openssl/crypto/sha/asm/keccak1600-mmx.pl
Andy Polyakov a163e60d95 sha/asm/keccak1600-mmx.pl: optimize for Atom and add comparison data.
Curiously enough out-of-order Silvermont benefited most from
optimization, 33%. [Originally mentioned "anomaly" turned to be
misreported frequency scaling problem. Correct results were
collected under older kernel.]

Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/3739)
2017-06-24 09:42:14 +02:00

440 lines
14 KiB
Raku
Executable file

#!/usr/bin/env perl
# Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# Keccak-1600 for x86 MMX.
#
# June 2017.
#
# Below code is KECCAK_2X implementation (see sha/keccak1600.c) with
# C[5] held in register bank and D[5] offloaded to memory. Though
# instead of actually unrolling the loop pair-wise I simply flip
# pointers to T[][] and A[][] and the end of round. Since number of
# rounds is even, last round writes to A[][] and everything works out.
# It's argued that MMX is the only code path meaningful to implement
# for x86. This is because non-MMX-capable processors is an extinct
# breed, and they as well can lurk executing compiler-generated code.
# For reference gcc-5.x-generated KECCAK_2X code takes 89 cycles per
# processed byte on Pentium. Which is fair result. But older compilers
# produce worse code. On the other hand one can wonder why not 128-bit
# SSE2? Well, SSE2 won't provide double improvement, rather far from
# that, if any at all on some processors, because it will take extra
# permutations and inter-bank data trasfers. Besides, contemporary
# CPUs are better off executing 64-bit code, and it makes lesser sense
# to invest into fancy 32-bit code. And the decision doesn't seem to
# be inadequate, if one compares below results to "64-bit platforms in
# 32-bit mode" SIMD data points available at
# http://keccak.noekeon.org/sw_performance.html.
#
########################################################################
# Numbers are cycles per processed byte out of large message.
#
# r=1088(i)
#
# PIII 30/+150%
# Pentium M 27/+150%
# P4 40/+85%
# Core 2 19/+170%
# Sandy Bridge(ii) 18/+140%
# Atom 33/+180%
# Silvermont(ii) 30/+180%
# VIA Nano(ii) 43/+60%
# Sledgehammer(ii)(iii) 24/+130%
#
# (i) Corresponds to SHA3-256. Numbers after slash are improvement
# coefficients over KECCAK_2X [with bit interleave and lane
# complementing] position-independent *scalar* code generated
# by gcc-5.x. It's not exactly fair comparison, but it's a
# datapoint...
# (ii) 64-bit processor executing 32-bit code.
# (iii) Result is considered to be representative even for older AMD
# processors.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
$output=pop;
open STDOUT,">$output";
&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
my @C = map("mm$_",(0..4));
my @T = map("mm$_",(5..7));
my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100,
8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20));
my @D = map(8*$_+4, (0..4));
my @rhotates = ([ 0, 1, 62, 28, 27 ],
[ 36, 44, 6, 55, 20 ],
[ 3, 10, 43, 25, 39 ],
[ 41, 45, 15, 21, 8 ],
[ 18, 2, 61, 56, 14 ]);
&static_label("iotas");
&function_begin_B("_KeccakF1600");
&movq (@C[0],&QWP($A[4][0],"esi"));
&movq (@C[1],&QWP($A[4][1],"esi"));
&movq (@C[2],&QWP($A[4][2],"esi"));
&movq (@C[3],&QWP($A[4][3],"esi"));
&movq (@C[4],&QWP($A[4][4],"esi"));
&mov ("ecx",24); # loop counter
&jmp (&label("loop"));
&set_label("loop",16);
######################################### Theta
&pxor (@C[0],&QWP($A[0][0],"esi"));
&pxor (@C[1],&QWP($A[0][1],"esi"));
