1L << id;
|
|
if (!id || (dup_list & idmask)) {
|
|
OPENSSL_free(clist);
|
|
return 0;
|
|
}
|
|
dup_list |= idmask;
|
|
s2n(id, p);
|
|
}
|
|
if (*pext)
|
|
OPENSSL_free(*pext);
|
|
*pext = clist;
|
|
*pextlen = ncurves * 2;
|
|
return 1;
|
|
}
|
|
|
|
# define MAX_CURVELIST 28
|
|
|
|
typedef struct {
|
|
size_t nidcnt;
|
|
int nid_arr[MAX_CURVELIST];
|
|
} nid_cb_st;
|
|
|
|
static int nid_cb(const char *elem, int len, void *arg)
|
|
{
|
|
nid_cb_st *narg = arg;
|
|
size_t i;
|
|
int nid;
|
|
char etmp[20];
|
|
if (elem == NULL)
|
|
return 0;
|
|
if (narg->nidcnt == MAX_CURVELIST)
|
|
return 0;
|
|
if (len > (int)(sizeof(etmp) - 1))
|
|
return 0;
|
|
memcpy(etmp, elem, len);
|
|
etmp[len] = 0;
|
|
nid = EC_curve_nist2nid(etmp);
|
|
if (nid == NID_undef)
|
|
nid = OBJ_sn2nid(etmp);
|
|
if (nid == NID_undef)
|
|
nid = OBJ_ln2nid(etmp);
|
|
if (nid == NID_undef)
|
|
return 0;
|
|
for (i = 0; i < narg->nidcnt; i++)
|
|
if (narg->nid_arr[i] == nid)
|
|
return 0;
|
|
narg->nid_arr[narg->nidcnt++] = nid;
|
|
return 1;
|
|
}
|
|
|
|
/* Set curves based on a colon separate list */
|
|
int tls1_set_curves_list(unsigned char **pext, size_t *pextlen,
|
|
const char *str)
|
|
{
|
|
nid_cb_st ncb;
|
|
ncb.nidcnt = 0;
|
|
if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
|
|
return 0;
|
|
if (pext == NULL)
|
|
return 1;
|
|
return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
|
|
}
|
|
|
|
/* For an EC key set TLS id and required compression based on parameters */
|
|
static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
|
|
EC_KEY *ec)
|
|
{
|
|
int is_prime, id;
|
|
const EC_GROUP *grp;
|
|
const EC_METHOD *meth;
|
|
if (!ec)
|
|
return 0;
|
|
/* Determine if it is a prime field */
|
|
grp = EC_KEY_get0_group(ec);
|
|
if (!grp)
|
|
return 0;
|
|
meth = EC_GROUP_method_of(grp);
|
|
if (!meth)
|
|
return 0;
|
|
if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field)
|
|
is_prime = 1;
|
|
else
|
|
is_prime = 0;
|
|
/* Determine curve ID */
|
|
id = EC_GROUP_get_curve_name(grp);
|
|
id = tls1_ec_nid2curve_id(id);
|
|
/* If we have an ID set it, otherwise set arbitrary explicit curve */
|
|
if (id) {
|
|
curve_id[0] = 0;
|
|
curve_id[1] = (unsigned char)id;
|
|
} else {
|
|
curve_id[0] = 0xff;
|
|
if (is_prime)
|
|
curve_id[1] = 0x01;
|
|
else
|
|
curve_id[1] = 0x02;
|
|
}
|
|
if (comp_id) {
|
|
if (EC_KEY_get0_public_key(ec) == NULL)
|
|
return 0;
|
|
if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) {
|
|
if (is_prime)
|
|
*comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
|
|
else
|
|
*comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
|
|
} else
|
|
*comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Check an EC key is compatible with extensions */
|
|
static int tls1_check_ec_key(SSL *s,
|
|
unsigned char *curve_id, unsigned char *comp_id)
|
|
{
|
|
const unsigned char *pformats, *pcurves;
|
|
size_t num_formats, num_curves, i;
|
|
int j;
|
|
/*
|
|
* If point formats extension present check it, otherwise everything is
|
|
* supported (see RFC4492).
|
|
*/
|
|
if (comp_id && s->session->tlsext_ecpointformatlist) {
|
|
pformats = s->session->tlsext_ecpointformatlist;
|
|
num_formats = s->session->tlsext_ecpointformatlist_length;
|
|
for (i = 0; i < num_formats; i++, pformats++) {
|
|
if (*comp_id == *pformats)
|
|
break;
|
|
}
|
|
if (i == num_formats)
|
|
return 0;
|
|
}
|
|
if (!curve_id)
|
|
return 1;
|
|
/* Check curve is consistent with client and server preferences */
|
|
for (j = 0; j <= 1; j++) {
|
|
if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
|
|
return 0;
|
|
for (i = 0; i < num_curves; i++, pcurves += 2) {
|
|
if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
|
|
break;
|
|
}
|
|
if (i == num_curves)
|
|
return 0;
|
|
/* For clients can only check sent curve list */
|
|
if (!s->server)
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
|
|
size_t *num_formats)
|
|
{
|
|
/*
|
|
* If we have a custom point format list use it otherwise use default
|
|
*/
|
|
if (s->tlsext_ecpointformatlist) {
|
|
*pformats = s->tlsext_ecpointformatlist;
|
|
*num_formats = s->tlsext_ecpointformatlist_length;
|
|
} else {
|
|
*pformats = ecformats_default;
|
|
/* For Suite B we don't support char2 fields */
|
|
if (tls1_suiteb(s))
|
|
*num_formats = sizeof(ecformats_default) - 1;
|
|
else
|
|
*num_formats = sizeof(ecformats_default);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check cert parameters compatible with extensions: currently just checks EC
|
|
* certificates have compatible curves and compression.
|
|
*/
|
|
static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
|
|
{
|
|
unsigned char comp_id, curve_id[2];
|
|
EVP_PKEY *pkey;
|
|
int rv;
|
|
pkey = X509_get_pubkey(x);
|
|
if (!pkey)
|
|
return 0;
|
|
/* If not EC nothing to do */
|
|
if (pkey->type != EVP_PKEY_EC) {
|
|
EVP_PKEY_free(pkey);
|
|
return 1;
|
|
}
|
|
rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec);
|
|
EVP_PKEY_free(pkey);
|
|
if (!rv)
|
|
return 0;
|
|
/*
|
|
* Can't check curve_id for client certs as we don't have a supported
|
|
* curves extension.
|
|
*/
|
|
rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
|
|
if (!rv)
|
|
return 0;
|
|
/*
|
|
* Special case for suite B. We *MUST* sign using SHA256+P-256 or
|
|
* SHA384+P-384, adjust digest if necessary.
|
|
*/
|
|
if (set_ee_md && tls1_suiteb(s)) {
|
|
int check_md;
|
|
size_t i;
|
|
CERT *c = s->cert;
|
|
if (curve_id[0])
|
|
return 0;
|
|
/* Check to see we have necessary signing algorithm */
|
|
if (curve_id[1] == TLSEXT_curve_P_256)
|
|
check_md = NID_ecdsa_with_SHA256;
|
|
else if (curve_id[1] == TLSEXT_curve_P_384)
|
|
check_md = NID_ecdsa_with_SHA384;
|
|
else
|
|
return 0; /* Should never happen */
|
|
for (i = 0; i < c->shared_sigalgslen; i++)
|
|
if (check_md == c->shared_sigalgs[i].signandhash_nid)
|
|
break;
|
|
if (i == c->shared_sigalgslen)
|
|
return 0;
|
|
if (set_ee_md == 2) {
|
|
if (check_md == NID_ecdsa_with_SHA256)
|
|
c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256();
|
|
else
|
|
c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384();
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
/* Check EC temporary key is compatible with client extensions */
|
|
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
|
|
{
|
|
unsigned char curve_id[2];
|
|
EC_KEY *ec = s->cert->ecdh_tmp;
|
|
# ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
|
|
/* Allow any curve: not just those peer supports */
|
|
if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
|
|
return 1;
|
|
# endif
|
|
/*
|
|
* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
|
|
* curves permitted.
|
|
*/
|
|
if (tls1_suiteb(s)) {
|
|
/* Curve to check determined by ciphersuite */
|
|
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
|
curve_id[1] = TLSEXT_curve_P_256;
|
|
else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
|
curve_id[1] = TLSEXT_curve_P_384;
|
|
else
|
|
return 0;
|
|
curve_id[0] = 0;
|
|
/* Check this curve is acceptable */
|
|
if (!tls1_check_ec_key(s, curve_id, NULL))
|
|
return 0;
|
|
/* If auto or setting curve from callback assume OK */
|
|
if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb)
|
|
return 1;
|
|
/* Otherwise check curve is acceptable */
|
|
else {
|
|
unsigned char curve_tmp[2];
|
|
if (!ec)
|
|
return 0;
|
|
if (!tls1_set_ec_id(curve_tmp, NULL, ec))
|
|
return 0;
|
|
if (!curve_tmp[0] || curve_tmp[1] == curve_id[1])
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
if (s->cert->ecdh_tmp_auto) {
|
|
/* Need a shared curve */
|
|
if (tls1_shared_curve(s, 0))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
if (!ec) {
|
|
if (s->cert->ecdh_tmp_cb)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
if (!tls1_set_ec_id(curve_id, NULL, ec))
|
|
return 0;
|
|
/* Set this to allow use of invalid curves for testing */
|
|
# if 0
|
|
return 1;
|
|
# else
|
|
return tls1_check_ec_key(s, curve_id, NULL);
|
|
# endif
|
|
}
|
|
# endif /* OPENSSL_NO_EC */
|
|
|
|
#else
|
|
|
|
static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
#endif /* OPENSSL_NO_EC */
|
|
|
|
#ifndef OPENSSL_NO_TLSEXT
|
|
|
|
/*
|
|
* List of supported signature algorithms and hashes. Should make this
|
|
* customisable at some point, for now include everything we support.
|
|
*/
|
|
|
|
# ifdef OPENSSL_NO_RSA
|
|
# define tlsext_sigalg_rsa(md) /* */
|
|
# else
|
|
# define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
|
|
# endif
|
|
|
|
# ifdef OPENSSL_NO_DSA
|
|
# define tlsext_sigalg_dsa(md) /* */
|
|
# else
|
|
# define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa,
|
|
# endif
|
|
|
|
# ifdef OPENSSL_NO_EC
|
|
# define tlsext_sigalg_ecdsa(md) /* */
|
|
# else
|
|
# define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
|
|
# endif
|
|
|
|
# define tlsext_sigalg(md) \
|
|
tlsext_sigalg_rsa(md) \
|
|
tlsext_sigalg_dsa(md) \
|
|
tlsext_sigalg_ecdsa(md)
|
|
|
|
static const unsigned char tls12_sigalgs[] = {
|
|
tlsext_sigalg(TLSEXT_hash_sha512)
|
|
tlsext_sigalg(TLSEXT_hash_sha384)
|
|
tlsext_sigalg(TLSEXT_hash_sha256)
|
|
tlsext_sigalg(TLSEXT_hash_sha224)
|
|
tlsext_sigalg(TLSEXT_hash_sha1)
|
|
};
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
static const unsigned char suiteb_sigalgs[] = {
|
|
tlsext_sigalg_ecdsa(TLSEXT_hash_sha256)
|
|
tlsext_sigalg_ecdsa(TLSEXT_hash_sha384)
|
|
};
|
|
# endif
|
|
size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs)
|
|
{
|
|
/*
|
|
* If Suite B mode use Suite B sigalgs only, ignore any other
|
|
* preferences.
|
|
*/
|
|
# ifndef OPENSSL_NO_EC
|
|
switch (tls1_suiteb(s)) {
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS:
|
|
*psigs = suiteb_sigalgs;
|
|
return sizeof(suiteb_sigalgs);
|
|
|
|
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
|
*psigs = suiteb_sigalgs;
|
|
return 2;
|
|
|
|
case SSL_CERT_FLAG_SUITEB_192_LOS:
|
|
*psigs = suiteb_sigalgs + 2;
|
|
return 2;
|
|
}
|
|
# endif
|
|
/* If server use client authentication sigalgs if not NULL */
|
|
if (s->server && s->cert->client_sigalgs) {
|
|
*psigs = s->cert->client_sigalgs;
|
|
return s->cert->client_sigalgslen;
|
|
} else if (s->cert->conf_sigalgs) {
|
|
*psigs = s->cert->conf_sigalgs;
|
|
return s->cert->conf_sigalgslen;
|
|
} else {
|
|
*psigs = tls12_sigalgs;
|
|
return sizeof(tls12_sigalgs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check signature algorithm is consistent with sent supported signature
|
|
* algorithms and if so return relevant digest.
|
|
*/
|
|
int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s,
|
|
const unsigned char *sig, EVP_PKEY *pkey)
|
|
{
|
|
const unsigned char *sent_sigs;
|
|
size_t sent_sigslen, i;
|
|
int sigalg = tls12_get_sigid(pkey);
|
|
/* Should never happen */
|
|
if (sigalg == -1)
|
|
return -1;
|
|
/* Check key type is consistent with signature */
|
|
if (sigalg != (int)sig[1]) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
# ifndef OPENSSL_NO_EC
|
|
if (pkey->type == EVP_PKEY_EC) {
|
|
unsigned char curve_id[2], comp_id;
|
|
/* Check compression and curve matches extensions */
|
|
if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec))
|
|
return 0;
|
|
if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
|
|
return 0;
|
|
}
|
|
/* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
|
|
if (tls1_suiteb(s)) {
|
|
if (curve_id[0])
|
|
return 0;
|
|
if (curve_id[1] == TLSEXT_curve_P_256) {
|
|
if (sig[0] != TLSEXT_hash_sha256) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
|
|
SSL_R_ILLEGAL_SUITEB_DIGEST);
|
|
return 0;
|
|
}
|
|
} else if (curve_id[1] == TLSEXT_curve_P_384) {
|
|
if (sig[0] != TLSEXT_hash_sha384) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
|
|
SSL_R_ILLEGAL_SUITEB_DIGEST);
|
|
return 0;
|
|
}
|
|
} else
|
|
return 0;
|
|
}
|
|
} else if (tls1_suiteb(s))
|
|
return 0;
|
|
# endif
|
|
|
|
/* Check signature matches a type we sent */
|
|
sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
|
|
for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) {
|
|
if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1])
|
|
break;
|
|
}
|
|
/* Allow fallback to SHA1 if not strict mode */
|
|
if (i == sent_sigslen
|
|
&& (sig[0] != TLSEXT_hash_sha1
|
|
|| s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
*pmd = tls12_get_hash(sig[0]);
|
|
if (*pmd == NULL) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
|
|
return 0;
|
|
}
|
|
/* Make sure security callback allows algorithm */
|
|
if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
|
|
EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd),
|
|
(void *)sig)) {
|
|
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
return 0;
|
|
}
|
|
/*
|
|
* Store the digest used so applications can retrieve it if they wish.
