openssl/crypto/rand/rand_unix.c
Dr. Matthias St. Pierre 5bc6bcf82d DRBG: implement a get_nonce() callback
Fixes #5849

In pull request #5503 a fallback was added which adds a random nonce of
security_strength/2 bits if no nonce callback is provided. This change raised
the entropy requirements form 256 to 384 bit, which can cause problems on some
platforms (e.g. VMS, see issue #5849).

The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1:

  A nonce may be required in the construction of a seed during instantiation
  in order to provide a security cushion to block certain attacks.
  The nonce shall be either:

  a) A value with at least (security_strength/2) bits of entropy, or

  b) A value that is expected to repeat no more often than a
     (security_strength/2)-bit random string would be expected to repeat.

  Each nonce shall be unique to the cryptographic module in which instantiation
  is performed, but need not be secret. When used, the nonce shall be considered
  to be a critical security parameter.

This commit implements a nonce of type b) in order to lower the entropy
requirements during instantiation back to 256 bits.

The formulation "shall be unique to the cryptographic module" above implies
that the nonce needs to be unique among (with high probability) among all
DRBG instances in "space" and "time". We try to achieve this goal by creating a
nonce of the following form

    nonce = app-specific-data || high-resolution-utc-timestamp || counter

Where || denotes concatenation. The application specific data can be something
like the process or group id of the application. A utc timestamp is used because
it increases monotonically, provided the system time is synchronized. This approach
may not be perfect yet for a FIPS evaluation, but it should be good enough for the
moment.

This commit also harmonizes the implementation of the get_nonce() and the
get_additional_data() callbacks and moves the platform specific parts from
rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c.

Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-13 20:49:28 +02:00

411 lines
12 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "e_os.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/rand.h>
#include "rand_lcl.h"
#include "internal/rand_int.h"
#include <stdio.h>
#ifdef OPENSSL_SYS_UNIX
# include <sys/types.h>
# include <unistd.h>
# include <sys/time.h>
static uint64_t get_time_stamp(void);
static uint64_t get_timer_bits(void);
/* Macro to convert two thirty two bit values into a sixty four bit one */
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
/*
* Check for the existence and support of POSIX timers. The standard
* says that the _POSIX_TIMERS macro will have a positive value if they
* are available.
*
* However, we want an additional constraint: that the timer support does
* not require an extra library dependency. Early versions of glibc
* require -lrt to be specified on the link line to access the timers,
* so this needs to be checked for.
*
* It is worse because some libraries define __GLIBC__ but don't
* support the version testing macro (e.g. uClibc). This means
* an extra check is needed.
*
* The final condition is:
* "have posix timers and either not glibc or glibc without -lrt"
*
* The nested #if sequences are required to avoid using a parameterised
* macro that might be undefined.
*/
# undef OSSL_POSIX_TIMER_OKAY
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
# if defined(__GLIBC__)
# if defined(__GLIBC_PREREQ)
# if __GLIBC_PREREQ(2, 17)
# define OSSL_POSIX_TIMER_OKAY
# endif
# endif
# else
# define OSSL_POSIX_TIMER_OKAY
# endif
# endif
#endif
#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
!defined(OPENSSL_RAND_SEED_NONE)
# error "UEFI and VXWorks only support seeding NONE"
#endif
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|| defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|| defined(OPENSSL_SYS_UEFI))
# if defined(OPENSSL_SYS_VOS)
# ifndef OPENSSL_RAND_SEED_OS
# error "Unsupported seeding method configured; must be os"
# endif
# if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
# error "Unsupported HP-PA and IA32 at the same time."
# endif
# if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
# error "Must have one of HP-PA or IA32"
# endif
/*
* The following algorithm repeatedly samples the real-time clock (RTC) to
* generate a sequence of unpredictable data. The algorithm relies upon the
* uneven execution speed of the code (due to factors such as cache misses,
* interrupts, bus activity, and scheduling) and upon the rather large
* relative difference between the speed of the clock and the rate at which
* it can be read. If it is ported to an environment where execution speed
* is more constant or where the RTC ticks at a much slower rate, or the
* clock can be read with fewer instructions, it is likely that the results
* would be far more predictable. This should only be used for legacy
* platforms.
*
* As a precaution, we assume only 2 bits of entropy per byte.
*/
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
short int code;
int i, k;
size_t bytes_needed;
struct timespec ts;
unsigned char v;
# ifdef OPENSSL_SYS_VOS_HPPA
long duration;
extern void s$sleep(long *_duration, short int *_code);
# else
long long duration;
extern void s$sleep2(long long *_duration, short int *_code);
# endif
bytes_needed = rand_pool_bytes_needed(pool, 2 /*entropy_per_byte*/);
for (i = 0; i < bytes_needed; i++) {
/*
* burn some cpu; hope for interrupts, cache collisions, bus
* interference, etc.
*/
for (k = 0; k < 99; k++)
ts.tv_nsec = random();
# ifdef OPENSSL_SYS_VOS_HPPA
/* sleep for 1/1024 of a second (976 us). */
duration = 1;
s$sleep(&duration, &code);
# else
/* sleep for 1/65536 of a second (15 us). */
duration = 1;
s$sleep2(&duration, &code);
# endif
/* Get wall clock time, take 8 bits. */
clock_gettime(CLOCK_REALTIME, &ts);
v = (unsigned char)(ts.tv_nsec & 0xFF);
rand_pool_add(pool, arg, &v, sizeof(v) , 2);
}
return rand_pool_entropy_available(pool);
}
# else
# if defined(OPENSSL_RAND_SEED_EGD) && \
(defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
# error "Seeding uses EGD but EGD is turned off or no device given"
# endif
# if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
# error "Seeding uses urandom but DEVRANDOM is not configured"
# endif
# if defined(OPENSSL_RAND_SEED_OS)
# if !defined(DEVRANDOM)
# error "OS seeding requires DEVRANDOM to be configured"
# endif
# define OPENSSL_RAND_SEED_DEVRANDOM
# if defined(__GLIBC__) && defined(__GLIBC_PREREQ)
# if __GLIBC_PREREQ(2, 25)
# define OPENSSL_RAND_SEED_GETRANDOM
# endif
# endif
# endif
# ifdef OPENSSL_RAND_SEED_GETRANDOM
# include <sys/random.h>
# endif
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
# error "librandom not (yet) supported"
# endif
/*
* Try the various seeding methods in turn, exit when successful.
*
* TODO(DRBG): If more than one entropy source is available, is it
* preferable to stop as soon as enough entropy has been collected
* (as favored by @rsalz) or should one rather be defensive and add
* more entropy than requested and/or from different sources?