&pxor (@C[2],&QWP($A[0][2],"esi"));
&pxor (@C[3],&QWP($A[0][3],"esi"));
&pxor (@C[4],&QWP($A[0][4],"esi"));
&pxor (@C[0],&QWP($A[1][0],"esi"));
&pxor (@C[1],&QWP($A[1][1],"esi"));
&pxor (@C[2],&QWP($A[1][2],"esi"));
&pxor (@C[3],&QWP($A[1][3],"esi"));
&pxor (@C[4],&QWP($A[1][4],"esi"));
&pxor (@C[0],&QWP($A[2][0],"esi"));
&pxor (@C[1],&QWP($A[2][1],"esi"));
&pxor (@C[2],&QWP($A[2][2],"esi"));
&pxor (@C[3],&QWP($A[2][3],"esi"));
&pxor (@C[4],&QWP($A[2][4],"esi"));
&pxor (@C[2],&QWP($A[3][2],"esi"));
&pxor (@C[0],&QWP($A[3][0],"esi"));
&pxor (@C[1],&QWP($A[3][1],"esi"));
&pxor (@C[3],&QWP($A[3][3],"esi"));
&movq (@T[0],@C[2]);
&pxor (@C[4],&QWP($A[3][4],"esi"));
&movq (@T[2],@C[2]);
&psrlq (@T[0],63);
&movq (@T[1],@C[0]);
&psllq (@T[2],1);
&pxor (@T[0],@C[0]);
&psrlq (@C[0],63);
&pxor (@T[0],@T[2]);
&psllq (@T[1],1);
&movq (@T[2],@C[1]);
&movq (&QWP(@D[1],"esp"),@T[0]); # D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
&pxor (@T[1],@C[0]);
&psrlq (@T[2],63);
&pxor (@T[1],@C[3]);
&movq (@C[0],@C[1]);
&movq (&QWP(@D[4],"esp"),@T[1]); # D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
&psllq (@C[0],1);
&pxor (@T[2],@C[4]);
&pxor (@C[0],@T[2]);
&movq (@T[2],@C[3]);
&psrlq (@C[3],63);
&movq (&QWP(@D[0],"esp"),@C[0]); # D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
&psllq (@T[2],1);
&movq (@T[0],@C[4]);
&psrlq (@C[4],63);
&pxor (@C[1],@C[3]);
&psllq (@T[0],1);
&pxor (@C[1],@T[2]);
&pxor (@C[2],@C[4]);
&movq (&QWP(@D[2],"esp"),@C[1]); # D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
&pxor (@C[2],@T[0]);
######################################### first Rho(0) is special
&movq (@C[3],&QWP($A[3][3],"esi"));
&movq (&QWP(@D[3],"esp"),@C[2]); # D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
&pxor (@C[3],@C[2]);
&movq (@C[4],&QWP($A[4][4],"esi"));
&movq (@T[2],@C[3]);
&psrlq (@C[3],64-$rhotates[3][3]);
&pxor (@C[4],@T[1]);
&psllq (@T[2],$rhotates[3][3]);
&movq (@T[1],@C[4]);
&psrlq (@C[4],64-$rhotates[4][4]);
&por (@C[3],@T[2]); # C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
&psllq (@T[1],$rhotates[4][4]);
&movq (@C[2],&QWP($A[2][2],"esi"));
&por (@C[4],@T[1]); # C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
&pxor (@C[2],@C[1]);
&movq (@C[1],&QWP($A[1][1],"esi"));
&movq (@T[1],@C[2]);
&psrlq (@C[2],64-$rhotates[2][2]);
&pxor (@C[1],&QWP(@D[1],"esp"));
&psllq (@T[1],$rhotates[2][2]);
&movq (@T[2],@C[1]);
&psrlq (@C[1],64-$rhotates[1][1]);
&por (@C[2],@T[1]); # C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
&psllq (@T[2],$rhotates[1][1]);
&pxor (@C[0],&QWP($A[0][0],"esi")); # /* rotate by 0 */ /* D[0] */
&por (@C[1],@T[2]); # C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
sub Chi() { ######### regular Chi step
my ($y,$xrho) = @_;
&movq (@T[0],@C[1]);
&movq (@T[1],@C[2]);
&pandn (@T[0],@C[2]);
&pandn (@C[2],@C[3]);
&pxor (@T[0],@C[0]);
&pxor (@C[2],@C[1]);
&pxor (@T[0],&QWP(0,"ebx")) if ($y == 0);
&lea ("ebx",&DWP(8,"ebx")) if ($y == 0);
&movq (@T[2],@C[3]);
&movq (&QWP($A[$y][0],"edi"),@T[0]); # R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
&movq (@T[0],@C[4]);
&pandn (@C[3],@C[4]);
&pandn (@C[4],@C[0]);
&pxor (@C[3],@T[1]);
&movq (&QWP($A[$y][1],"edi"),@C[2]); # R[0][1] = C[1] ^ (~C[2] & C[3]);
&pxor (@C[4],@T[2]);
&movq (@T[2],&QWP($A[0][$xrho],"esi")) if (defined($xrho));
&movq (&QWP($A[$y][2],"edi"),@C[3]); # R[0][2] = C[2] ^ (~C[3] & C[4]);
&pandn (@C[0],@C[1]);
&movq (&QWP($A[$y][3],"edi"),@C[4]); # R[0][3] = C[3] ^ (~C[4] & C[0]);
&pxor (@C[0],@T[0]);