|
|
*/
|
|
if (s->session && s->session->sess_cert)
|
|
s->session->sess_cert->peer_key->digest = *pmd;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Get a mask of disabled algorithms: an algorithm is disabled if it isn't
|
|
* supported or doesn't appear in supported signature algorithms. Unlike
|
|
* ssl_cipher_get_disabled this applies to a specific session and not global
|
|
* settings.
|
|
*/
|
|
void ssl_set_client_disabled(SSL *s)
|
|
{
|
|
CERT *c = s->cert;
|
|
c->mask_a = 0;
|
|
c->mask_k = 0;
|
|
/* Don't allow TLS 1.2 only ciphers if we don't suppport them */
|
|
if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s))
|
|
c->mask_ssl = SSL_TLSV1_2;
|
|
else
|
|
c->mask_ssl = 0;
|
|
ssl_set_sig_mask(&c->mask_a, s, SSL_SECOP_SIGALG_MASK);
|
|
/*
|
|
* Disable static DH if we don't include any appropriate signature
|
|
* algorithms.
|
|
*/
|
|
if (c->mask_a & SSL_aRSA)
|
|
c->mask_k |= SSL_kDHr | SSL_kECDHr;
|
|
if (c->mask_a & SSL_aDSS)
|
|
c->mask_k |= SSL_kDHd;
|
|
if (c->mask_a & SSL_aECDSA)
|
|
c->mask_k |= SSL_kECDHe;
|
|
# ifndef OPENSSL_NO_KRB5
|
|
if (!kssl_tgt_is_available(s->kssl_ctx)) {
|
|
c->mask_a |= SSL_aKRB5;
|
|
c->mask_k |= SSL_kKRB5;
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_PSK
|
|
/* with PSK there must be client callback set */
|
|
if (!s->psk_client_callback) {
|
|
c->mask_a |= SSL_aPSK;
|
|
c->mask_k |= SSL_kPSK;
|
|
}
|
|
# endif /* OPENSSL_NO_PSK */
|
|
# ifndef OPENSSL_NO_SRP
|
|
if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
|
|
c->mask_a |= SSL_aSRP;
|
|
c->mask_k |= SSL_kSRP;
|
|
}
|
|
# endif
|
|
c->valid = 1;
|
|
}
|
|
|
|
int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
|
|
{
|
|
CERT *ct = s->cert;
|
|
if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k
|
|
|| c->algorithm_auth & ct->mask_a)
|
|
return 1;
|
|
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
|
|
}
|
|
|
|
static int tls_use_ticket(SSL *s)
|
|
{
|
|
if (s->options & SSL_OP_NO_TICKET)
|
|
return 0;
|
|
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
|
|
}
|
|
|
|
unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf,
|
|
unsigned char *limit, int *al)
|
|
{
|
|
int extdatalen = 0;
|
|
unsigned char *orig = buf;
|
|
unsigned char *ret = buf;
|
|
# ifndef OPENSSL_NO_EC
|
|
/* See if we support any ECC ciphersuites */
|
|
int using_ecc = 0;
|
|
if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) {
|
|
int i;
|
|
unsigned long alg_k, alg_a;
|
|
STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
|
|
|
|
for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) {
|
|
SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
|
|
|
|
alg_k = c->algorithm_mkey;
|
|
alg_a = c->algorithm_auth;
|
|
if ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe)
|
|
|| (alg_a & SSL_aECDSA))) {
|
|
using_ecc = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
ret += 2;
|
|
|
|
if (ret >= limit)
|
|
return NULL; /* this really never occurs, but ... */
|
|
|
|
/* Add RI if renegotiating */
|
|
if (s->renegotiate) {
|
|
int el;
|
|
|
|
if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) {
|
|
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
if ((limit - ret - 4 - el) < 0)
|
|
return NULL;
|
|
|
|
s2n(TLSEXT_TYPE_renegotiate, ret);
|
|
s2n(el, ret);
|
|
|
|
if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) {
|
|
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
ret += el;
|
|
}
|
|
/* Only add RI for SSLv3 */
|
|
if (s->client_version == SSL3_VERSION)
|
|
goto done;
|
|
|
|
if (s->tlsext_hostname != NULL) {
|
|
/* Add TLS extension servername to the Client Hello message */
|
|
unsigned long size_str;
|
|
long lenmax;
|
|
|
|
/*-
|
|
* check for enough space.
|
|
* 4 for the servername type and entension length
|
|
* 2 for servernamelist length
|
|
* 1 for the hostname type
|
|
* 2 for hostname length
|
|
* + hostname length
|
|
*/
|
|
|
|
if ((lenmax = limit - ret - 9) < 0
|
|
|| (size_str =
|
|
strlen(s->tlsext_hostname)) > (unsigned long)lenmax)
|
|
return NULL;
|
|
|
|
/* extension type and length */
|
|
s2n(TLSEXT_TYPE_server_name, ret);
|
|
s2n(size_str + 5, ret);
|
|
|
|
/* length of servername list */
|
|
s2n(size_str + 3, ret);
|
|
|
|
/* hostname type, length and hostname */
|
|
*(ret++) = (unsigned char)TLSEXT_NAMETYPE_host_name;
|
|
s2n(size_str, ret);
|
|
memcpy(ret, s->tlsext_hostname, size_str);
|
|
ret += size_str;
|
|
}
|
|
# ifndef OPENSSL_NO_SRP
|
|
/* Add SRP username if there is one */
|
|
if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the
|
|
* Client Hello message */
|
|
|
|
int login_len = strlen(s->srp_ctx.login);
|
|
if (login_len > 255 || login_len == 0) {
|
|
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
/*-
|
|
* check for enough space.
|
|
* 4 for the srp type type and entension length
|
|
* 1 for the srp user identity
|
|
* + srp user identity length
|
|
*/
|
|
if ((limit - ret - 5 - login_len) < 0)
|
|
return NULL;
|
|
|
|
/* fill in the extension */
|
|
s2n(TLSEXT_TYPE_srp, ret);
|
|
s2n(login_len + 1, ret);
|
|
(*ret++) = (unsigned char)login_len;
|
|
memcpy(ret, s->srp_ctx.login, login_len);
|
|
ret += login_len;
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
if (using_ecc) {
|
|
/*
|
|
* Add TLS extension ECPointFormats to the ClientHello message
|
|
*/
|
|
long lenmax;
|
|
const unsigned char *pcurves, *pformats;
|
|
size_t num_curves, num_formats, curves_list_len;
|
|
size_t i;
|
|
unsigned char *etmp;
|
|
|
|
tls1_get_formatlist(s, &pformats, &num_formats);
|
|
|
|
if ((lenmax = limit - ret - 5) < 0)
|
|
return NULL;
|
|
if (num_formats > (size_t)lenmax)
|
|
return NULL;
|
|
if (num_formats > 255) {
|
|
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_ec_point_formats, ret);
|
|
/* The point format list has 1-byte length. */
|
|
s2n(num_formats + 1, ret);
|
|
*(ret++) = (unsigned char)num_formats;
|
|
memcpy(ret, pformats, num_formats);
|
|
ret += num_formats;
|
|
|
|
/*
|
|
* Add TLS extension EllipticCurves to the ClientHello message
|
|
*/
|
|
pcurves = s->tlsext_ellipticcurvelist;
|
|
if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves))
|
|
return NULL;
|
|
|
|
if ((lenmax = limit - ret - 6) < 0)
|
|
return NULL;
|
|
if (num_curves > (size_t)lenmax / 2)
|
|
return NULL;
|
|
if (num_curves > 65532 / 2) {
|
|
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_elliptic_curves, ret);
|
|
etmp = ret + 4;
|
|
/* Copy curve ID if supported */
|
|
for (i = 0; i < num_curves; i++, pcurves += 2) {
|
|
if (tls_curve_allowed(s, pcurves, SSL_SECOP_CURVE_SUPPORTED)) {
|
|
*etmp++ = pcurves[0];
|
|
*etmp++ = pcurves[1];
|
|
}
|
|
}
|
|
|
|
curves_list_len = etmp - ret - 4;
|
|
|
|
s2n(curves_list_len + 2, ret);
|
|
s2n(curves_list_len, ret);
|
|
ret += curves_list_len;
|
|
}
|
|
# endif /* OPENSSL_NO_EC */
|
|
|
|
if (tls_use_ticket(s)) {
|
|
int ticklen;
|
|
if (!s->new_session && s->session && s->session->tlsext_tick)
|
|
ticklen = s->session->tlsext_ticklen;
|
|
else if (s->session && s->tlsext_session_ticket &&
|
|
s->tlsext_session_ticket->data) {
|
|
ticklen = s->tlsext_session_ticket->length;
|
|
s->session->tlsext_tick = OPENSSL_malloc(ticklen);
|
|
if (!s->session->tlsext_tick)
|
|
return NULL;
|
|
memcpy(s->session->tlsext_tick,
|
|
s->tlsext_session_ticket->data, ticklen);
|
|
s->session->tlsext_ticklen = ticklen;
|
|
} else
|
|
ticklen = 0;
|
|
if (ticklen == 0 && s->tlsext_session_ticket &&
|
|
s->tlsext_session_ticket->data == NULL)
|
|
goto skip_ext;
|
|
/*
|
|
* Check for enough room 2 for extension type, 2 for len rest for
|
|
* ticket
|
|
*/
|
|
if ((long)(limit - ret - 4 - ticklen) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_session_ticket, ret);
|
|
s2n(ticklen, ret);
|
|
if (ticklen) {
|
|
memcpy(ret, s->session->tlsext_tick, ticklen);
|
|
ret += ticklen;
|
|
}
|
|
}
|
|
skip_ext:
|
|
|
|
if (SSL_USE_SIGALGS(s)) {
|
|
size_t salglen;
|
|
const unsigned char *salg;
|
|
unsigned char *etmp;
|
|
salglen = tls12_get_psigalgs(s, &salg);
|
|
if ((size_t)(limit - ret) < salglen + 6)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_signature_algorithms, ret);
|
|
etmp = ret;
|
|
/* Skip over lengths for now */
|
|
ret += 4;
|
|
salglen = tls12_copy_sigalgs(s, ret, salg, salglen);
|
|
/* Fill in lengths */
|
|
s2n(salglen + 2, etmp);
|
|
s2n(salglen, etmp);
|
|
ret += salglen;
|
|
}
|
|
|
|
if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) {
|
|
int i;
|
|
long extlen, idlen, itmp;
|
|
OCSP_RESPID *id;
|
|
|
|
idlen = 0;
|
|
for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) {
|
|
id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
|
|
itmp = i2d_OCSP_RESPID(id, NULL);
|
|
if (itmp <= 0)
|
|
return NULL;
|
|
idlen += itmp + 2;
|
|
}
|
|
|
|
if (s->tlsext_ocsp_exts) {
|
|
extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL);
|
|
if (extlen < 0)
|
|
return NULL;
|
|
} else
|
|
extlen = 0;
|
|
|
|
if ((long)(limit - ret - 7 - extlen - idlen) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_status_request, ret);
|
|
if (extlen + idlen > 0xFFF0)
|
|
return NULL;
|
|
s2n(extlen + idlen + 5, ret);
|
|
*(ret++) = TLSEXT_STATUSTYPE_ocsp;
|
|
s2n(idlen, ret);
|
|
for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) {
|
|
/* save position of id len */
|
|
unsigned char *q = ret;
|
|
id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
|
|
/* skip over id len */
|
|
ret += 2;
|
|
itmp = i2d_OCSP_RESPID(id, &ret);
|
|
/* write id len */
|
|
s2n(itmp, q);
|
|
}
|
|
s2n(extlen, ret);
|
|
if (extlen > 0)
|
|
i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret);
|
|
}
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
/* Add Heartbeat extension */
|
|
if ((limit - ret - 4 - 1) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_heartbeat, ret);
|
|
s2n(1, ret);
|
|
/*-
|
|
* Set mode:
|
|
* 1: peer may send requests
|
|
* 2: peer not allowed to send requests
|
|
*/
|
|
if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
|
|
*(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
|
|
else
|
|
*(ret++) = SSL_TLSEXT_HB_ENABLED;
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) {
|
|
/*
|
|
* The client advertises an emtpy extension to indicate its support
|
|
* for Next Protocol Negotiation
|
|
*/
|
|
if (limit - ret - 4 < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_next_proto_neg, ret);
|
|
s2n(0, ret);
|
|
}
|
|
# endif
|
|
|
|
if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) {
|
|
if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
|
|
s2n(2 + s->alpn_client_proto_list_len, ret);
|
|
s2n(s->alpn_client_proto_list_len, ret);
|
|
memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len);
|
|
ret += s->alpn_client_proto_list_len;
|
|
}
|
|
# ifndef OPENSSL_NO_SRTP
|
|
if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)) {
|
|
int el;
|
|
|
|
ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
|
|
|
|
if ((limit - ret - 4 - el) < 0)
|
|
return NULL;
|
|
|
|
s2n(TLSEXT_TYPE_use_srtp, ret);
|
|
s2n(el, ret);
|
|
|
|
if (ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) {
|
|
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
ret += el;
|
|
}
|
|
# endif
|
|
custom_ext_init(&s->cert->cli_ext);
|
|
/* Add custom TLS Extensions to ClientHello */
|
|
if (!custom_ext_add(s, 0, &ret, limit, al))
|
|
return NULL;
|
|
# ifdef TLSEXT_TYPE_encrypt_then_mac
|
|
s2n(TLSEXT_TYPE_encrypt_then_mac, ret);
|
|
s2n(0, ret);
|
|
# endif
|
|
s2n(TLSEXT_TYPE_extended_master_secret, ret);
|
|
s2n(0, ret);
|
|
|
|
/*
|
|
* Add padding to workaround bugs in F5 terminators. See
|
|
* https://tools.ietf.org/html/draft-agl-tls-padding-03 NB: because this
|
|
* code works out the length of all existing extensions it MUST always
|
|
* appear last.
|
|
*/
|
|
if (s->options & SSL_OP_TLSEXT_PADDING) {
|
|
int hlen = ret - (unsigned char *)s->init_buf->data;
|
|
/*
|
|
* The code in s23_clnt.c to build ClientHello messages includes the
|
|
* 5-byte record header in the buffer, while the code in s3_clnt.c
|
|
* does not.
