openssl/crypto/poly1305/asm/poly1305-armv8.pl
Andy Polyakov 4b8736a22e crypto/poly1305: don't break carry chains.
RT#4483

[poly1305-armv4.pl: remove redundant #ifdef __thumb2__]
[poly1305-ppc*.pl: presumably more accurate benchmark results]

Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-04-04 16:56:20 +02:00

929 lines
20 KiB
Perl
Executable file

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# This module implements Poly1305 hash for ARMv8.
#
# June 2015
#
# Numbers are cycles per processed byte with poly1305_blocks alone.
#
# IALU/gcc-4.9 NEON
#
# Apple A7 1.86/+5% 0.72
# Cortex-A53 2.69/+58% 1.47
# Cortex-A57 2.70/+7% 1.14
# Denver 1.64/+50% 1.18(*)
# X-Gene 2.13/+68% 2.19
#
# (*) estimate based on resources availability is less than 1.0,
# i.e. measured result is worse than expected, presumably binary
# translator is not almighty;
$flavour=shift;
$output=shift;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
my ($ctx,$inp,$len,$padbit) = map("x$_",(0..3));
my ($mac,$nonce)=($inp,$len);
my ($h0,$h1,$h2,$r0,$r1,$s1,$t0,$t1,$d0,$d1,$d2) = map("x$_",(4..14));
$code.=<<___;
#include "arm_arch.h"
.text
// forward "declarations" are required for Apple
.extern OPENSSL_armcap_P
.globl poly1305_blocks
.globl poly1305_emit
.globl poly1305_init
.type poly1305_init,%function
.align 5
poly1305_init:
cmp $inp,xzr
stp xzr,xzr,[$ctx] // zero hash value
stp xzr,xzr,[$ctx,#16] // [along with is_base2_26]
csel x0,xzr,x0,eq
b.eq .Lno_key
#ifdef __ILP32__
ldrsw $t1,.LOPENSSL_armcap_P
#else
ldr $t1,.LOPENSSL_armcap_P
#endif
adr $t0,.LOPENSSL_armcap_P
ldp $r0,$r1,[$inp] // load key
mov $s1,#0xfffffffc0fffffff
movk $s1,#0x0fff,lsl#48
ldr w17,[$t0,$t1]
#ifdef __ARMEB__
rev $r0,$r0 // flip bytes
rev $r1,$r1
#endif
and $r0,$r0,$s1 // &=0ffffffc0fffffff
and $s1,$s1,#-4
and $r1,$r1,$s1 // &=0ffffffc0ffffffc
stp $r0,$r1,[$ctx,#32] // save key value
tst w17,#ARMV7_NEON
adr $d0,poly1305_blocks
adr $r0,poly1305_blocks_neon
adr $d1,poly1305_emit
adr $r1,poly1305_emit_neon
csel $d0,$d0,$r0,eq
csel $d1,$d1,$r1,eq
stp $d0,$d1,[$len]
mov x0,#1
.Lno_key:
ret
.size poly1305_init,.-poly1305_init
.type poly1305_blocks,%function
.align 5
poly1305_blocks:
ands $len,$len,#-16
b.eq .Lno_data
ldp $h0,$h1,[$ctx] // load hash value
ldp $r0,$r1,[$ctx,#32] // load key value
ldr $h2,[$ctx,#16]
add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2)
b .Loop
.align 5
.Loop:
ldp $t0,$t1,[$inp],#16 // load input
sub $len,$len,#16
#ifdef __ARMEB__
rev $t0,$t0
rev $t1,$t1
#endif
adds $h0,$h0,$t0 // accumulate input
adcs $h1,$h1,$t1
mul $d0,$h0,$r0 // h0*r0
adc $h2,$h2,$padbit
umulh $d1,$h0,$r0
mul $t0,$h1,$s1 // h1*5*r1
umulh $t1,$h1,$s1
adds $d0,$d0,$t0
mul $t0,$h0,$r1 // h0*r1
adc $d1,$d1,$t1
umulh $d2,$h0,$r1
adds $d1,$d1,$t0
mul $t0,$h1,$r0 // h1*r0
adc $d2,$d2,xzr