*
* Currently, the user can select multiple entropy sources in the
* configure step, yet in practice only the first available source
* will be used. A more flexible solution has been requested, but
* currently it is not clear how this can be achieved without
* overengineering the problem. There are many parameters which
* could be taken into account when selecting the order and amount
* of input from the different entropy sources (trust, quality,
* possibility of blocking).
*/
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
# ifdef OPENSSL_RAND_SEED_NONE
return rand_pool_entropy_available(pool);
# else
size_t bytes_needed;
size_t entropy_available = 0;
unsigned char *buffer;
# ifdef OPENSSL_RAND_SEED_GETRANDOM
bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
if (getrandom(buffer, bytes_needed, 0) == (int)bytes_needed)
bytes = bytes_needed;
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
if (entropy_available > 0)
return entropy_available;
# endif
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
{
/* Not yet implemented. */
}
# endif
# ifdef OPENSSL_RAND_SEED_DEVRANDOM
bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
if (bytes_needed > 0) {
static const char *paths[] = { DEVRANDOM, NULL };
FILE *fp;
int i;
for (i = 0; paths[i] != NULL; i++) {
if ((fp = fopen(paths[i], "rb")) == NULL)
continue;
setbuf(fp, NULL);
buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
if (fread(buffer, 1, bytes_needed, fp) == bytes_needed)
bytes = bytes_needed;
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
fclose(fp);
if (entropy_available > 0)
return entropy_available;
bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
}
}
# endif
# ifdef OPENSSL_RAND_SEED_RDTSC
entropy_available = rand_acquire_entropy_from_tsc(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# ifdef OPENSSL_RAND_SEED_RDCPU
entropy_available = rand_acquire_entropy_from_cpu(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# ifdef OPENSSL_RAND_SEED_EGD
bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
if (bytes_needed > 0) {
static const char *paths[] = { DEVRANDOM_EGD, NULL };
int i;
for (i = 0; paths[i] != NULL; i++) {
buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
int num = RAND_query_egd_bytes(paths[i],
buffer, (int)bytes_needed);
if (num == (int)bytes_needed)
bytes = bytes_needed;
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
if (entropy_available > 0)
return entropy_available;
}
}
# endif
return rand_pool_entropy_available(pool);
# endif
}
# endif
#endif
#ifdef OPENSSL_SYS_UNIX
int rand_pool_add_nonce_data(RAND_POOL *pool)
{
struct {
pid_t pid;
CRYPTO_THREAD_ID tid;
uint64_t time;
} data = { 0 };
/*
* Add process id, thread id, and a high resolution timestamp to
* ensure that the nonce is unique whith high probability for
* different process instances.
*/
data.pid = getpid();
data.tid = CRYPTO_THREAD_get_current_id();
data.time = get_time_stamp();
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}
int rand_pool_add_additional_data(RAND_POOL *pool)
{
struct {
CRYPTO_THREAD_ID tid;
uint64_t time;
} data = { 0 };
/*
* Add some noise from the thread id and a high resolution timer.
* The thread id adds a little randomness if the drbg is accessed
* concurrently (which is the case for the <master> drbg).
*/
data.tid = CRYPTO_THREAD_get_current_id();
data.time = get_timer_bits();
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}
/*
* Get the current time with the highest possible resolution
*
* The time stamp is added to the nonce, so it is optimized for not repeating.
* The current time is ideal for this purpose, provided the computer's clock
* is synchronized.
*/
static uint64_t get_time_stamp(void)
{
# if defined(OSSL_POSIX_TIMER_OKAY)
{
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
}
# endif
# if defined(__unix__) \
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
{
struct timeval tv;
if (gettimeofday(&tv, NULL) == 0)
return TWO32TO64(tv.tv_sec, tv.tv_usec);
}
# endif
return time(NULL);
}
/*
* Get an arbitrary timer value of the highest possible resolution
*
* The timer value is added as random noise to the additional data,
* which is not considered a trusted entropy sourec, so any result
* is acceptable.
*/
static uint64_t get_timer_bits(void)
{
uint64_t res = OPENSSL_rdtsc();
if (res != 0)
return res;
# if defined(__sun) || defined(__hpux)
return gethrtime();
# elif defined(_AIX)
{
timebasestruct_t t;
read_wall_time(&t, TIMEBASE_SZ);
return TWO32TO64(t.tb_high, t.tb_low);
}
# elif defined(OSSL_POSIX_TIMER_OKAY)
{
struct timespec ts;
# ifdef CLOCK_BOOTTIME
# define CLOCK_TYPE CLOCK_BOOTTIME
# elif defined(_POSIX_MONOTONIC_CLOCK)
# define CLOCK_TYPE CLOCK_MONOTONIC
# else
# define CLOCK_TYPE CLOCK_REALTIME
# endif
if (clock_gettime(CLOCK_TYPE, &ts) == 0)
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
}
# endif
# if defined(__unix__) \
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
{
struct timeval tv;
if (gettimeofday(&tv, NULL) == 0)
return TWO32TO64(tv.tv_sec, tv.tv_usec);
}
# endif
return time(NULL);
}
#endif