|
|
*/
|
|
if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
|
|
hlen -= 5;
|
|
if (hlen > 0xff && hlen < 0x200) {
|
|
hlen = 0x200 - hlen;
|
|
if (hlen >= 4)
|
|
hlen -= 4;
|
|
else
|
|
hlen = 0;
|
|
|
|
s2n(TLSEXT_TYPE_padding, ret);
|
|
s2n(hlen, ret);
|
|
memset(ret, 0, hlen);
|
|
ret += hlen;
|
|
}
|
|
}
|
|
|
|
done:
|
|
|
|
if ((extdatalen = ret - orig - 2) == 0)
|
|
return orig;
|
|
|
|
s2n(extdatalen, orig);
|
|
return ret;
|
|
}
|
|
|
|
unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf,
|
|
unsigned char *limit, int *al)
|
|
{
|
|
int extdatalen = 0;
|
|
unsigned char *orig = buf;
|
|
unsigned char *ret = buf;
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
int next_proto_neg_seen;
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
|
|
unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
|
|
int using_ecc = (alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe))
|
|
|| (alg_a & SSL_aECDSA);
|
|
using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL);
|
|
# endif
|
|
|
|
ret += 2;
|
|
if (ret >= limit)
|
|
return NULL; /* this really never occurs, but ... */
|
|
|
|
if (s->s3->send_connection_binding) {
|
|
int el;
|
|
|
|
if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) {
|
|
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
if ((limit - ret - 4 - el) < 0)
|
|
return NULL;
|
|
|
|
s2n(TLSEXT_TYPE_renegotiate, ret);
|
|
s2n(el, ret);
|
|
|
|
if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) {
|
|
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
ret += el;
|
|
}
|
|
|
|
/* Only add RI for SSLv3 */
|
|
if (s->version == SSL3_VERSION)
|
|
goto done;
|
|
|
|
if (!s->hit && s->servername_done == 1
|
|
&& s->session->tlsext_hostname != NULL) {
|
|
if ((long)(limit - ret - 4) < 0)
|
|
return NULL;
|
|
|
|
s2n(TLSEXT_TYPE_server_name, ret);
|
|
s2n(0, ret);
|
|
}
|
|
# ifndef OPENSSL_NO_EC
|
|
if (using_ecc) {
|
|
const unsigned char *plist;
|
|
size_t plistlen;
|
|
/*
|
|
* Add TLS extension ECPointFormats to the ServerHello message
|
|
*/
|
|
long lenmax;
|
|
|
|
tls1_get_formatlist(s, &plist, &plistlen);
|
|
|
|
if ((lenmax = limit - ret - 5) < 0)
|
|
return NULL;
|
|
if (plistlen > (size_t)lenmax)
|
|
return NULL;
|
|
if (plistlen > 255) {
|
|
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_ec_point_formats, ret);
|
|
s2n(plistlen + 1, ret);
|
|
*(ret++) = (unsigned char)plistlen;
|
|
memcpy(ret, plist, plistlen);
|
|
ret += plistlen;
|
|
|
|
}
|
|
/*
|
|
* Currently the server should not respond with a SupportedCurves
|
|
* extension
|
|
*/
|
|
# endif /* OPENSSL_NO_EC */
|
|
|
|
if (s->tlsext_ticket_expected && tls_use_ticket(s)) {
|
|
if ((long)(limit - ret - 4) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_session_ticket, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->tlsext_status_expected) {
|
|
if ((long)(limit - ret - 4) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_status_request, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_SRTP
|
|
if (SSL_IS_DTLS(s) && s->srtp_profile) {
|
|
int el;
|
|
|
|
ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
|
|
|
|
if ((limit - ret - 4 - el) < 0)
|
|
return NULL;
|
|
|
|
s2n(TLSEXT_TYPE_use_srtp, ret);
|
|
s2n(el, ret);
|
|
|
|
if (ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) {
|
|
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
ret += el;
|
|
}
|
|
# endif
|
|
|
|
if (((s->s3->tmp.new_cipher->id & 0xFFFF) == 0x80
|
|
|| (s->s3->tmp.new_cipher->id & 0xFFFF) == 0x81)
|
|
&& (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) {
|
|
const unsigned char cryptopro_ext[36] = {
|
|
0xfd, 0xe8, /* 65000 */
|
|
0x00, 0x20, /* 32 bytes length */
|
|
0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85,
|
|
0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06,
|
|
0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08,
|
|
0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17
|
|
};
|
|
if (limit - ret < 36)
|
|
return NULL;
|
|
memcpy(ret, cryptopro_ext, 36);
|
|
ret += 36;
|
|
|
|
}
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
/* Add Heartbeat extension if we've received one */
|
|
if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) {
|
|
if ((limit - ret - 4 - 1) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_heartbeat, ret);
|
|
s2n(1, ret);
|
|
/*-
|
|
* Set mode:
|
|
* 1: peer may send requests
|
|
* 2: peer not allowed to send requests
|
|
*/
|
|
if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
|
|
*(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
|
|
else
|
|
*(ret++) = SSL_TLSEXT_HB_ENABLED;
|
|
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
next_proto_neg_seen = s->s3->next_proto_neg_seen;
|
|
s->s3->next_proto_neg_seen = 0;
|
|
if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) {
|
|
const unsigned char *npa;
|
|
unsigned int npalen;
|
|
int r;
|
|
|
|
r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen,
|
|
s->
|
|
ctx->next_protos_advertised_cb_arg);
|
|
if (r == SSL_TLSEXT_ERR_OK) {
|
|
if ((long)(limit - ret - 4 - npalen) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_next_proto_neg, ret);
|
|
s2n(npalen, ret);
|
|
memcpy(ret, npa, npalen);
|
|
ret += npalen;
|
|
s->s3->next_proto_neg_seen = 1;
|
|
}
|
|
}
|
|
# endif
|
|
if (!custom_ext_add(s, 1, &ret, limit, al))
|
|
return NULL;
|
|
# ifdef TLSEXT_TYPE_encrypt_then_mac
|
|
if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC) {
|
|
/*
|
|
* Don't use encrypt_then_mac if AEAD or RC4 might want to disable
|
|
* for other cases too.
|
|
*/
|
|
if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD
|
|
|| s->s3->tmp.new_cipher->algorithm_enc == SSL_RC4)
|
|
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
|
|
else {
|
|
s2n(TLSEXT_TYPE_encrypt_then_mac, ret);
|
|
s2n(0, ret);
|
|
}
|
|
}
|
|
# endif
|
|
if (!s->hit && s->session->flags & SSL_SESS_FLAG_EXTMS) {
|
|
s2n(TLSEXT_TYPE_extended_master_secret, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->s3->alpn_selected) {
|
|
const unsigned char *selected = s->s3->alpn_selected;
|
|
unsigned len = s->s3->alpn_selected_len;
|
|
|
|
if ((long)(limit - ret - 4 - 2 - 1 - len) < 0)
|
|
return NULL;
|
|
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
|
|
s2n(3 + len, ret);
|
|
s2n(1 + len, ret);
|
|
*ret++ = len;
|
|
memcpy(ret, selected, len);
|
|
ret += len;
|
|
}
|
|
|
|
done:
|
|
|
|
if ((extdatalen = ret - orig - 2) == 0)
|
|
return orig;
|
|
|
|
s2n(extdatalen, orig);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* tls1_alpn_handle_client_hello is called to process the ALPN extension in a
|
|
* ClientHello. data: the contents of the extension, not including the type
|
|
* and length. data_len: the number of bytes in |data| al: a pointer to the
|
|
* alert value to send in the event of a non-zero return. returns: 0 on
|
|
* success.
|
|
*/
|
|
static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data,
|
|
unsigned data_len, int *al)
|
|
{
|
|
unsigned i;
|
|
unsigned proto_len;
|
|
const unsigned char *selected;
|
|
unsigned char selected_len;
|
|
int r;
|
|
|
|
if (s->ctx->alpn_select_cb == NULL)
|
|
return 0;
|
|
|
|
if (data_len < 2)
|
|
goto parse_error;
|
|
|
|
/*
|
|
* data should contain a uint16 length followed by a series of 8-bit,
|
|
* length-prefixed strings.
|
|
*/
|
|
i = ((unsigned)data[0]) << 8 | ((unsigned)data[1]);
|
|
data_len -= 2;
|
|
data += 2;
|
|
if (data_len != i)
|
|
goto parse_error;
|
|
|
|
if (data_len < 2)
|
|
goto parse_error;
|
|
|
|
for (i = 0; i < data_len;) {
|
|
proto_len = data[i];
|
|
i++;
|
|
|
|
if (proto_len == 0)
|
|
goto parse_error;
|
|
|
|
if (i + proto_len < i || i + proto_len > data_len)
|
|
goto parse_error;
|
|
|
|
i += proto_len;
|
|
}
|
|
|
|
r = s->ctx->alpn_select_cb(s, &selected, &selected_len, data, data_len,
|
|
s->ctx->alpn_select_cb_arg);
|
|
if (r == SSL_TLSEXT_ERR_OK) {
|
|
if (s->s3->alpn_selected)
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = OPENSSL_malloc(selected_len);
|
|
if (!s->s3->alpn_selected) {
|
|
*al = SSL_AD_INTERNAL_ERROR;
|
|
return -1;
|
|
}
|
|
memcpy(s->s3->alpn_selected, selected, selected_len);
|
|
s->s3->alpn_selected_len = selected_len;
|
|
}
|
|
return 0;
|
|
|
|
parse_error:
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return -1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
/*-
|
|
* ssl_check_for_safari attempts to fingerprint Safari using OS X
|
|
* SecureTransport using the TLS extension block in |d|, of length |n|.
|
|
* Safari, since 10.6, sends exactly these extensions, in this order:
|
|
* SNI,
|
|
* elliptic_curves
|
|
* ec_point_formats
|
|
*
|
|
* We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
|
|
* but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
|
|
* Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
|
|
* 10.8..10.8.3 (which don't work).
|
|
*/
|
|
static void ssl_check_for_safari(SSL *s, const unsigned char *data,
|
|
const unsigned char *d, int n)
|
|
{
|
|
unsigned short type, size;
|
|
static const unsigned char kSafariExtensionsBlock[] = {
|
|
0x00, 0x0a, /* elliptic_curves extension */
|
|
0x00, 0x08, /* 8 bytes */
|
|
0x00, 0x06, /* 6 bytes of curve ids */
|
|
0x00, 0x17, /* P-256 */
|
|
0x00, 0x18, /* P-384 */
|
|
0x00, 0x19, /* P-521 */
|
|
|
|
0x00, 0x0b, /* ec_point_formats */
|
|
0x00, 0x02, /* 2 bytes */
|
|
0x01, /* 1 point format */
|
|
0x00, /* uncompressed */
|
|
};
|
|
|
|
/* The following is only present in TLS 1.2 */
|
|
static const unsigned char kSafariTLS12ExtensionsBlock[] = {
|
|
0x00, 0x0d, /* signature_algorithms */
|
|
0x00, 0x0c, /* 12 bytes */
|
|
0x00, 0x0a, /* 10 bytes */
|
|
0x05, 0x01, /* SHA-384/RSA */
|
|
0x04, 0x01, /* SHA-256/RSA */
|
|
0x02, 0x01, /* SHA-1/RSA */
|
|
0x04, 0x03, /* SHA-256/ECDSA */
|
|
0x02, 0x03, /* SHA-1/ECDSA */
|
|
};
|
|
|
|
if (data >= (d + n - 2))
|
|
return;
|
|
data += 2;
|
|
|
|
if (data > (d + n - 4))
|
|
return;
|
|
n2s(data, type);
|
|
n2s(data, size);
|
|
|
|
if (type != TLSEXT_TYPE_server_name)
|
|
return;
|
|
|
|
if (data + size > d + n)
|
|
return;
|
|
data += size;
|
|
|
|
if (TLS1_get_client_version(s) >= TLS1_2_VERSION) {
|
|
const size_t len1 = sizeof(kSafariExtensionsBlock);
|
|
const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock);
|
|
|
|
if (data + len1 + len2 != d + n)
|
|
return;
|
|
if (memcmp(data, kSafariExtensionsBlock, len1) != 0)
|
|
return;
|
|
if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0)
|
|
return;
|
|
} else {
|
|
const size_t len = sizeof(kSafariExtensionsBlock);
|
|
|
|
if (data + len != d + n)
|
|
return;
|
|
if (memcmp(data, kSafariExtensionsBlock, len) != 0)
|
|
return;
|
|
}
|
|
|
|
s->s3->is_probably_safari = 1;
|
|
}
|
|
# endif /* !OPENSSL_NO_EC */
|
|
|
|
static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p,
|
|
unsigned char *d, int n, int *al)
|
|
{
|
|
unsigned short type;
|
|
unsigned short size;
|
|
unsigned short len;
|
|
unsigned char *data = *p;
|
|
int renegotiate_seen = 0;
|
|
|
|
s->servername_done = 0;
|
|
s->tlsext_status_type = -1;
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
s->s3->next_proto_neg_seen = 0;
|
|
# endif
|
|
|
|
if (s->s3->alpn_selected) {
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = NULL;
|
|
}
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
|
|
SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
|
|
ssl_check_for_safari(s, data, d, n);
|
|
# endif /* !OPENSSL_NO_EC */
|
|
|
|
/* Clear any signature algorithms extension received */
|
|
if (s->cert->peer_sigalgs) {
|
|
OPENSSL_free(s->cert->peer_sigalgs);
|
|
s->cert->peer_sigalgs = NULL;
|
|
}
|
|
# ifdef TLSEXT_TYPE_encrypt_then_mac
|
|
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_SRP
|
|
if (s->srp_ctx.login != NULL) {
|
|
OPENSSL_free(s->srp_ctx.login);
|
|
s->srp_ctx.login = NULL;
|
|
}
|
|
# endif
|
|
|
|
s->srtp_profile = NULL;
|
|
|
|
if (data >= (d + n - 2))
|
|
goto ri_check;
|
|
n2s(data, len);
|
|
|
|
if (data > (d + n - len))
|
|
goto ri_check;
|
|
|
|
while (data <= (d + n - 4)) {
|
|
n2s(data, type);
|
|
n2s(data, size);
|
|
|
|
if (data + size > (d + n))
|
|
goto ri_check;
|
|
if (s->tlsext_debug_cb)
|
|
s->tlsext_debug_cb(s, 0, type, data, size, s->tlsext_debug_arg);
|
|
if (type == TLSEXT_TYPE_renegotiate) {
|
|
if (!ssl_parse_clienthello_renegotiate_ext(s, data, size, al))
|
|
return 0;
|
|
renegotiate_seen = 1;
|
|
} else if (s->version == SSL3_VERSION) {
|
|
}
|
|
/*-
|
|
* The servername extension is treated as follows:
|
|
*
|
|
* - Only the hostname type is supported with a maximum length of 255.
|
|
* - The servername is rejected if too long or if it contains zeros,
|
|
* in which case an fatal alert is generated.
|
|
* - The servername field is maintained together with the session cache.
|
|
* - When a session is resumed, the servername call back invoked in order
|
|
* to allow the application to position itself to the right context.