umulh $t1,$h1,$r0
adds $d1,$d1,$t0
mul $t0,$h2,$s1 // h2*5*r1
adc $d2,$d2,$t1
mul $t1,$h2,$r0 // h2*r0
adds $d1,$d1,$t0
adc $d2,$d2,$t1
and $t0,$d2,#-4 // final reduction
and $h2,$d2,#3
add $t0,$t0,$d2,lsr#2
adds $h0,$d0,$t0
adcs $h1,$d1,xzr
adc $h2,$h2,xzr
cbnz $len,.Loop
stp $h0,$h1,[$ctx] // store hash value
str $h2,[$ctx,#16]
.Lno_data:
ret
.size poly1305_blocks,.-poly1305_blocks
.type poly1305_emit,%function
.align 5
poly1305_emit:
ldp $h0,$h1,[$ctx] // load hash base 2^64
ldr $h2,[$ctx,#16]
ldp $t0,$t1,[$nonce] // load nonce
adds $d0,$h0,#5 // compare to modulus
adcs $d1,$h1,xzr
adc $d2,$h2,xzr
tst $d2,#-4 // see if it's carried/borrowed
csel $h0,$h0,$d0,eq
csel $h1,$h1,$d1,eq
#ifdef __ARMEB__
ror $t0,$t0,#32 // flip nonce words
ror $t1,$t1,#32
#endif
adds $h0,$h0,$t0 // accumulate nonce
adc $h1,$h1,$t1
#ifdef __ARMEB__
rev $h0,$h0 // flip output bytes
rev $h1,$h1
#endif
stp $h0,$h1,[$mac] // write result
ret
.size poly1305_emit,.-poly1305_emit
___
my ($R0,$R1,$S1,$R2,$S2,$R3,$S3,$R4,$S4) = map("v$_.4s",(0..8));
my ($IN01_0,$IN01_1,$IN01_2,$IN01_3,$IN01_4) = map("v$_.2s",(9..13));
my ($IN23_0,$IN23_1,$IN23_2,$IN23_3,$IN23_4) = map("v$_.2s",(14..18));
my ($ACC0,$ACC1,$ACC2,$ACC3,$ACC4) = map("v$_.2d",(19..23));
my ($H0,$H1,$H2,$H3,$H4) = map("v$_.2s",(24..28));
my ($T0,$T1,$MASK) = map("v$_",(29..31));
my ($in2,$zeros)=("x16","x17");
my $is_base2_26 = $zeros; # borrow
$code.=<<___;
.type poly1305_mult,%function
.align 5
poly1305_mult:
mul $d0,$h0,$r0 // h0*r0
umulh $d1,$h0,$r0
mul $t0,$h1,$s1 // h1*5*r1
umulh $t1,$h1,$s1
adds $d0,$d0,$t0
mul $t0,$h0,$r1 // h0*r1
adc $d1,$d1,$t1
umulh $d2,$h0,$r1
adds $d1,$d1,$t0
mul $t0,$h1,$r0 // h1*r0
adc $d2,$d2,xzr
umulh $t1,$h1,$r0
adds $d1,$d1,$t0
mul $t0,$h2,$s1 // h2*5*r1
adc $d2,$d2,$t1
mul $t1,$h2,$r0 // h2*r0
adds $d1,$d1,$t0
adc $d2,$d2,$t1
and $t0,$d2,#-4 // final reduction
and $h2,$d2,#3
add $t0,$t0,$d2,lsr#2
adds $h0,$d0,$t0
adcs $h1,$d1,xzr
adc $h2,$h2,xzr
ret
.size poly1305_mult,.-poly1305_mult
.type poly1305_splat,%function
.align 5
poly1305_splat:
and x12,$h0,#0x03ffffff // base 2^64 -> base 2^26
ubfx x13,$h0,#26,#26
extr x14,$h1,$h0,#52
and x14,x14,#0x03ffffff
ubfx x15,$h1,#14,#26
extr x16,$h2,$h1,#40
str w12,[$ctx,#16*0] // r0
add w12,w13,w13,lsl#2 // r1*5
str w13,[$ctx,#16*1] // r1
add w13,w14,w14,lsl#2 // r2*5
str w12,[$ctx,#16*2] // s1
str w14,[$ctx,#16*3] // r2
add w14,w15,w15,lsl#2 // r3*5
str w13,[$ctx,#16*4] // s2
str w15,[$ctx,#16*5] // r3
add w15,w16,w16,lsl#2 // r4*5
str w14,[$ctx,#16*6] // s3
str w16,[$ctx,#16*7] // r4
str w15,[$ctx,#16*8] // s4
ret
.size poly1305_splat,.-poly1305_splat
.type poly1305_blocks_neon,%function
.align 5
poly1305_blocks_neon:
ldr $is_base2_26,[$ctx,#24]
cmp $len,#128
b.hs .Lblocks_neon
cbz $is_base2_26,poly1305_blocks
.Lblocks_neon:
stp x29,x30,[sp,#-80]!