&pxor (@T[2],&QWP(@D[$xrho],"esp")) if (defined($xrho));
&movq (&QWP($A[$y][4],"edi"),@C[0]); # R[0][4] = C[4] ^ (~C[0] & C[1]);
}
&Chi (0, 3);
sub Rho() { ######### regular Rho step
my $x = shift;
#&movq (@T[2],&QWP($A[0][$x],"esi")); # moved to Chi
#&pxor (@T[2],&QWP(@D[$x],"esp")); # moved to Chi
&movq (@C[0],@T[2]);
&psrlq (@T[2],64-$rhotates[0][$x]);
&movq (@C[1],&QWP($A[1][($x+1)%5],"esi"));
&psllq (@C[0],$rhotates[0][$x]);
&pxor (@C[1],&QWP(@D[($x+1)%5],"esp"));
&por (@C[0],@T[2]); # C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
&movq (@T[1],@C[1]);
&psrlq (@C[1],64-$rhotates[1][($x+1)%5]);
&movq (@C[2],&QWP($A[2][($x+2)%5],"esi"));
&psllq (@T[1],$rhotates[1][($x+1)%5]);
&pxor (@C[2],&QWP(@D[($x+2)%5],"esp"));
&por (@C[1],@T[1]); # C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
&movq (@T[2],@C[2]);
&psrlq (@C[2],64-$rhotates[2][($x+2)%5]);
&movq (@C[3],&QWP($A[3][($x+3)%5],"esi"));
&psllq (@T[2],$rhotates[2][($x+2)%5]);
&pxor (@C[3],&QWP(@D[($x+3)%5],"esp"));
&por (@C[2],@T[2]); # C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
&movq (@T[0],@C[3]);
&psrlq (@C[3],64-$rhotates[3][($x+3)%5]);
&movq (@C[4],&QWP($A[4][($x+4)%5],"esi"));
&psllq (@T[0],$rhotates[3][($x+3)%5]);
&pxor (@C[4],&QWP(@D[($x+4)%5],"esp"));
&por (@C[3],@T[0]); # C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
&movq (@T[1],@C[4]);
&psrlq (@C[4],64-$rhotates[4][($x+4)%5]);
&psllq (@T[1],$rhotates[4][($x+4)%5]);
&por (@C[4],@T[1]); # C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
}
&Rho (3); &Chi (1, 1);
&Rho (1); &Chi (2, 4);
&Rho (4); &Chi (3, 2);
&Rho (2); ###&Chi (4);
&movq (@T[0],@C[0]); ######### last Chi(4) is special
&xor ("edi","esi"); # &xchg ("esi","edi");
&movq (&QWP(@D[1],"esp"),@C[1]);
&xor ("esi","edi");
&xor ("edi","esi");
&movq (@T[1],@C[1]);
&movq (@T[2],@C[2]);
&pandn (@T[1],@C[2]);
&pandn (@T[2],@C[3]);
&pxor (@C[0],@T[1]);
&pxor (@C[1],@T[2]);
&movq (@T[1],@C[3]);
&movq (&QWP($A[4][0],"esi"),@C[0]); # R[4][0] = C[0] ^= (~C[1] & C[2]);
&pandn (@T[1],@C[4]);
&movq (&QWP($A[4][1],"esi"),@C[1]); # R[4][1] = C[1] ^= (~C[2] & C[3]);
&pxor (@C[2],@T[1]);
&movq (@T[2],@C[4]);
&movq (&QWP($A[4][2],"esi"),@C[2]); # R[4][2] = C[2] ^= (~C[3] & C[4]);
&pandn (@T[2],@T[0]);
&pandn (@T[0],&QWP(@D[1],"esp"));
&pxor (@C[3],@T[2]);
&pxor (@C[4],@T[0]);
&movq (&QWP($A[4][3],"esi"),@C[3]); # R[4][3] = C[3] ^= (~C[4] & D[0]);
&sub ("ecx",1);
&movq (&QWP($A[4][4],"esi"),@C[4]); # R[4][4] = C[4] ^= (~D[0] & D[1]);
&jnz (&label("loop"));
&lea ("ebx",&DWP(-192,"ebx")); # rewind iotas
&ret ();
&function_end_B("_KeccakF1600");
&function_begin("KeccakF1600");
&mov ("esi",&wparam(0));
&mov ("ebp","esp");
&sub ("esp",240);
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("ebx");
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
&and ("esp",-8);
&lea ("esi",&DWP(100,"esi")); # size optimization
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
&call ("_KeccakF1600");
&mov ("esp","ebp");
&emms ();
&function_end("KeccakF1600");
&function_begin("SHA3_absorb");
&mov ("esi",&wparam(0)); # A[][]
&mov ("eax",&wparam(1)); # inp
&mov ("ecx",&wparam(2)); # len
&mov ("edx",&wparam(3)); # bsz
&mov ("ebp","esp");
&sub ("esp",240+8);
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("ebx");
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
&and ("esp",-8);
&mov ("edi","esi");
&lea ("esi",&DWP(100,"esi")); # size optimization
&mov (&DWP(-4,"ebp"),"edx"); # save bsz
&jmp (&label("loop"));
&set_label("loop",16);
&cmp ("ecx","edx"); # len < bsz?