|
|
* - The servername is acknowledged if it is new for a session or when
|
|
* it is identical to a previously used for the same session.
|
|
* Applications can control the behaviour. They can at any time
|
|
* set a 'desirable' servername for a new SSL object. This can be the
|
|
* case for example with HTTPS when a Host: header field is received and
|
|
* a renegotiation is requested. In this case, a possible servername
|
|
* presented in the new client hello is only acknowledged if it matches
|
|
* the value of the Host: field.
|
|
* - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
|
|
* if they provide for changing an explicit servername context for the
|
|
* session, i.e. when the session has been established with a servername
|
|
* extension.
|
|
* - On session reconnect, the servername extension may be absent.
|
|
*
|
|
*/
|
|
|
|
else if (type == TLSEXT_TYPE_server_name) {
|
|
unsigned char *sdata;
|
|
int servname_type;
|
|
int dsize;
|
|
|
|
if (size < 2) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
n2s(data, dsize);
|
|
size -= 2;
|
|
if (dsize > size) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
sdata = data;
|
|
while (dsize > 3) {
|
|
servname_type = *(sdata++);
|
|
n2s(sdata, len);
|
|
dsize -= 3;
|
|
|
|
if (len > dsize) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (s->servername_done == 0)
|
|
switch (servname_type) {
|
|
case TLSEXT_NAMETYPE_host_name:
|
|
if (!s->hit) {
|
|
if (s->session->tlsext_hostname) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (len > TLSEXT_MAXLEN_host_name) {
|
|
*al = TLS1_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
if ((s->session->tlsext_hostname =
|
|
OPENSSL_malloc(len + 1)) == NULL) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
memcpy(s->session->tlsext_hostname, sdata, len);
|
|
s->session->tlsext_hostname[len] = '\0';
|
|
if (strlen(s->session->tlsext_hostname) != len) {
|
|
OPENSSL_free(s->session->tlsext_hostname);
|
|
s->session->tlsext_hostname = NULL;
|
|
*al = TLS1_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
s->servername_done = 1;
|
|
|
|
} else
|
|
s->servername_done = s->session->tlsext_hostname
|
|
&& strlen(s->session->tlsext_hostname) == len
|
|
&& strncmp(s->session->tlsext_hostname,
|
|
(char *)sdata, len) == 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
dsize -= len;
|
|
}
|
|
if (dsize != 0) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
# ifndef OPENSSL_NO_SRP
|
|
else if (type == TLSEXT_TYPE_srp) {
|
|
if (size <= 0 || ((len = data[0])) != (size - 1)) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (s->srp_ctx.login != NULL) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if ((s->srp_ctx.login = OPENSSL_malloc(len + 1)) == NULL)
|
|
return -1;
|
|
memcpy(s->srp_ctx.login, &data[1], len);
|
|
s->srp_ctx.login[len] = '\0';
|
|
|
|
if (strlen(s->srp_ctx.login) != len) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
else if (type == TLSEXT_TYPE_ec_point_formats) {
|
|
unsigned char *sdata = data;
|
|
int ecpointformatlist_length = *(sdata++);
|
|
|
|
if (ecpointformatlist_length != size - 1 ||
|
|
ecpointformatlist_length < 1) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (!s->hit) {
|
|
if (s->session->tlsext_ecpointformatlist) {
|
|
OPENSSL_free(s->session->tlsext_ecpointformatlist);
|
|
s->session->tlsext_ecpointformatlist = NULL;
|
|
}
|
|
s->session->tlsext_ecpointformatlist_length = 0;
|
|
if ((s->session->tlsext_ecpointformatlist =
|
|
OPENSSL_malloc(ecpointformatlist_length)) == NULL) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
s->session->tlsext_ecpointformatlist_length =
|
|
ecpointformatlist_length;
|
|
memcpy(s->session->tlsext_ecpointformatlist, sdata,
|
|
ecpointformatlist_length);
|
|
}
|
|
} else if (type == TLSEXT_TYPE_elliptic_curves) {
|
|
unsigned char *sdata = data;
|
|
int ellipticcurvelist_length = (*(sdata++) << 8);
|
|
ellipticcurvelist_length += (*(sdata++));
|
|
|
|
if (ellipticcurvelist_length != size - 2 ||
|
|
ellipticcurvelist_length < 1 ||
|
|
/* Each NamedCurve is 2 bytes. */
|
|
ellipticcurvelist_length & 1) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (!s->hit) {
|
|
if (s->session->tlsext_ellipticcurvelist) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
s->session->tlsext_ellipticcurvelist_length = 0;
|
|
if ((s->session->tlsext_ellipticcurvelist =
|
|
OPENSSL_malloc(ellipticcurvelist_length)) == NULL) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
s->session->tlsext_ellipticcurvelist_length =
|
|
ellipticcurvelist_length;
|
|
memcpy(s->session->tlsext_ellipticcurvelist, sdata,
|
|
ellipticcurvelist_length);
|
|
}
|
|
}
|
|
# endif /* OPENSSL_NO_EC */
|
|
else if (type == TLSEXT_TYPE_session_ticket) {
|
|
if (s->tls_session_ticket_ext_cb &&
|
|
!s->tls_session_ticket_ext_cb(s, data, size,
|
|
s->tls_session_ticket_ext_cb_arg))
|
|
{
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_signature_algorithms) {
|
|
int dsize;
|
|
if (s->cert->peer_sigalgs || size < 2) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
n2s(data, dsize);
|
|
size -= 2;
|
|
if (dsize != size || dsize & 1 || !dsize) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (!tls1_save_sigalgs(s, data, dsize)) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_status_request) {
|
|
|
|
if (size < 5) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->tlsext_status_type = *data++;
|
|
size--;
|
|
if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) {
|
|
const unsigned char *sdata;
|
|
int dsize;
|
|
/* Read in responder_id_list */
|
|
n2s(data, dsize);
|
|
size -= 2;
|
|
if (dsize > size) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
while (dsize > 0) {
|
|
OCSP_RESPID *id;
|
|
int idsize;
|
|
if (dsize < 4) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
n2s(data, idsize);
|
|
dsize -= 2 + idsize;
|
|
size -= 2 + idsize;
|
|
if (dsize < 0) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
sdata = data;
|
|
data += idsize;
|
|
id = d2i_OCSP_RESPID(NULL, &sdata, idsize);
|
|
if (!id) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (data != sdata) {
|
|
OCSP_RESPID_free(id);
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (!s->tlsext_ocsp_ids
|
|
&& !(s->tlsext_ocsp_ids =
|
|
sk_OCSP_RESPID_new_null())) {
|
|
OCSP_RESPID_free(id);
|
|
*al = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) {
|
|
OCSP_RESPID_free(id);
|
|
*al = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Read in request_extensions */
|
|
if (size < 2) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
n2s(data, dsize);
|
|
size -= 2;
|
|
if (dsize != size) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
sdata = data;
|
|
if (dsize > 0) {
|
|
if (s->tlsext_ocsp_exts) {
|
|
sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts,
|
|
X509_EXTENSION_free);
|
|
}
|
|
|
|
s->tlsext_ocsp_exts =
|
|
d2i_X509_EXTENSIONS(NULL, &sdata, dsize);
|
|
if (!s->tlsext_ocsp_exts || (data + dsize != sdata)) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* We don't know what to do with any other type * so ignore it.
|
|
*/
|
|
else
|
|
s->tlsext_status_type = -1;
|
|
}
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
else if (type == TLSEXT_TYPE_heartbeat) {
|
|
switch (data[0]) {
|
|
case 0x01: /* Client allows us to send HB requests */
|
|
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
|
|
break;
|
|
case 0x02: /* Client doesn't accept HB requests */
|
|
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
|
|
s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
|
|
break;
|
|
default:
|
|
*al = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
else if (type == TLSEXT_TYPE_next_proto_neg &&
|
|
s->s3->tmp.finish_md_len == 0 &&
|
|
s->s3->alpn_selected == NULL) {
|
|
/*-
|
|
* We shouldn't accept this extension on a
|
|
* renegotiation.
|
|
*
|
|
* s->new_session will be set on renegotiation, but we
|
|
* probably shouldn't rely that it couldn't be set on
|
|
* the initial renegotation too in certain cases (when
|
|
* there's some other reason to disallow resuming an
|
|
* earlier session -- the current code won't be doing
|
|
* anything like that, but this might change).
|
|
*
|
|
* A valid sign that there's been a previous handshake
|
|
* in this connection is if s->s3->tmp.finish_md_len >
|
|
* 0. (We are talking about a check that will happen
|
|
* in the Hello protocol round, well before a new
|
|
* Finished message could have been computed.)
|
|
*/
|
|
s->s3->next_proto_neg_seen = 1;
|
|
}
|
|
# endif
|
|
|
|
else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
|
|
s->ctx->alpn_select_cb && s->s3->tmp.finish_md_len == 0) {
|
|
if (tls1_alpn_handle_client_hello(s, data, size, al) != 0)
|
|
return 0;
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
/* ALPN takes precedence over NPN. */
|
|
s->s3->next_proto_neg_seen = 0;
|
|
# endif
|
|
}
|
|
|
|
/* session ticket processed earlier */
|
|
# ifndef OPENSSL_NO_SRTP
|
|
else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)
|
|
&& type == TLSEXT_TYPE_use_srtp) {
|
|
if (ssl_parse_clienthello_use_srtp_ext(s, data, size, al))
|
|
return 0;
|
|
}
|
|
# endif
|
|
# ifdef TLSEXT_TYPE_encrypt_then_mac
|
|
else if (type == TLSEXT_TYPE_encrypt_then_mac)
|
|
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
|
|
# endif
|
|
else if (type == TLSEXT_TYPE_extended_master_secret) {
|
|
if (!s->hit)
|
|
s->session->flags |= SSL_SESS_FLAG_EXTMS;
|
|
}
|
|
/*
|
|
* If this ClientHello extension was unhandled and this is a
|
|
* nonresumed connection, check whether the extension is a custom
|
|
* TLS Extension (has a custom_srv_ext_record), and if so call the
|
|
* callback and record the extension number so that an appropriate
|
|
* ServerHello may be later returned.
|
|
*/
|
|
else if (!s->hit) {
|
|
if (custom_ext_parse(s, 1, type, data, size, al) <= 0)
|
|
return 0;
|
|
}
|
|
|
|
data += size;
|
|
}
|
|
|
|
*p = data;
|
|
|
|
ri_check:
|
|
|
|
/* Need RI if renegotiating */
|
|
|
|
if (!renegotiate_seen && s->renegotiate &&
|
|
!(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
|
|
*al = SSL_AD_HANDSHAKE_FAILURE;
|
|
SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT,
|
|
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d,
|
|
int n)
|
|
{
|
|
int al = -1;
|
|
custom_ext_init(&s->cert->srv_ext);
|
|
if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0) {
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return 0;
|
|
}
|
|
|
|
if (ssl_check_clienthello_tlsext_early(s) <= 0) {
|
|
SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT, SSL_R_CLIENTHELLO_TLSEXT);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
/*
|
|
* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
|
|
* elements of zero length are allowed and the set of elements must exactly
|
|
* fill the length of the block.
|
|
*/
|
|
static char ssl_next_proto_validate(unsigned char *d, unsigned len)
|
|
{
|
|
unsigned int off = 0;
|
|
|
|
while (off < len) {
|
|
if (d[off] == 0)
|
|
return 0;
|
|
off += d[off];
|
|
off++;
|
|
}
|
|
|
|
return off == len;
|
|
}
|
|
# endif
|
|
|
|
static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p,
|
|
unsigned char *d, int n, int *al)
|
|
{
|
|
unsigned short length;
|
|
unsigned short type;
|
|
unsigned short size;
|
|
unsigned char *data = *p;
|
|
int tlsext_servername = 0;
|
|
int renegotiate_seen = 0;
|
|
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
s->s3->next_proto_neg_seen = 0;
|
|
# endif
|
|
s->tlsext_ticket_expected = 0;
|
|
|
|
if (s->s3->alpn_selected) {
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = NULL;
|
|
}
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
|
|
SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
|
|
# endif
|
|
|
|
# ifdef TLSEXT_TYPE_encrypt_then_mac
|
|
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
|
|
# endif
|
|
|
|
if (data >= (d + n - 2))
|
|
goto ri_check;
|
|
|
|
n2s(data, length);
|
|
if (data + length != d + n) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
while (data <= (d + n - 4)) {
|
|
n2s(data, type);
|
|
n2s(data, size);
|
|
|
|
if (data + size > (d + n))
|
|
goto ri_check;
|
|
|
|
if (s->tlsext_debug_cb)
|
|
s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg);
|
|
|
|
if (type == TLSEXT_TYPE_renegotiate) {
|
|
if (!ssl_parse_serverhello_renegotiate_ext(s, data, size, al))
|
|
return 0;
|
|
renegotiate_seen = 1;
|
|
} else if (s->version == SSL3_VERSION) {
|
|
} else if (type == TLSEXT_TYPE_server_name) {
|
|
if (s->tlsext_hostname == NULL || size > 0) {
|
|
*al = TLS1_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
tlsext_servername = 1;
|
|
}
|
|
# ifndef OPENSSL_NO_EC
|
|
else if (type == TLSEXT_TYPE_ec_point_formats) {
|
|
unsigned char *sdata = data;
|
|
int ecpointformatlist_length = *(sdata++);
|
|
|
|
if (ecpointformatlist_length != size - 1) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (!s->hit) {
|
|
s->session->tlsext_ecpointformatlist_length = 0;
|
|
if (s->session->tlsext_ecpointformatlist != NULL)
|
|
OPENSSL_free(s->session->tlsext_ecpointformatlist);
|
|
if ((s->session->tlsext_ecpointformatlist =
|
|
OPENSSL_malloc(ecpointformatlist_length)) == NULL) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
s->session->tlsext_ecpointformatlist_length =
|
|
ecpointformatlist_length;
|
|
memcpy(s->session->tlsext_ecpointformatlist, sdata,
|
|
ecpointformatlist_length);
|
|
}
|
|
}
|
|
# endif /* OPENSSL_NO_EC */
|
|
|
|
else if (type == TLSEXT_TYPE_session_ticket) {
|
|
if (s->tls_session_ticket_ext_cb &&
|
|
!s->tls_session_ticket_ext_cb(s, data, size,
|
|
s->tls_session_ticket_ext_cb_arg))
|
|
{
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
if (!tls_use_ticket(s) || (size > 0)) {
|
|
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
s->tlsext_ticket_expected = 1;
|
|
}
|
|
else if (type == TLSEXT_TYPE_status_request) {
|
|
/*
|
|
* MUST be empty and only sent if we've requested a status
|
|
* request message.