add x29,sp,#0
ands $len,$len,#-16
b.eq .Lno_data_neon
cbz $is_base2_26,.Lbase2_64_neon
ldp w10,w11,[$ctx] // load hash value base 2^26
ldp w12,w13,[$ctx,#8]
ldr w14,[$ctx,#16]
tst $len,#31
b.eq .Leven_neon
ldp $r0,$r1,[$ctx,#32] // load key value
add $h0,x10,x11,lsl#26 // base 2^26 -> base 2^64
lsr $h1,x12,#12
adds $h0,$h0,x12,lsl#52
add $h1,$h1,x13,lsl#14
adc $h1,$h1,xzr
lsr $h2,x14,#24
adds $h1,$h1,x14,lsl#40
adc $d2,$h2,xzr // can be partially reduced...
ldp $d0,$d1,[$inp],#16 // load input
sub $len,$len,#16
add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2)
and $t0,$d2,#-4 // ... so reduce
and $h2,$d2,#3
add $t0,$t0,$d2,lsr#2
adds $h0,$h0,$t0
adcs $h1,$h1,xzr
adc $h2,$h2,xzr
#ifdef __ARMEB__
rev $d0,$d0
rev $d1,$d1
#endif
adds $h0,$h0,$d0 // accumulate input
adcs $h1,$h1,$d1
adc $h2,$h2,$padbit
bl poly1305_mult
ldr x30,[sp,#8]
cbz $padbit,.Lstore_base2_64_neon
and x10,$h0,#0x03ffffff // base 2^64 -> base 2^26
ubfx x11,$h0,#26,#26
extr x12,$h1,$h0,#52
and x12,x12,#0x03ffffff
ubfx x13,$h1,#14,#26
extr x14,$h2,$h1,#40
cbnz $len,.Leven_neon
stp w10,w11,[$ctx] // store hash value base 2^26
stp w12,w13,[$ctx,#8]
str w14,[$ctx,#16]
b .Lno_data_neon
.align 4
.Lstore_base2_64_neon:
stp $h0,$h1,[$ctx] // store hash value base 2^64
stp $h2,xzr,[$ctx,#16] // note that is_base2_26 is zeroed
b .Lno_data_neon
.align 4
.Lbase2_64_neon:
ldp $r0,$r1,[$ctx,#32] // load key value
ldp $h0,$h1,[$ctx] // load hash value base 2^64
ldr $h2,[$ctx,#16]
tst $len,#31
b.eq .Linit_neon
ldp $d0,$d1,[$inp],#16 // load input
sub $len,$len,#16
add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2)
#ifdef __ARMEB__
rev $d0,$d0
rev $d1,$d1
#endif
adds $h0,$h0,$d0 // accumulate input
adcs $h1,$h1,$d1
adc $h2,$h2,$padbit
bl poly1305_mult
.Linit_neon:
and x10,$h0,#0x03ffffff // base 2^64 -> base 2^26
ubfx x11,$h0,#26,#26
extr x12,$h1,$h0,#52
and x12,x12,#0x03ffffff
ubfx x13,$h1,#14,#26
extr x14,$h2,$h1,#40
stp d8,d9,[sp,#16] // meet ABI requirements
stp d10,d11,[sp,#32]
stp d12,d13,[sp,#48]
stp d14,d15,[sp,#64]
fmov ${H0},x10
fmov ${H1},x11
fmov ${H2},x12
fmov ${H3},x13
fmov ${H4},x14
////////////////////////////////// initialize r^n table
mov $h0,$r0 // r^1
add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2)
mov $h1,$r1
mov $h2,xzr
add $ctx,$ctx,#48+12
bl poly1305_splat
bl poly1305_mult // r^2
sub $ctx,$ctx,#4
bl poly1305_splat
bl poly1305_mult // r^3
sub $ctx,$ctx,#4
bl poly1305_splat
bl poly1305_mult // r^4
sub $ctx,$ctx,#4
bl poly1305_splat
ldr x30,[sp,#8]
add $in2,$inp,#32
adr $zeros,.Lzeros
subs $len,$len,#64
csel $in2,$zeros,$in2,lo
mov x4,#1
str x4,[$ctx,#-24] // set is_base2_26