&jc (&label("absorbed"));
&shr ("edx",3); # bsz /= 8
&set_label("block");
&movq ("mm0",&QWP(0,"eax"));
&lea ("eax",&DWP(8,"eax"));
&pxor ("mm0",&QWP(0,"edi"));
&lea ("edi",&DWP(8,"edi"));
&sub ("ecx",8); # len -= 8
&movq (&QWP(-8,"edi"),"mm0");
&dec ("edx"); # bsz--
&jnz (&label("block"));
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
&mov (&DWP(-8,"ebp"),"ecx"); # save len
&call ("_KeccakF1600");
&mov ("ecx",&DWP(-8,"ebp")); # pull len
&mov ("edx",&DWP(-4,"ebp")); # pull bsz
&lea ("edi",&DWP(-100,"esi"));
&jmp (&label("loop"));
&set_label("absorbed",16);
&mov ("eax","ecx"); # return value
&mov ("esp","ebp");
&emms ();
&function_end("SHA3_absorb");
&function_begin("SHA3_squeeze");
&mov ("esi",&wparam(0)); # A[][]
&mov ("eax",&wparam(1)); # out
&mov ("ecx",&wparam(2)); # len
&mov ("edx",&wparam(3)); # bsz
&mov ("ebp","esp");
&sub ("esp",240+8);
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("ebx");
&lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx"));
&and ("esp",-8);
&shr ("edx",3); # bsz /= 8
&mov ("edi","esi");
&lea ("esi",&DWP(100,"esi")); # size optimization
&mov (&DWP(-4,"ebp"),"edx"); # save bsz
&jmp (&label("loop"));
&set_label("loop",16);
&cmp ("ecx",8); # len < 8?
&jc (&label("tail"));
&movq ("mm0",&QWP(0,"edi"));
&lea ("edi",&DWP(8,"edi"));
&movq (&QWP(0,"eax"),"mm0");
&lea ("eax",&DWP(8,"eax"));
&sub ("ecx",8); # len -= 8
&jz (&label("done"));
&dec ("edx"); # bsz--
&jnz (&label("loop"));
&lea ("edi",&DWP(8*5+100,"esp")); # size optimization
&mov (&DWP(-8,"ebp"),"ecx"); # save len
&call ("_KeccakF1600");
&mov ("ecx",&DWP(-8,"ebp")); # pull len
&mov ("edx",&DWP(-4,"ebp")); # pull bsz
&lea ("edi",&DWP(-100,"esi"));
&jmp (&label("loop"));
&set_label("tail",16);
&mov ("esi","edi");
&mov ("edi","eax");
&data_word("0xA4F39066"); # rep movsb
&set_label("done");
&mov ("esp","ebp");
&emms ();
&function_end("SHA3_squeeze");
&set_label("iotas",32);
&data_word(0x00000001,0x00000000);
&data_word(0x00008082,0x00000000);
&data_word(0x0000808a,0x80000000);
&data_word(0x80008000,0x80000000);
&data_word(0x0000808b,0x00000000);
&data_word(0x80000001,0x00000000);
&data_word(0x80008081,0x80000000);
&data_word(0x00008009,0x80000000);
&data_word(0x0000008a,0x00000000);
&data_word(0x00000088,0x00000000);
&data_word(0x80008009,0x00000000);
&data_word(0x8000000a,0x00000000);
&data_word(0x8000808b,0x00000000);
&data_word(0x0000008b,0x80000000);
&data_word(0x00008089,0x80000000);
&data_word(0x00008003,0x80000000);
&data_word(0x00008002,0x80000000);
&data_word(0x00000080,0x80000000);
&data_word(0x0000800a,0x00000000);
&data_word(0x8000000a,0x80000000);
&data_word(0x80008081,0x80000000);
&data_word(0x00008080,0x80000000);
&data_word(0x80000001,0x00000000);
&data_word(0x80008008,0x80000000);
&asciz("Keccak-1600 absorb and squeeze for MMX, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();
close STDOUT;