|
|
*/
|
|
if ((s->tlsext_status_type == -1) || (size > 0)) {
|
|
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
/* Set flag to expect CertificateStatus message */
|
|
s->tlsext_status_expected = 1;
|
|
}
|
|
# ifndef OPENSSL_NO_NEXTPROTONEG
|
|
else if (type == TLSEXT_TYPE_next_proto_neg &&
|
|
s->s3->tmp.finish_md_len == 0) {
|
|
unsigned char *selected;
|
|
unsigned char selected_len;
|
|
|
|
/* We must have requested it. */
|
|
if (s->ctx->next_proto_select_cb == NULL) {
|
|
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
/* The data must be valid */
|
|
if (!ssl_next_proto_validate(data, size)) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (s->
|
|
ctx->next_proto_select_cb(s, &selected, &selected_len, data,
|
|
size,
|
|
s->ctx->next_proto_select_cb_arg) !=
|
|
SSL_TLSEXT_ERR_OK) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
s->next_proto_negotiated = OPENSSL_malloc(selected_len);
|
|
if (!s->next_proto_negotiated) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
memcpy(s->next_proto_negotiated, selected, selected_len);
|
|
s->next_proto_negotiated_len = selected_len;
|
|
s->s3->next_proto_neg_seen = 1;
|
|
}
|
|
# endif
|
|
|
|
else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) {
|
|
unsigned len;
|
|
|
|
/* We must have requested it. */
|
|
if (s->alpn_client_proto_list == NULL) {
|
|
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
if (size < 4) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
/*-
|
|
* The extension data consists of:
|
|
* uint16 list_length
|
|
* uint8 proto_length;
|
|
* uint8 proto[proto_length];
|
|
*/
|
|
len = data[0];
|
|
len <<= 8;
|
|
len |= data[1];
|
|
if (len != (unsigned)size - 2) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
len = data[2];
|
|
if (len != (unsigned)size - 3) {
|
|
*al = TLS1_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
if (s->s3->alpn_selected)
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = OPENSSL_malloc(len);
|
|
if (!s->s3->alpn_selected) {
|
|
*al = TLS1_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
memcpy(s->s3->alpn_selected, data + 3, len);
|
|
s->s3->alpn_selected_len = len;
|
|
}
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
else if (type == TLSEXT_TYPE_heartbeat) {
|
|
switch (data[0]) {
|
|
case 0x01: /* Server allows us to send HB requests */
|
|
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
|
|
break;
|
|
case 0x02: /* Server doesn't accept HB requests */
|
|
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
|
|
s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
|
|
break;
|
|
default:
|
|
*al = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_SRTP
|
|
else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp) {
|
|
if (ssl_parse_serverhello_use_srtp_ext(s, data, size, al))
|
|
return 0;
|
|
}
|
|
# endif
|
|
# ifdef TLSEXT_TYPE_encrypt_then_mac
|
|
else if (type == TLSEXT_TYPE_encrypt_then_mac) {
|
|
/* Ignore if inappropriate ciphersuite */
|
|
if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD
|
|
&& s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4)
|
|
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
|
|
}
|
|
# endif
|
|
else if (type == TLSEXT_TYPE_extended_master_secret) {
|
|
if (!s->hit)
|
|
s->session->flags |= SSL_SESS_FLAG_EXTMS;
|
|
}
|
|
/*
|
|
* If this extension type was not otherwise handled, but matches a
|
|
* custom_cli_ext_record, then send it to the c callback
|
|
*/
|
|
else if (custom_ext_parse(s, 0, type, data, size, al) <= 0)
|
|
return 0;
|
|
|
|
data += size;
|
|
}
|
|
|
|
if (data != d + n) {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!s->hit && tlsext_servername == 1) {
|
|
if (s->tlsext_hostname) {
|
|
if (s->session->tlsext_hostname == NULL) {
|
|
s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
|
|
if (!s->session->tlsext_hostname) {
|
|
*al = SSL_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
} else {
|
|
*al = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
*p = data;
|
|
|
|
ri_check:
|
|
|
|
/*
|
|
* Determine if we need to see RI. Strictly speaking if we want to avoid
|
|
* an attack we should *always* see RI even on initial server hello
|
|
* because the client doesn't see any renegotiation during an attack.
|
|
* However this would mean we could not connect to any server which
|
|
* doesn't support RI so for the immediate future tolerate RI absence on
|
|
* initial connect only.
|
|
*/
|
|
if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT)
|
|
&& !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
|
|
*al = SSL_AD_HANDSHAKE_FAILURE;
|
|
SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT,
|
|
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ssl_prepare_clienthello_tlsext(SSL *s)
|
|
{
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ssl_prepare_serverhello_tlsext(SSL *s)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int ssl_check_clienthello_tlsext_early(SSL *s)
|
|
{
|
|
int ret = SSL_TLSEXT_ERR_NOACK;
|
|
int al = SSL_AD_UNRECOGNIZED_NAME;
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
/*
|
|
* The handling of the ECPointFormats extension is done elsewhere, namely
|
|
* in ssl3_choose_cipher in s3_lib.c.
|
|
*/
|
|
/*
|
|
* The handling of the EllipticCurves extension is done elsewhere, namely
|
|
* in ssl3_choose_cipher in s3_lib.c.
|
|
*/
|
|
# endif
|
|
|
|
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
|
|
ret =
|
|
s->ctx->tlsext_servername_callback(s, &al,
|
|
s->ctx->tlsext_servername_arg);
|
|
else if (s->initial_ctx != NULL
|
|
&& s->initial_ctx->tlsext_servername_callback != 0)
|
|
ret =
|
|
s->initial_ctx->tlsext_servername_callback(s, &al,
|
|
s->
|
|
initial_ctx->tlsext_servername_arg);
|
|
|
|
switch (ret) {
|
|
case SSL_TLSEXT_ERR_ALERT_FATAL:
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return -1;
|
|
|
|
case SSL_TLSEXT_ERR_ALERT_WARNING:
|
|
ssl3_send_alert(s, SSL3_AL_WARNING, al);
|
|
return 1;
|
|
|
|
case SSL_TLSEXT_ERR_NOACK:
|
|
s->servername_done = 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int tls1_set_server_sigalgs(SSL *s)
|
|
{
|
|
int al;
|
|
size_t i;
|
|
/* Clear any shared sigtnature algorithms */
|
|
if (s->cert->shared_sigalgs) {
|
|
OPENSSL_free(s->cert->shared_sigalgs);
|
|
s->cert->shared_sigalgs = NULL;
|
|
s->cert->shared_sigalgslen = 0;
|
|
}
|
|
/* Clear certificate digests and validity flags */
|
|
for (i = 0; i < SSL_PKEY_NUM; i++) {
|
|
s->cert->pkeys[i].digest = NULL;
|
|
s->cert->pkeys[i].valid_flags = 0;
|
|
}
|
|
|
|
/* If sigalgs received process it. */
|
|
if (s->cert->peer_sigalgs) {
|
|
if (!tls1_process_sigalgs(s)) {
|
|
SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
|
|
al = SSL_AD_INTERNAL_ERROR;
|
|
goto err;
|
|
}
|
|
/* Fatal error is no shared signature algorithms */
|
|
if (!s->cert->shared_sigalgs) {
|
|
SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
|
|
SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
|
|
al = SSL_AD_ILLEGAL_PARAMETER;
|
|
goto err;
|
|
}
|
|
} else
|
|
ssl_cert_set_default_md(s->cert);
|
|
return 1;
|
|
err:
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return 0;
|
|
}
|
|
|
|
int ssl_check_clienthello_tlsext_late(SSL *s)
|
|
{
|
|
int ret = SSL_TLSEXT_ERR_OK;
|
|
int al;
|
|
|
|
/*
|
|
* If status request then ask callback what to do. Note: this must be
|
|
* called after servername callbacks in case the certificate has changed,
|
|
* and must be called after the cipher has been chosen because this may
|
|
* influence which certificate is sent
|
|
*/
|
|
if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) {
|
|
int r;
|
|
CERT_PKEY *certpkey;
|
|
certpkey = ssl_get_server_send_pkey(s);
|
|
/* If no certificate can't return certificate status */
|
|
if (certpkey == NULL) {
|
|
s->tlsext_status_expected = 0;
|
|
return 1;
|
|
}
|
|
/*
|
|
* Set current certificate to one we will use so SSL_get_certificate
|
|
* et al can pick it up.
|
|
*/
|
|
s->cert->key = certpkey;
|
|
r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
|
|
switch (r) {
|
|
/* We don't want to send a status request response */
|
|
case SSL_TLSEXT_ERR_NOACK:
|
|
s->tlsext_status_expected = 0;
|
|
break;
|
|
/* status request response should be sent */
|
|
case SSL_TLSEXT_ERR_OK:
|
|
if (s->tlsext_ocsp_resp)
|
|
s->tlsext_status_expected = 1;
|
|
else
|
|
s->tlsext_status_expected = 0;
|
|
break;
|
|
/* something bad happened */
|
|
case SSL_TLSEXT_ERR_ALERT_FATAL:
|
|
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
al = SSL_AD_INTERNAL_ERROR;
|
|
goto err;
|
|
}
|
|
} else
|
|
s->tlsext_status_expected = 0;
|
|
|
|
err:
|
|
switch (ret) {
|
|
case SSL_TLSEXT_ERR_ALERT_FATAL:
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return -1;
|
|
|
|
case SSL_TLSEXT_ERR_ALERT_WARNING:
|
|
ssl3_send_alert(s, SSL3_AL_WARNING, al);
|
|
return 1;
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int ssl_check_serverhello_tlsext(SSL *s)
|
|
{
|
|
int ret = SSL_TLSEXT_ERR_NOACK;
|
|
int al = SSL_AD_UNRECOGNIZED_NAME;
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
/*
|
|
* If we are client and using an elliptic curve cryptography cipher
|
|
* suite, then if server returns an EC point formats lists extension it
|
|
* must contain uncompressed.
|
|
*/
|
|
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
|
|
unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
|
|
if ((s->tlsext_ecpointformatlist != NULL)
|
|
&& (s->tlsext_ecpointformatlist_length > 0)
|
|
&& (s->session->tlsext_ecpointformatlist != NULL)
|
|
&& (s->session->tlsext_ecpointformatlist_length > 0)
|
|
&& ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe))
|
|
|| (alg_a & SSL_aECDSA))) {
|
|
/* we are using an ECC cipher */
|
|
size_t i;
|
|
unsigned char *list;
|
|
int found_uncompressed = 0;
|
|
list = s->session->tlsext_ecpointformatlist;
|
|
for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) {
|
|
if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) {
|
|
found_uncompressed = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found_uncompressed) {
|
|
SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,
|
|
SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
|
|
return -1;
|
|
}
|
|
}
|
|
ret = SSL_TLSEXT_ERR_OK;
|
|
# endif /* OPENSSL_NO_EC */
|
|
|
|
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
|
|
ret =
|
|
s->ctx->tlsext_servername_callback(s, &al,
|
|
s->ctx->tlsext_servername_arg);
|
|
else if (s->initial_ctx != NULL
|
|
&& s->initial_ctx->tlsext_servername_callback != 0)
|
|
ret =
|
|
s->initial_ctx->tlsext_servername_callback(s, &al,
|
|
s->
|
|
initial_ctx->tlsext_servername_arg);
|
|
|
|
/*
|
|
* If we've requested certificate status and we wont get one tell the
|
|
* callback
|
|
*/
|
|
if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected)
|
|
&& s->ctx && s->ctx->tlsext_status_cb) {
|
|
int r;
|
|
/*
|
|
* Set resp to NULL, resplen to -1 so callback knows there is no
|
|
* response.
|
|
*/
|
|
if (s->tlsext_ocsp_resp) {
|
|
OPENSSL_free(s->tlsext_ocsp_resp);
|
|
s->tlsext_ocsp_resp = NULL;
|
|
}
|
|
s->tlsext_ocsp_resplen = -1;
|
|
r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
|
|
if (r == 0) {
|
|
al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
|
|
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
}
|
|
if (r < 0) {
|
|
al = SSL_AD_INTERNAL_ERROR;
|
|
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
|
|
}
|
|
}
|
|
|
|
switch (ret) {
|
|
case SSL_TLSEXT_ERR_ALERT_FATAL:
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return -1;
|
|
|
|
case SSL_TLSEXT_ERR_ALERT_WARNING:
|
|
ssl3_send_alert(s, SSL3_AL_WARNING, al);
|
|
return 1;
|
|
|
|
case SSL_TLSEXT_ERR_NOACK:
|
|
s->servername_done = 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d,
|
|
int n)
|
|
{
|
|
int al = -1;
|
|
if (s->version < SSL3_VERSION)
|
|
return 1;
|
|
if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0) {
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return 0;
|
|
}
|
|
|
|
if (ssl_check_serverhello_tlsext(s) <= 0) {
|
|
SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT, SSL_R_SERVERHELLO_TLSEXT);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*-
|
|
* Since the server cache lookup is done early on in the processing of the
|
|
* ClientHello, and other operations depend on the result, we need to handle
|
|
* any TLS session ticket extension at the same time.
|
|
*
|
|
* session_id: points at the session ID in the ClientHello. This code will
|
|
* read past the end of this in order to parse out the session ticket
|
|
* extension, if any.
|
|
* len: the length of the session ID.
|
|
* limit: a pointer to the first byte after the ClientHello.
|
|
* ret: (output) on return, if a ticket was decrypted, then this is set to
|
|
* point to the resulting session.
|
|
*
|
|
* If s->tls_session_secret_cb is set then we are expecting a pre-shared key
|
|
* ciphersuite, in which case we have no use for session tickets and one will
|
|
* never be decrypted, nor will s->tlsext_ticket_expected be set to 1.
|
|
*
|
|
* Returns:
|
|
* -1: fatal error, either from parsing or decrypting the ticket.
|
|
* 0: no ticket was found (or was ignored, based on settings).
|
|
* 1: a zero length extension was found, indicating that the client supports
|
|
* session tickets but doesn't currently have one to offer.
|
|
* 2: either s->tls_session_secret_cb was set, or a ticket was offered but
|
|
* couldn't be decrypted because of a non-fatal error.
|
|
* 3: a ticket was successfully decrypted and *ret was set.
|
|
*
|
|
* Side effects:
|
|
* Sets s->tlsext_ticket_expected to 1 if the server will have to issue
|
|
* a new session ticket to the client because the client indicated support
|
|
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
|
|
* a session ticket or we couldn't use the one it gave us, or if
|
|
* s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket.
|
|
* Otherwise, s->tlsext_ticket_expected is set to 0.
|
|
*/
|
|
int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
|
|
const unsigned char *limit, SSL_SESSION **ret)
|
|
{
|
|
/* Point after session ID in client hello */
|
|
const unsigned char *p = session_id + len;
|
|
unsigned short i;
|
|
|
|
*ret = NULL;
|
|
s->tlsext_ticket_expected = 0;
|
|
|
|
/*
|
|
* If tickets disabled behave as if no ticket present to permit stateful
|
|
* resumption.