sub $ctx,$ctx,#48 // restore original $ctx
b .Ldo_neon
.align 4
.Leven_neon:
add $in2,$inp,#32
adr $zeros,.Lzeros
subs $len,$len,#64
csel $in2,$zeros,$in2,lo
stp d8,d9,[sp,#16] // meet ABI requirements
stp d10,d11,[sp,#32]
stp d12,d13,[sp,#48]
stp d14,d15,[sp,#64]
fmov ${H0},x10
fmov ${H1},x11
fmov ${H2},x12
fmov ${H3},x13
fmov ${H4},x14
.Ldo_neon:
ldp x8,x12,[$in2],#16 // inp[2:3] (or zero)
ldp x9,x13,[$in2],#48
lsl $padbit,$padbit,#24
add x15,$ctx,#48
#ifdef __ARMEB__
rev x8,x8
rev x12,x12
rev x9,x9
rev x13,x13
#endif
and x4,x8,#0x03ffffff // base 2^64 -> base 2^26
and x5,x9,#0x03ffffff
ubfx x6,x8,#26,#26
ubfx x7,x9,#26,#26
add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32
extr x8,x12,x8,#52
extr x9,x13,x9,#52
add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32
fmov $IN23_0,x4
and x8,x8,#0x03ffffff
and x9,x9,#0x03ffffff
ubfx x10,x12,#14,#26
ubfx x11,x13,#14,#26
add x12,$padbit,x12,lsr#40
add x13,$padbit,x13,lsr#40
add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32
fmov $IN23_1,x6
add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32
add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32
fmov $IN23_2,x8
fmov $IN23_3,x10
fmov $IN23_4,x12
ldp x8,x12,[$inp],#16 // inp[0:1]
ldp x9,x13,[$inp],#48
ld1 {$R0,$R1,$S1,$R2},[x15],#64
ld1 {$S2,$R3,$S3,$R4},[x15],#64
ld1 {$S4},[x15]
#ifdef __ARMEB__
rev x8,x8
rev x12,x12
rev x9,x9
rev x13,x13
#endif
and x4,x8,#0x03ffffff // base 2^64 -> base 2^26
and x5,x9,#0x03ffffff
ubfx x6,x8,#26,#26
ubfx x7,x9,#26,#26
add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32
extr x8,x12,x8,#52
extr x9,x13,x9,#52
add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32
fmov $IN01_0,x4
and x8,x8,#0x03ffffff
and x9,x9,#0x03ffffff
ubfx x10,x12,#14,#26
ubfx x11,x13,#14,#26
add x12,$padbit,x12,lsr#40
add x13,$padbit,x13,lsr#40
add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32
fmov $IN01_1,x6
add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32
add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32
fmov $IN01_2,x8
fmov $IN01_3,x10
fmov $IN01_4,x12
b.ls .Lskip_loop
.align 4
.Loop_neon:
////////////////////////////////////////////////////////////////
// ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2
// ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r
// \___________________/
// ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2
// ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r
// \___________________/ \____________________/
//
// Note that we start with inp[2:3]*r^2. This is because it
// doesn't depend on reduction in previous iteration.