|
|
*/
|
|
if (!tls_use_ticket(s))
|
|
return 0;
|
|
if ((s->version <= SSL3_VERSION) || !limit)
|
|
return 0;
|
|
if (p >= limit)
|
|
return -1;
|
|
/* Skip past DTLS cookie */
|
|
if (SSL_IS_DTLS(s)) {
|
|
i = *(p++);
|
|
p += i;
|
|
if (p >= limit)
|
|
return -1;
|
|
}
|
|
/* Skip past cipher list */
|
|
n2s(p, i);
|
|
p += i;
|
|
if (p >= limit)
|
|
return -1;
|
|
/* Skip past compression algorithm list */
|
|
i = *(p++);
|
|
p += i;
|
|
if (p > limit)
|
|
return -1;
|
|
/* Now at start of extensions */
|
|
if ((p + 2) >= limit)
|
|
return 0;
|
|
n2s(p, i);
|
|
while ((p + 4) <= limit) {
|
|
unsigned short type, size;
|
|
n2s(p, type);
|
|
n2s(p, size);
|
|
if (p + size > limit)
|
|
return 0;
|
|
if (type == TLSEXT_TYPE_session_ticket) {
|
|
int r;
|
|
if (size == 0) {
|
|
/*
|
|
* The client will accept a ticket but doesn't currently have
|
|
* one.
|
|
*/
|
|
s->tlsext_ticket_expected = 1;
|
|
return 1;
|
|
}
|
|
if (s->tls_session_secret_cb) {
|
|
/*
|
|
* Indicate that the ticket couldn't be decrypted rather than
|
|
* generating the session from ticket now, trigger
|
|
* abbreviated handshake based on external mechanism to
|
|
* calculate the master secret later.
|
|
*/
|
|
return 2;
|
|
}
|
|
r = tls_decrypt_ticket(s, p, size, session_id, len, ret);
|
|
switch (r) {
|
|
case 2: /* ticket couldn't be decrypted */
|
|
s->tlsext_ticket_expected = 1;
|
|
return 2;
|
|
case 3: /* ticket was decrypted */
|
|
return r;
|
|
case 4: /* ticket decrypted but need to renew */
|
|
s->tlsext_ticket_expected = 1;
|
|
return 3;
|
|
default: /* fatal error */
|
|
return -1;
|
|
}
|
|
}
|
|
p += size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*-
|
|
* tls_decrypt_ticket attempts to decrypt a session ticket.
|
|
*
|
|
* etick: points to the body of the session ticket extension.
|
|
* eticklen: the length of the session tickets extenion.
|
|
* sess_id: points at the session ID.
|
|
* sesslen: the length of the session ID.
|
|
* psess: (output) on return, if a ticket was decrypted, then this is set to
|
|
* point to the resulting session.
|
|
*
|
|
* Returns:
|
|
* -1: fatal error, either from parsing or decrypting the ticket.
|
|
* 2: the ticket couldn't be decrypted.
|
|
* 3: a ticket was successfully decrypted and *psess was set.
|
|
* 4: same as 3, but the ticket needs to be renewed.
|
|
*/
|
|
static int tls_decrypt_ticket(SSL *s, const unsigned char *etick,
|
|
int eticklen, const unsigned char *sess_id,
|
|
int sesslen, SSL_SESSION **psess)
|
|
{
|
|
SSL_SESSION *sess;
|
|
unsigned char *sdec;
|
|
const unsigned char *p;
|
|
int slen, mlen, renew_ticket = 0;
|
|
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
|
|
HMAC_CTX hctx;
|
|
EVP_CIPHER_CTX ctx;
|
|
SSL_CTX *tctx = s->initial_ctx;
|
|
/* Need at least keyname + iv + some encrypted data */
|
|
if (eticklen < 48)
|
|
return 2;
|
|
/* Initialize session ticket encryption and HMAC contexts */
|
|
HMAC_CTX_init(&hctx);
|
|
EVP_CIPHER_CTX_init(&ctx);
|
|
if (tctx->tlsext_ticket_key_cb) {
|
|
unsigned char *nctick = (unsigned char *)etick;
|
|
int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
|
|
&ctx, &hctx, 0);
|
|
if (rv < 0)
|
|
return -1;
|
|
if (rv == 0)
|
|
return 2;
|
|
if (rv == 2)
|
|
renew_ticket = 1;
|
|
} else {
|
|
/* Check key name matches */
|
|
if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
|
|
return 2;
|
|
HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
|
|
EVP_sha256(), NULL);
|
|
EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
|
|
tctx->tlsext_tick_aes_key, etick + 16);
|
|
}
|
|
/*
|
|
* Attempt to process session ticket, first conduct sanity and integrity
|
|
* checks on ticket.
|
|
*/
|
|
mlen = HMAC_size(&hctx);
|
|
if (mlen < 0) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return -1;
|
|
}
|
|
eticklen -= mlen;
|
|
/* Check HMAC of encrypted ticket */
|
|
HMAC_Update(&hctx, etick, eticklen);
|
|
HMAC_Final(&hctx, tick_hmac, NULL);
|
|
HMAC_CTX_cleanup(&hctx);
|
|
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return 2;
|
|
}
|
|
/* Attempt to decrypt session data */
|
|
/* Move p after IV to start of encrypted ticket, update length */
|
|
p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
|
|
eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
|
|
sdec = OPENSSL_malloc(eticklen);
|
|
if (!sdec) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return -1;
|
|
}
|
|
EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
|
|
if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
OPENSSL_free(sdec);
|
|
return 2;
|
|
}
|
|
slen += mlen;
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
p = sdec;
|
|
|
|
sess = d2i_SSL_SESSION(NULL, &p, slen);
|
|
OPENSSL_free(sdec);
|
|
if (sess) {
|
|
/*
|
|
* The session ID, if non-empty, is used by some clients to detect
|
|
* that the ticket has been accepted. So we copy it to the session
|
|
* structure. If it is empty set length to zero as required by
|
|
* standard.
|
|
*/
|
|
if (sesslen)
|
|
memcpy(sess->session_id, sess_id, sesslen);
|
|
sess->session_id_length = sesslen;
|
|
*psess = sess;
|
|
if (renew_ticket)
|
|
return 4;
|
|
else
|
|
return 3;
|
|
}
|
|
ERR_clear_error();
|
|
/*
|
|
* For session parse failure, indicate that we need to send a new ticket.
|
|
*/
|
|
return 2;
|
|
}
|
|
|
|
/* Tables to translate from NIDs to TLS v1.2 ids */
|
|
|
|
typedef struct {
|
|
int nid;
|
|
int id;
|
|
} tls12_lookup;
|
|
|
|
static const tls12_lookup tls12_md[] = {
|
|
{NID_md5, TLSEXT_hash_md5},
|
|
{NID_sha1, TLSEXT_hash_sha1},
|
|
{NID_sha224, TLSEXT_hash_sha224},
|
|
{NID_sha256, TLSEXT_hash_sha256},
|
|
{NID_sha384, TLSEXT_hash_sha384},
|
|
{NID_sha512, TLSEXT_hash_sha512}
|
|
};
|
|
|
|
static const tls12_lookup tls12_sig[] = {
|
|
{EVP_PKEY_RSA, TLSEXT_signature_rsa},
|
|
{EVP_PKEY_DSA, TLSEXT_signature_dsa},
|
|
{EVP_PKEY_EC, TLSEXT_signature_ecdsa}
|
|
};
|
|
|
|
static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < tlen; i++) {
|
|
if (table[i].nid == nid)
|
|
return table[i].id;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < tlen; i++) {
|
|
if ((table[i].id) == id)
|
|
return table[i].nid;
|
|
}
|
|
return NID_undef;
|
|
}
|
|
|
|
int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk,
|
|
const EVP_MD *md)
|
|
{
|
|
int sig_id, md_id;
|
|
if (!md)
|
|
return 0;
|
|
md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
|
|
sizeof(tls12_md) / sizeof(tls12_lookup));
|
|
if (md_id == -1)
|
|
return 0;
|
|
sig_id = tls12_get_sigid(pk);
|
|
if (sig_id == -1)
|
|
return 0;
|
|
p[0] = (unsigned char)md_id;
|
|
p[1] = (unsigned char)sig_id;
|
|
return 1;
|
|
}
|
|
|
|
int tls12_get_sigid(const EVP_PKEY *pk)
|
|
{
|
|
return tls12_find_id(pk->type, tls12_sig,
|
|
sizeof(tls12_sig) / sizeof(tls12_lookup));
|
|
}
|
|
|
|
typedef struct {
|
|
int nid;
|
|
int secbits;
|
|
const EVP_MD *(*mfunc) (void);
|
|
} tls12_hash_info;
|
|
|
|
static const tls12_hash_info tls12_md_info[] = {
|
|
# ifdef OPENSSL_NO_MD5
|
|
{NID_md5, 64, 0},
|
|
# else
|
|
{NID_md5, 64, EVP_md5},
|
|
# endif
|
|
{NID_sha1, 80, EVP_sha1},
|
|
{NID_sha224, 112, EVP_sha224},
|
|
{NID_sha256, 128, EVP_sha256},
|
|
{NID_sha384, 192, EVP_sha384},
|
|
{NID_sha512, 256, EVP_sha512}
|
|
};
|
|
|
|
static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg)
|
|
{
|
|
if (hash_alg == 0)
|
|
return NULL;
|
|
if (hash_alg > sizeof(tls12_md_info) / sizeof(tls12_md_info[0]))
|
|
return NULL;
|
|
return tls12_md_info + hash_alg - 1;
|
|
}
|
|
|
|
const EVP_MD *tls12_get_hash(unsigned char hash_alg)
|
|
{
|
|
const tls12_hash_info *inf;
|
|
if (hash_alg == TLSEXT_hash_md5 && FIPS_mode())
|
|
return NULL;
|
|
inf = tls12_get_hash_info(hash_alg);
|
|
if (!inf || !inf->mfunc)
|
|
return NULL;
|
|
return inf->mfunc();
|
|
}
|
|
|
|
static int tls12_get_pkey_idx(unsigned char sig_alg)
|
|
{
|
|
switch (sig_alg) {
|
|
# ifndef OPENSSL_NO_RSA
|
|
case TLSEXT_signature_rsa:
|
|
return SSL_PKEY_RSA_SIGN;
|
|
# endif
|
|
# ifndef OPENSSL_NO_DSA
|
|
case TLSEXT_signature_dsa:
|
|
return SSL_PKEY_DSA_SIGN;
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
case TLSEXT_signature_ecdsa:
|
|
return SSL_PKEY_ECC;
|
|
# endif
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Convert TLS 1.2 signature algorithm extension values into NIDs */
|
|
static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
|
|
int *psignhash_nid, const unsigned char *data)
|
|
{
|
|
int sign_nid = 0, hash_nid = 0;
|
|
if (!phash_nid && !psign_nid && !psignhash_nid)
|
|
return;
|
|
if (phash_nid || psignhash_nid) {
|
|
hash_nid = tls12_find_nid(data[0], tls12_md,
|
|
sizeof(tls12_md) / sizeof(tls12_lookup));
|
|
if (phash_nid)
|
|
*phash_nid = hash_nid;
|
|
}
|
|
if (psign_nid || psignhash_nid) {
|
|
sign_nid = tls12_find_nid(data[1], tls12_sig,
|
|
sizeof(tls12_sig) / sizeof(tls12_lookup));
|
|
if (psign_nid)
|
|
*psign_nid = sign_nid;
|
|
}
|
|
if (psignhash_nid) {
|
|
if (sign_nid && hash_nid)
|
|
OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid);
|
|
else
|
|
*psignhash_nid = NID_undef;
|
|
}
|
|
}
|
|
|
|
/* Check to see if a signature algorithm is allowed */
|
|
static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp)
|
|
{
|
|
/* See if we have an entry in the hash table and it is enabled */
|
|
const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]);
|
|
if (!hinf || !hinf->mfunc)
|
|
return 0;
|
|
/* See if public key algorithm allowed */
|
|
if (tls12_get_pkey_idx(ptmp[1]) == -1)
|
|
return 0;
|
|
/* Finally see if security callback allows it */
|
|
return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp);
|
|
}
|
|
|
|
/*
|
|
* Get a mask of disabled public key algorithms based on supported signature
|
|
* algorithms. For example if no signature algorithm supports RSA then RSA is
|
|
* disabled.
|
|
*/
|
|
|
|
void ssl_set_sig_mask(unsigned long *pmask_a, SSL *s, int op)
|
|
{
|
|
const unsigned char *sigalgs;
|
|
size_t i, sigalgslen;
|
|
int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
|
|
/*
|
|
* Now go through all signature algorithms seeing if we support any for
|
|
* RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
|
|
* down calls to security callback only check if we have to.