////////////////////////////////////////////////////////////////
// d4 = h0*r4 + h1*r3 + h2*r2 + h3*r1 + h4*r0
// d3 = h0*r3 + h1*r2 + h2*r1 + h3*r0 + h4*5*r4
// d2 = h0*r2 + h1*r1 + h2*r0 + h3*5*r4 + h4*5*r3
// d1 = h0*r1 + h1*r0 + h2*5*r4 + h3*5*r3 + h4*5*r2
// d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1
subs $len,$len,#64
umull $ACC4,$IN23_0,${R4}[2]
csel $in2,$zeros,$in2,lo
umull $ACC3,$IN23_0,${R3}[2]
umull $ACC2,$IN23_0,${R2}[2]
ldp x8,x12,[$in2],#16 // inp[2:3] (or zero)
umull $ACC1,$IN23_0,${R1}[2]
ldp x9,x13,[$in2],#48
umull $ACC0,$IN23_0,${R0}[2]
#ifdef __ARMEB__
rev x8,x8
rev x12,x12
rev x9,x9
rev x13,x13
#endif
umlal $ACC4,$IN23_1,${R3}[2]
and x4,x8,#0x03ffffff // base 2^64 -> base 2^26
umlal $ACC3,$IN23_1,${R2}[2]
and x5,x9,#0x03ffffff
umlal $ACC2,$IN23_1,${R1}[2]
ubfx x6,x8,#26,#26
umlal $ACC1,$IN23_1,${R0}[2]
ubfx x7,x9,#26,#26
umlal $ACC0,$IN23_1,${S4}[2]
add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32
umlal $ACC4,$IN23_2,${R2}[2]
extr x8,x12,x8,#52
umlal $ACC3,$IN23_2,${R1}[2]
extr x9,x13,x9,#52
umlal $ACC2,$IN23_2,${R0}[2]
add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32
umlal $ACC1,$IN23_2,${S4}[2]
fmov $IN23_0,x4
umlal $ACC0,$IN23_2,${S3}[2]
and x8,x8,#0x03ffffff
umlal $ACC4,$IN23_3,${R1}[2]
and x9,x9,#0x03ffffff
umlal $ACC3,$IN23_3,${R0}[2]
ubfx x10,x12,#14,#26
umlal $ACC2,$IN23_3,${S4}[2]
ubfx x11,x13,#14,#26
umlal $ACC1,$IN23_3,${S3}[2]
add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32
umlal $ACC0,$IN23_3,${S2}[2]
fmov $IN23_1,x6
add $IN01_2,$IN01_2,$H2
add x12,$padbit,x12,lsr#40
umlal $ACC4,$IN23_4,${R0}[2]
add x13,$padbit,x13,lsr#40
umlal $ACC3,$IN23_4,${S4}[2]
add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32
umlal $ACC2,$IN23_4,${S3}[2]
add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32
umlal $ACC1,$IN23_4,${S2}[2]
fmov $IN23_2,x8
umlal $ACC0,$IN23_4,${S1}[2]
fmov $IN23_3,x10
////////////////////////////////////////////////////////////////
// (hash+inp[0:1])*r^4 and accumulate
add $IN01_0,$IN01_0,$H0
fmov $IN23_4,x12
umlal $ACC3,$IN01_2,${R1}[0]
ldp x8,x12,[$inp],#16 // inp[0:1]
umlal $ACC0,$IN01_2,${S3}[0]
ldp x9,x13,[$inp],#48
umlal $ACC4,$IN01_2,${R2}[0]
umlal $ACC1,$IN01_2,${S4}[0]
umlal $ACC2,$IN01_2,${R0}[0]
#ifdef __ARMEB__
rev x8,x8
rev x12,x12
rev x9,x9
rev x13,x13
#endif
add $IN01_1,$IN01_1,$H1