|
|
*/
|
|
sigalgslen = tls12_get_psigalgs(s, &sigalgs);
|
|
for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) {
|
|
switch (sigalgs[1]) {
|
|
# ifndef OPENSSL_NO_RSA
|
|
case TLSEXT_signature_rsa:
|
|
if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs))
|
|
have_rsa = 1;
|
|
break;
|
|
# endif
|
|
# ifndef OPENSSL_NO_DSA
|
|
case TLSEXT_signature_dsa:
|
|
if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs))
|
|
have_dsa = 1;
|
|
break;
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
case TLSEXT_signature_ecdsa:
|
|
if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs))
|
|
have_ecdsa = 1;
|
|
break;
|
|
# endif
|
|
}
|
|
}
|
|
if (!have_rsa)
|
|
*pmask_a |= SSL_aRSA;
|
|
if (!have_dsa)
|
|
*pmask_a |= SSL_aDSS;
|
|
if (!have_ecdsa)
|
|
*pmask_a |= SSL_aECDSA;
|
|
}
|
|
|
|
size_t tls12_copy_sigalgs(SSL *s, unsigned char *out,
|
|
const unsigned char *psig, size_t psiglen)
|
|
{
|
|
unsigned char *tmpout = out;
|
|
size_t i;
|
|
for (i = 0; i < psiglen; i += 2, psig += 2) {
|
|
if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig)) {
|
|
*tmpout++ = psig[0];
|
|
*tmpout++ = psig[1];
|
|
}
|
|
}
|
|
return tmpout - out;
|
|
}
|
|
|
|
/* Given preference and allowed sigalgs set shared sigalgs */
|
|
static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig,
|
|
const unsigned char *pref, size_t preflen,
|
|
const unsigned char *allow, size_t allowlen)
|
|
{
|
|
const unsigned char *ptmp, *atmp;
|
|
size_t i, j, nmatch = 0;
|
|
for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) {
|
|
/* Skip disabled hashes or signature algorithms */
|
|
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp))
|
|
continue;
|
|
for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) {
|
|
if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) {
|
|
nmatch++;
|
|
if (shsig) {
|
|
shsig->rhash = ptmp[0];
|
|
shsig->rsign = ptmp[1];
|
|
tls1_lookup_sigalg(&shsig->hash_nid,
|
|
&shsig->sign_nid,
|
|
&shsig->signandhash_nid, ptmp);
|
|
shsig++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return nmatch;
|
|
}
|
|
|
|
/* Set shared signature algorithms for SSL structures */
|
|
static int tls1_set_shared_sigalgs(SSL *s)
|
|
{
|
|
const unsigned char *pref, *allow, *conf;
|
|
size_t preflen, allowlen, conflen;
|
|
size_t nmatch;
|
|
TLS_SIGALGS *salgs = NULL;
|
|
CERT *c = s->cert;
|
|
unsigned int is_suiteb = tls1_suiteb(s);
|
|
if (c->shared_sigalgs) {
|
|
OPENSSL_free(c->shared_sigalgs);
|
|
c->shared_sigalgs = NULL;
|
|
c->shared_sigalgslen = 0;
|
|
}
|
|
/* If client use client signature algorithms if not NULL */
|
|
if (!s->server && c->client_sigalgs && !is_suiteb) {
|
|
conf = c->client_sigalgs;
|
|
conflen = c->client_sigalgslen;
|
|
} else if (c->conf_sigalgs && !is_suiteb) {
|
|
conf = c->conf_sigalgs;
|
|
conflen = c->conf_sigalgslen;
|
|
} else
|
|
conflen = tls12_get_psigalgs(s, &conf);
|
|
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
|
|
pref = conf;
|
|
preflen = conflen;
|
|
allow = c->peer_sigalgs;
|
|
allowlen = c->peer_sigalgslen;
|
|
} else {
|
|
allow = conf;
|
|
allowlen = conflen;
|
|
pref = c->peer_sigalgs;
|
|
preflen = c->peer_sigalgslen;
|
|
}
|
|
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
|
|
if (nmatch) {
|
|
salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
|
|
if (!salgs)
|
|
return 0;
|
|
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
|
|
} else {
|
|
salgs = NULL;
|
|
}
|
|
c->shared_sigalgs = salgs;
|
|
c->shared_sigalgslen = nmatch;
|
|
return 1;
|
|
}
|
|
|
|
/* Set preferred digest for each key type */
|
|
|
|
int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize)
|
|
{
|
|
CERT *c = s->cert;
|
|
/* Extension ignored for inappropriate versions */
|
|
if (!SSL_USE_SIGALGS(s))
|
|
return 1;
|
|
/* Should never happen */
|
|
if (!c)
|
|
return 0;
|
|
|
|
if (c->peer_sigalgs)
|
|
OPENSSL_free(c->peer_sigalgs);
|
|
c->peer_sigalgs = OPENSSL_malloc(dsize);
|
|
if (!c->peer_sigalgs)
|
|
return 0;
|
|
c->peer_sigalgslen = dsize;
|
|
memcpy(c->peer_sigalgs, data, dsize);
|
|
return 1;
|
|
}
|
|
|
|
int tls1_process_sigalgs(SSL *s)
|
|
{
|
|
int idx;
|
|
size_t i;
|
|
const EVP_MD *md;
|
|
CERT *c = s->cert;
|
|
TLS_SIGALGS *sigptr;
|
|
if (!tls1_set_shared_sigalgs(s))
|
|
return 0;
|
|
|
|
# ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
|
|
if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) {
|
|
/*
|
|
* Use first set signature preference to force message digest,
|
|
* ignoring any peer preferences.
|
|
*/
|
|
const unsigned char *sigs = NULL;
|
|
if (s->server)
|
|
sigs = c->conf_sigalgs;
|
|
else
|
|
sigs = c->client_sigalgs;
|
|
if (sigs) {
|
|
idx = tls12_get_pkey_idx(sigs[1]);
|
|
md = tls12_get_hash(sigs[0]);
|
|
c->pkeys[idx].digest = md;
|
|
c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
|
|
if (idx == SSL_PKEY_RSA_SIGN) {
|
|
c->pkeys[SSL_PKEY_RSA_ENC].valid_flags =
|
|
CERT_PKEY_EXPLICIT_SIGN;
|
|
c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
for (i = 0, sigptr = c->shared_sigalgs;
|
|
i < c->shared_sigalgslen; i++, sigptr++) {
|
|
idx = tls12_get_pkey_idx(sigptr->rsign);
|
|
if (idx > 0 && c->pkeys[idx].digest == NULL) {
|
|
md = tls12_get_hash(sigptr->rhash);
|
|
c->pkeys[idx].digest = md;
|
|
c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
|
|
if (idx == SSL_PKEY_RSA_SIGN) {
|
|
c->pkeys[SSL_PKEY_RSA_ENC].valid_flags =
|
|
CERT_PKEY_EXPLICIT_SIGN;
|
|
c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
|
|
}
|
|
}
|
|
|
|
}
|
|
/*
|
|
* In strict mode leave unset digests as NULL to indicate we can't use
|
|
* the certificate for signing.
|
|
*/
|
|
if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
|
|
/*
|
|
* Set any remaining keys to default values. NOTE: if alg is not
|
|
* supported it stays as NULL.
|
|
*/
|
|
# ifndef OPENSSL_NO_DSA
|
|
if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest)
|
|
c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
|
|
# endif
|
|
# ifndef OPENSSL_NO_RSA
|
|
if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) {
|
|
c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();
|
|
c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
if (!c->pkeys[SSL_PKEY_ECC].digest)
|
|
c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
|
|
# endif
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int SSL_get_sigalgs(SSL *s, int idx,
|
|
int *psign, int *phash, int *psignhash,
|
|
unsigned char *rsig, unsigned char *rhash)
|
|
{
|
|
const unsigned char *psig = s->cert->peer_sigalgs;
|
|
if (psig == NULL)
|
|
return 0;
|
|
if (idx >= 0) {
|
|
idx <<= 1;
|
|
if (idx >= (int)s->cert->peer_sigalgslen)
|
|
return 0;
|
|
psig += idx;
|
|
if (rhash)
|
|
*rhash = psig[0];
|
|
if (rsig)
|
|
*rsig = psig[1];
|
|
tls1_lookup_sigalg(phash, psign, psignhash, psig);
|
|
}
|
|
return s->cert->peer_sigalgslen / 2;
|
|
}
|
|
|
|
int SSL_get_shared_sigalgs(SSL *s, int idx,
|
|
int *psign, int *phash, int *psignhash,
|
|
unsigned char *rsig, unsigned char *rhash)
|
|
{
|
|
TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
|
|
if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen)
|
|
return 0;
|
|
shsigalgs += idx;
|
|
if (phash)
|
|
*phash = shsigalgs->hash_nid;
|
|
if (psign)
|
|
*psign = shsigalgs->sign_nid;
|
|
if (psignhash)
|
|
*psignhash = shsigalgs->signandhash_nid;
|
|
if (rsig)
|
|
*rsig = shsigalgs->rsign;
|
|
if (rhash)
|
|
*rhash = shsigalgs->rhash;
|
|
return s->cert->shared_sigalgslen;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_HEARTBEATS
|
|
int tls1_process_heartbeat(SSL *s)
|
|
{
|
|
unsigned char *p = &s->s3->rrec.data[0], *pl;
|
|
unsigned short hbtype;
|
|
unsigned int payload;
|
|
unsigned int padding = 16; /* Use minimum padding */
|
|
|
|
if (s->msg_callback)
|
|
s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
|
|
&s->s3->rrec.data[0], s->s3->rrec.length,
|
|
s, s->msg_callback_arg);
|
|
|
|
/* Read type and payload length first */
|
|
if (1 + 2 + 16 > s->s3->rrec.length)
|
|
return 0; /* silently discard */
|
|
hbtype = *p++;
|
|
n2s(p, payload);
|
|
if (1 + 2 + payload + 16 > s->s3->rrec.length)
|
|
return 0; /* silently discard per RFC 6520 sec. 4 */
|
|
pl = p;
|
|
|
|
if (hbtype == TLS1_HB_REQUEST) {
|
|
unsigned char *buffer, *bp;
|
|
int r;
|
|
|
|
/*
|
|
* Allocate memory for the response, size is 1 bytes message type,
|
|
* plus 2 bytes payload length, plus payload, plus padding
|
|
*/
|
|
buffer = OPENSSL_malloc(1 + 2 + payload + padding);
|
|
if (buffer == NULL) {
|
|
SSLerr(SSL_F_TLS1_PROCESS_HEARTBEAT, ERR_R_MALLOC_FAILURE);
|
|
return -1;
|
|
}
|
|
bp = buffer;
|
|
|
|
/* Enter response type, length and copy payload */
|
|
*bp++ = TLS1_HB_RESPONSE;
|
|
s2n(payload, bp);
|
|
memcpy(bp, pl, payload);
|
|
bp += payload;
|
|
/* Random padding */
|
|
RAND_pseudo_bytes(bp, padding);
|
|
|
|
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,
|
|
3 + payload + padding);
|
|
|
|
if (r >= 0 && s->msg_callback)
|
|
s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
|
|
buffer, 3 + payload + padding,
|
|
s, s->msg_callback_arg);
|
|
|
|
OPENSSL_free(buffer);
|
|
|
|
if (r < 0)
|
|
return r;
|
|
} else if (hbtype == TLS1_HB_RESPONSE) {
|
|
unsigned int seq;
|
|
|
|
/*
|
|
* We only send sequence numbers (2 bytes unsigned int), and 16
|
|
* random bytes, so we just try to read the sequence number
|
|
*/
|
|
n2s(pl, seq);
|
|
|
|
if (payload == 18 && seq == s->tlsext_hb_seq) {
|
|
s->tlsext_hb_seq++;
|
|
s->tlsext_hb_pending = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tls1_heartbeat(SSL *s)
|
|
{
|
|
unsigned char *buf, *p;
|
|
int ret;
|
|
unsigned int payload = 18; /* Sequence number + random bytes */
|
|
unsigned int padding = 16; /* Use minimum padding */
|
|
|
|
/* Only send if peer supports and accepts HB requests... */
|
|
if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
|
|
s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) {
|
|
SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT);
|
|
return -1;
|
|
}
|
|
|
|
/* ...and there is none in flight yet... */
|
|
if (s->tlsext_hb_pending) {
|
|
SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PENDING);
|
|
return -1;
|
|
}
|
|
|
|
/* ...and no handshake in progress. */
|
|
if (SSL_in_init(s) || s->in_handshake) {
|
|
SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_UNEXPECTED_MESSAGE);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Check if padding is too long, payload and padding must not exceed 2^14
|
|
* - 3 = 16381 bytes in total.
|
|
*/
|
|
OPENSSL_assert(payload + padding <= 16381);
|
|
|
|
/*-
|
|
* Create HeartBeat message, we just use a sequence number
|
|
* as payload to distuingish different messages and add
|
|
* some random stuff.
|
|
* - Message Type, 1 byte
|
|
* - Payload Length, 2 bytes (unsigned int)
|
|
* - Payload, the sequence number (2 bytes uint)
|
|
* - Payload, random bytes (16 bytes uint)
|
|
* - Padding
|
|
*/
|
|
buf = OPENSSL_malloc(1 + 2 + payload + padding);
|
|
if (buf == NULL) {
|
|
SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_MALLOC_FAILURE);
|
|
return -1;
|
|
}
|
|
p = buf;
|
|
/* Message Type */
|
|
*p++ = TLS1_HB_REQUEST;
|
|
/* Payload length (18 bytes here) */
|
|
s2n(payload, p);
|
|
/* Sequence number */
|
|
s2n(s->tlsext_hb_seq, p);
|
|
/* 16 random bytes */
|
|
RAND_pseudo_bytes(p, 16);
|
|
p += 16;
|
|
/* Random padding */
|
|
RAND_pseudo_bytes(p, padding);
|
|
|
|
ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);
|
|
if (ret >= 0) {
|
|
if (s->msg_callback)
|
|
s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
|
|
buf, 3 + payload + padding,
|
|
s, s->msg_callback_arg);
|
|
|
|
s->tlsext_hb_pending = 1;
|
|
}
|
|
|
|
OPENSSL_free(buf);
|
|
|
|
return ret;
|
|
}
|
|
# endif
|
|
|
|
# define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2)
|
|
|
|
typedef struct {
|
|
size_t sigalgcnt;
|
|
int sigalgs[MAX_SIGALGLEN];
|
|
} sig_cb_st;
|
|
|
|
static int sig_cb(const char *elem, int len, void *arg)
|
|
{
|
|
sig_cb_st *sarg = arg;
|
|
size_t i;
|
|
char etmp[20], *p;
|
|
int sig_alg, hash_alg;
|
|
if (elem == NULL)
|
|
return 0;
|
|
if (sarg->sigalgcnt == MAX_SIGALGLEN)
|
|
return 0;
|
|
if (len > (int)(sizeof(etmp) - 1))
|
|
return 0;
|
|
memcpy(etmp, elem, len);
|
|
etmp[len] = 0;
|
|
p = strchr(etmp, '+');
|
|
if (!p)
|
|
return 0;
|
|
*p = 0;
|
|
p++;
|
|
if (!*p)
|
|
return 0;
|
|
|
|
if (!strcmp(etmp, "RSA"))
|
|
sig_alg = EVP_PKEY_RSA;
|
|
else if (!strcmp(etmp, "DSA"))
|
|
sig_alg = EVP_PKEY_DSA;
|
|
else if (!strcmp(etmp, "ECDSA"))
|
|
sig_alg = EVP_PKEY_EC;
|
|
else
|
|
return 0;
|
|
|
|
hash_alg = OBJ_sn2nid(p);
|
|
if (hash_alg == NID_undef)
|
|
hash_alg = OBJ_ln2nid(p);
|
|
if (hash_alg == NID_undef)
|
|
return 0;
|
|
|
|
for (i = 0; i < sarg->sigalgcnt; i += 2) {
|
|
if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
|
|
return 0;
|
|
}
|
|
sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
|
|
sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set suppored signature algorithms based on a colon separated list of the
|
|
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
|
|
*/
|
|
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
|
|
{
|
|
sig_cb_st sig;
|
|
sig.sigalgcnt = 0;
|
|
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
|
|
return 0;
|
|
if (c == NULL)
|
|
return 1;
|
|
return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
|
|
}
|
|
|
|
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen,
|
|
int client)
|
|
{
|
|
unsigned char *sigalgs, *sptr;
|
|
int rhash, rsign;
|
|
size_t i;
|
|
if (salglen & 1)
|
|
return 0;
|
|
sigalgs = OPENSSL_malloc(salglen);
|
|
if (sigalgs == NULL)
|
|
return 0;
|
|
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
|
|
rhash = tls12_find_id(*psig_nids++, tls12_md,
|
|
sizeof(tls12_md) / sizeof(tls12_lookup));
|
|
rsign = tls12_find_id(*psig_nids++, tls12_sig,
|
|
sizeof(tls12_sig) / sizeof(tls12_lookup));
|
|
|
|
if (rhash == -1 || rsign == -1)
|
|
goto err;
|
|
*sptr++ = rhash;
|
|
*sptr++ = rsign;
|
|
}
|
|
|
|
if (client) {
|
|
if (c->client_sigalgs)
|
|
OPENSSL_free(c->client_sigalgs);
|
|
c->client_sigalgs = sigalgs;
|
|
c->client_sigalgslen = salglen;
|
|
} else {
|
|
if (c->conf_sigalgs)
|
|
OPENSSL_free(c->conf_sigalgs);
|
|
c->conf_sigalgs = sigalgs;
|
|
c->conf_sigalgslen = salglen;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
OPENSSL_free(sigalgs);
|
|
return 0;
|
|
}
|
|
|
|
static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
|
|
{
|
|
int sig_nid;
|
|
size_t i;
|
|
if (default_nid == -1)
|
|
return 1;
|
|
sig_nid = X509_get_signature_nid(x);
|
|
if (default_nid)
|
|
return sig_nid == default_nid ? 1 : 0;
|
|
for (i = 0; i < c->shared_sigalgslen; i++)
|
|
if (sig_nid == c->shared_sigalgs[i].signandhash_nid)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Check to see if a certificate issuer name matches list of CA names */
|
|
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
|
|
{
|
|
X509_NAME *nm;
|
|
int i;
|
|
nm = X509_get_issuer_name(x);
|
|
for (i = 0; i < sk_X509_NAME_num(names); i++) {
|
|
if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check certificate chain is consistent with TLS extensions and is usable by
|
|
* server. This servers two purposes: it allows users to check chains before
|
|
* passing them to the server and it allows the server to check chains before
|
|
* attempting to use them.