umlal $ACC3,$IN01_0,${R3}[0]
umlal $ACC4,$IN01_0,${R4}[0]
and x4,x8,#0x03ffffff // base 2^64 -> base 2^26
umlal $ACC2,$IN01_0,${R2}[0]
and x5,x9,#0x03ffffff
umlal $ACC0,$IN01_0,${R0}[0]
ubfx x6,x8,#26,#26
umlal $ACC1,$IN01_0,${R1}[0]
ubfx x7,x9,#26,#26
add $IN01_3,$IN01_3,$H3
add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32
umlal $ACC3,$IN01_1,${R2}[0]
extr x8,x12,x8,#52
umlal $ACC4,$IN01_1,${R3}[0]
extr x9,x13,x9,#52
umlal $ACC0,$IN01_1,${S4}[0]
add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32
umlal $ACC2,$IN01_1,${R1}[0]
fmov $IN01_0,x4
umlal $ACC1,$IN01_1,${R0}[0]
and x8,x8,#0x03ffffff
add $IN01_4,$IN01_4,$H4
and x9,x9,#0x03ffffff
umlal $ACC3,$IN01_3,${R0}[0]
ubfx x10,x12,#14,#26
umlal $ACC0,$IN01_3,${S2}[0]
ubfx x11,x13,#14,#26
umlal $ACC4,$IN01_3,${R1}[0]
add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32
umlal $ACC1,$IN01_3,${S3}[0]
fmov $IN01_1,x6
umlal $ACC2,$IN01_3,${S4}[0]
add x12,$padbit,x12,lsr#40
umlal $ACC3,$IN01_4,${S4}[0]
add x13,$padbit,x13,lsr#40
umlal $ACC0,$IN01_4,${S1}[0]
add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32
umlal $ACC4,$IN01_4,${R0}[0]
add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32
umlal $ACC1,$IN01_4,${S2}[0]
fmov $IN01_2,x8
umlal $ACC2,$IN01_4,${S3}[0]
fmov $IN01_3,x10
/////////////////////////////////////////////////////////////////
// lazy reduction as discussed in "NEON crypto" by D.J. Bernstein
// and P. Schwabe
ushr $T0.2d,$ACC3,#26
fmov $IN01_4,x12
xtn $H3,$ACC3
ushr $T1.2d,$ACC0,#26
xtn $H0,$ACC0
add $ACC4,$ACC4,$T0.2d // h3 -> h4
bic $H3,#0xfc,lsl#24 // &=0x03ffffff
add $ACC1,$ACC1,$T1.2d // h0 -> h1
bic $H0,#0xfc,lsl#24
shrn $T0.2s,$ACC4,#26
xtn $H4,$ACC4
ushr $T1.2d,$ACC1,#26
xtn $H1,$ACC1
add $ACC2,$ACC2,$T1.2d // h1 -> h2
bic $H4,#0xfc,lsl#24
bic $H1,#0xfc,lsl#24
add $H0,$H0,$T0.2s
shl $T0.2s,$T0.2s,#2
shrn $T1.2s,$ACC2,#26
xtn $H2,$ACC2
add $H0,$H0,$T0.2s // h4 -> h0
add $H3,$H3,$T1.2s // h2 -> h3
bic $H2,#0xfc,lsl#24
ushr $T0.2s,$H0,#26
bic $H0,#0xfc,lsl#24
ushr $T1.2s,$H3,#26
bic $H3,#0xfc,lsl#24
add $H1,$H1,$T0.2s // h0 -> h1
add $H4,$H4,$T1.2s // h3 -> h4
b.hi .Loop_neon
.Lskip_loop:
dup $IN23_2,${IN23_2}[0]
movi $MASK.2d,#-1
add $IN01_2,$IN01_2,$H2
ushr $MASK.2d,$MASK.2d,#38
////////////////////////////////////////////////////////////////
// multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1