|
|
*/
|
|
|
|
/* Flags which need to be set for a certificate when stict mode not set */
|
|
|
|
# define CERT_PKEY_VALID_FLAGS \
|
|
(CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
|
|
/* Strict mode flags */
|
|
# define CERT_PKEY_STRICT_FLAGS \
|
|
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
|
|
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
|
|
|
|
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
|
|
int idx)
|
|
{
|
|
int i;
|
|
int rv = 0;
|
|
int check_flags = 0, strict_mode;
|
|
CERT_PKEY *cpk = NULL;
|
|
CERT *c = s->cert;
|
|
unsigned int suiteb_flags = tls1_suiteb(s);
|
|
/* idx == -1 means checking server chains */
|
|
if (idx != -1) {
|
|
/* idx == -2 means checking client certificate chains */
|
|
if (idx == -2) {
|
|
cpk = c->key;
|
|
idx = cpk - c->pkeys;
|
|
} else
|
|
cpk = c->pkeys + idx;
|
|
x = cpk->x509;
|
|
pk = cpk->privatekey;
|
|
chain = cpk->chain;
|
|
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
|
|
/* If no cert or key, forget it */
|
|
if (!x || !pk)
|
|
goto end;
|
|
# ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
|
|
/* Allow any certificate to pass test */
|
|
if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) {
|
|
rv = CERT_PKEY_STRICT_FLAGS | CERT_PKEY_EXPLICIT_SIGN |
|
|
CERT_PKEY_VALID | CERT_PKEY_SIGN;
|
|
cpk->valid_flags = rv;
|
|
return rv;
|
|
}
|
|
# endif
|
|
} else {
|
|
if (!x || !pk)
|
|
return 0;
|
|
idx = ssl_cert_type(x, pk);
|
|
if (idx == -1)
|
|
return 0;
|
|
cpk = c->pkeys + idx;
|
|
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
|
|
check_flags = CERT_PKEY_STRICT_FLAGS;
|
|
else
|
|
check_flags = CERT_PKEY_VALID_FLAGS;
|
|
strict_mode = 1;
|
|
}
|
|
|
|
if (suiteb_flags) {
|
|
int ok;
|
|
if (check_flags)
|
|
check_flags |= CERT_PKEY_SUITEB;
|
|
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
|
|
if (ok == X509_V_OK)
|
|
rv |= CERT_PKEY_SUITEB;
|
|
else if (!check_flags)
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Check all signature algorithms are consistent with signature
|
|
* algorithms extension if TLS 1.2 or later and strict mode.
|
|
*/
|
|
if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
|
|
int default_nid;
|
|
unsigned char rsign = 0;
|
|
if (c->peer_sigalgs)
|
|
default_nid = 0;
|
|
/* If no sigalgs extension use defaults from RFC5246 */
|
|
else {
|
|
switch (idx) {
|
|
case SSL_PKEY_RSA_ENC:
|
|
case SSL_PKEY_RSA_SIGN:
|
|
case SSL_PKEY_DH_RSA:
|
|
rsign = TLSEXT_signature_rsa;
|
|
default_nid = NID_sha1WithRSAEncryption;
|
|
break;
|
|
|
|
case SSL_PKEY_DSA_SIGN:
|
|
case SSL_PKEY_DH_DSA:
|
|
rsign = TLSEXT_signature_dsa;
|
|
default_nid = NID_dsaWithSHA1;
|
|
break;
|
|
|
|
case SSL_PKEY_ECC:
|
|
rsign = TLSEXT_signature_ecdsa;
|
|
default_nid = NID_ecdsa_with_SHA1;
|
|
break;
|
|
|
|
default:
|
|
default_nid = -1;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If peer sent no signature algorithms extension and we have set
|
|
* preferred signature algorithms check we support sha1.
|
|
*/
|
|
if (default_nid > 0 && c->conf_sigalgs) {
|
|
size_t j;
|
|
const unsigned char *p = c->conf_sigalgs;
|
|
for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) {
|
|
if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign)
|
|
break;
|
|
}
|
|
if (j == c->conf_sigalgslen) {
|
|
if (check_flags)
|
|
goto skip_sigs;
|
|
else
|
|
goto end;
|
|
}
|
|
}
|
|
/* Check signature algorithm of each cert in chain */
|
|
if (!tls1_check_sig_alg(c, x, default_nid)) {
|
|
if (!check_flags)
|
|
goto end;
|
|
} else
|
|
rv |= CERT_PKEY_EE_SIGNATURE;
|
|
rv |= CERT_PKEY_CA_SIGNATURE;
|
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
|
if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
|
|
if (check_flags) {
|
|
rv &= ~CERT_PKEY_CA_SIGNATURE;
|
|
break;
|
|
} else
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
|
|
else if (check_flags)
|
|
rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
|
|
skip_sigs:
|
|
/* Check cert parameters are consistent */
|
|
if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
|
|
rv |= CERT_PKEY_EE_PARAM;
|
|
else if (!check_flags)
|
|
goto end;
|
|
if (!s->server)
|
|
rv |= CERT_PKEY_CA_PARAM;
|
|
/* In strict mode check rest of chain too */
|
|
else if (strict_mode) {
|
|
rv |= CERT_PKEY_CA_PARAM;
|
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
|
X509 *ca = sk_X509_value(chain, i);
|
|
if (!tls1_check_cert_param(s, ca, 0)) {
|
|
if (check_flags) {
|
|
rv &= ~CERT_PKEY_CA_PARAM;
|
|
break;
|
|
} else
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
if (!s->server && strict_mode) {
|
|
STACK_OF(X509_NAME) *ca_dn;
|
|
int check_type = 0;
|
|
switch (pk->type) {
|
|
case EVP_PKEY_RSA:
|
|
check_type = TLS_CT_RSA_SIGN;
|
|
break;
|
|
case EVP_PKEY_DSA:
|
|
check_type = TLS_CT_DSS_SIGN;
|
|
break;
|
|
case EVP_PKEY_EC:
|
|
check_type = TLS_CT_ECDSA_SIGN;
|
|
break;
|
|
case EVP_PKEY_DH:
|
|
case EVP_PKEY_DHX:
|
|
{
|
|
int cert_type = X509_certificate_type(x, pk);
|
|
if (cert_type & EVP_PKS_RSA)
|
|
check_type = TLS_CT_RSA_FIXED_DH;
|
|
if (cert_type & EVP_PKS_DSA)
|
|
check_type = TLS_CT_DSS_FIXED_DH;
|
|
}
|
|
}
|
|
if (check_type) {
|
|
const unsigned char *ctypes;
|
|
int ctypelen;
|
|
if (c->ctypes) {
|
|
ctypes = c->ctypes;
|
|
ctypelen = (int)c->ctype_num;
|
|
} else {
|
|
ctypes = (unsigned char *)s->s3->tmp.ctype;
|
|
ctypelen = s->s3->tmp.ctype_num;
|
|
}
|
|
for (i = 0; i < ctypelen; i++) {
|
|
if (ctypes[i] == check_type) {
|
|
rv |= CERT_PKEY_CERT_TYPE;
|
|
break;
|
|
}
|
|
}
|
|
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
|
|
goto end;
|
|
} else
|
|
rv |= CERT_PKEY_CERT_TYPE;
|
|
|
|
ca_dn = s->s3->tmp.ca_names;
|
|
|
|
if (!sk_X509_NAME_num(ca_dn))
|
|
rv |= CERT_PKEY_ISSUER_NAME;
|
|
|
|
if (!(rv & CERT_PKEY_ISSUER_NAME)) {
|
|
if (ssl_check_ca_name(ca_dn, x))
|
|
rv |= CERT_PKEY_ISSUER_NAME;
|
|
}
|
|
if (!(rv & CERT_PKEY_ISSUER_NAME)) {
|
|
for (i = 0; i < sk_X509_num(chain); i++) {
|
|
X509 *xtmp = sk_X509_value(chain, i);
|
|
if (ssl_check_ca_name(ca_dn, xtmp)) {
|
|
rv |= CERT_PKEY_ISSUER_NAME;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
|
|
goto end;
|
|
} else
|
|
rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
|
|
|
|
if (!check_flags || (rv & check_flags) == check_flags)
|
|
rv |= CERT_PKEY_VALID;
|
|
|
|
end:
|
|
|
|
if (TLS1_get_version(s) >= TLS1_2_VERSION) {
|
|
if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN)
|
|
rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
|
else if (cpk->digest)
|
|
rv |= CERT_PKEY_SIGN;
|
|
} else
|
|
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
|
|
|
|
/*
|
|
* When checking a CERT_PKEY structure all flags are irrelevant if the
|
|
* chain is invalid.
|
|
*/
|
|
if (!check_flags) {
|
|
if (rv & CERT_PKEY_VALID)
|
|
cpk->valid_flags = rv;
|
|
else {
|
|
/* Preserve explicit sign flag, clear rest */
|
|
cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN;
|
|
return 0;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Set validity of certificates in an SSL structure */
|
|
void tls1_set_cert_validity(SSL *s)
|
|
{
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA);
|
|
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
|
|
}
|
|
|
|
/* User level utiity function to check a chain is suitable */
|
|
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
|
|
{
|
|
return tls1_check_chain(s, x, pk, chain, -1);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DH
|
|
DH *ssl_get_auto_dh(SSL *s)
|
|
{
|
|
int dh_secbits = 80;
|
|
if (s->cert->dh_tmp_auto == 2)
|
|
return DH_get_1024_160();
|
|
if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL) {
|
|
if (s->s3->tmp.new_cipher->strength_bits == 256)
|
|
dh_secbits = 128;
|
|
else
|
|
dh_secbits = 80;
|
|
} else {
|
|
CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
|
|
dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
|
|
}
|
|
|
|
if (dh_secbits >= 128) {
|
|
DH *dhp = DH_new();
|
|
if (!dhp)
|
|
return NULL;
|
|
dhp->g = BN_new();
|
|
if (dhp->g)
|
|
BN_set_word(dhp->g, 2);
|
|
if (dh_secbits >= 192)
|
|
dhp->p = get_rfc3526_prime_8192(NULL);
|
|
else
|
|
dhp->p = get_rfc3526_prime_3072(NULL);
|
|
if (!dhp->p || !dhp->g) {
|
|
DH_free(dhp);
|
|
return NULL;
|
|
}
|
|
return dhp;
|
|
}
|
|
if (dh_secbits >= 112)
|
|
return DH_get_2048_224();
|
|
return DH_get_1024_160();
|
|
}
|
|
#endif
|
|
|
|
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
|
|
{
|
|
int secbits;
|
|
EVP_PKEY *pkey = X509_get_pubkey(x);
|
|
if (pkey) {
|
|
secbits = EVP_PKEY_security_bits(pkey);
|
|
EVP_PKEY_free(pkey);
|
|
} else
|
|
secbits = -1;
|
|
if (s)
|
|
return ssl_security(s, op, secbits, 0, x);
|
|
else
|
|
return ssl_ctx_security(ctx, op, secbits, 0, x);
|
|
}
|
|
|
|
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
|
|
{
|
|
/* Lookup signature algorithm digest */
|
|
int secbits = -1, md_nid = NID_undef, sig_nid;
|
|
sig_nid = X509_get_signature_nid(x);
|
|
if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
|
|
const EVP_MD *md;
|
|
if (md_nid && (md = EVP_get_digestbynid(md_nid)))
|
|
secbits = EVP_MD_size(md) * 4;
|
|
}
|
|
if (s)
|
|
return ssl_security(s, op, secbits, md_nid, x);
|
|
else
|
|
return ssl_ctx_security(ctx, op, secbits, md_nid, x);
|
|
}
|
|
|
|
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
|
|
{
|
|
if (vfy)
|
|
vfy = SSL_SECOP_PEER;
|
|
if (is_ee) {
|
|
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
|
|
return SSL_R_EE_KEY_TOO_SMALL;
|
|
} else {
|
|
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
|
|
return SSL_R_CA_KEY_TOO_SMALL;
|
|
}
|
|
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
|
|
return SSL_R_CA_MD_TOO_WEAK;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check security of a chain, if sk includes the end entity certificate then
|
|
* x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
|
|
* one to the peer. Return values: 1 if ok otherwise error code to use
|
|
*/
|
|
|
|
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
|
|
{
|
|
int rv, start_idx, i;
|
|
if (x == NULL) {
|
|
x = sk_X509_value(sk, 0);
|
|
start_idx = 1;
|
|
} else
|
|
start_idx = 0;
|
|
|
|
rv = ssl_security_cert(s, NULL, x, vfy, 1);
|
|
if (rv != 1)
|
|
return rv;
|
|
|
|
for (i = start_idx; i < sk_X509_num(sk); i++) {
|
|
x = sk_X509_value(sk, i);
|
|
rv = ssl_security_cert(s, NULL, x, vfy, 0);
|
|
if (rv != 1)
|
|
return rv;
|
|
}
|
|
return 1;
|
|
}
|