adds $len,$len,#32
b.ne .Long_tail
dup $IN23_2,${IN01_2}[0]
add $IN23_0,$IN01_0,$H0
add $IN23_3,$IN01_3,$H3
add $IN23_1,$IN01_1,$H1
add $IN23_4,$IN01_4,$H4
.Long_tail:
dup $IN23_0,${IN23_0}[0]
umull2 $ACC0,$IN23_2,${S3}
umull2 $ACC3,$IN23_2,${R1}
umull2 $ACC4,$IN23_2,${R2}
umull2 $ACC2,$IN23_2,${R0}
umull2 $ACC1,$IN23_2,${S4}
dup $IN23_1,${IN23_1}[0]
umlal2 $ACC0,$IN23_0,${R0}
umlal2 $ACC2,$IN23_0,${R2}
umlal2 $ACC3,$IN23_0,${R3}
umlal2 $ACC4,$IN23_0,${R4}
umlal2 $ACC1,$IN23_0,${R1}
dup $IN23_3,${IN23_3}[0]
umlal2 $ACC0,$IN23_1,${S4}
umlal2 $ACC3,$IN23_1,${R2}
umlal2 $ACC2,$IN23_1,${R1}
umlal2 $ACC4,$IN23_1,${R3}
umlal2 $ACC1,$IN23_1,${R0}
dup $IN23_4,${IN23_4}[0]
umlal2 $ACC3,$IN23_3,${R0}
umlal2 $ACC4,$IN23_3,${R1}
umlal2 $ACC0,$IN23_3,${S2}
umlal2 $ACC1,$IN23_3,${S3}
umlal2 $ACC2,$IN23_3,${S4}
umlal2 $ACC3,$IN23_4,${S4}
umlal2 $ACC0,$IN23_4,${S1}
umlal2 $ACC4,$IN23_4,${R0}
umlal2 $ACC1,$IN23_4,${S2}
umlal2 $ACC2,$IN23_4,${S3}
b.eq .Lshort_tail
////////////////////////////////////////////////////////////////
// (hash+inp[0:1])*r^4:r^3 and accumulate
add $IN01_0,$IN01_0,$H0
umlal $ACC3,$IN01_2,${R1}
umlal $ACC0,$IN01_2,${S3}
umlal $ACC4,$IN01_2,${R2}
umlal $ACC1,$IN01_2,${S4}
umlal $ACC2,$IN01_2,${R0}
add $IN01_1,$IN01_1,$H1
umlal $ACC3,$IN01_0,${R3}
umlal $ACC0,$IN01_0,${R0}
umlal $ACC4,$IN01_0,${R4}
umlal $ACC1,$IN01_0,${R1}
umlal $ACC2,$IN01_0,${R2}
add $IN01_3,$IN01_3,$H3
umlal $ACC3,$IN01_1,${R2}
umlal $ACC0,$IN01_1,${S4}
umlal $ACC4,$IN01_1,${R3}
umlal $ACC1,$IN01_1,${R0}
umlal $ACC2,$IN01_1,${R1}
add $IN01_4,$IN01_4,$H4
umlal $ACC3,$IN01_3,${R0}
umlal $ACC0,$IN01_3,${S2}
umlal $ACC4,$IN01_3,${R1}
umlal $ACC1,$IN01_3,${S3}
umlal $ACC2,$IN01_3,${S4}
umlal $ACC3,$IN01_4,${S4}
umlal $ACC0,$IN01_4,${S1}
umlal $ACC4,$IN01_4,${R0}
umlal $ACC1,$IN01_4,${S2}
umlal $ACC2,$IN01_4,${S3}
.Lshort_tail:
////////////////////////////////////////////////////////////////
// horizontal add
addp $ACC3,$ACC3,$ACC3
ldp d8,d9,[sp,#16] // meet ABI requirements
addp $ACC0,$ACC0,$ACC0
ldp d10,d11,[sp,#32]
addp $ACC4,$ACC4,$ACC4
ldp d12,d13,[sp,#48]
addp $ACC1,$ACC1,$ACC1
ldp d14,d15,[sp,#64]
addp $ACC2,$ACC2,$ACC2
////////////////////////////////////////////////////////////////
// lazy reduction, but without narrowing
ushr $T0.2d,$ACC3,#26
and $ACC3,$ACC3,$MASK.2d
ushr $T1.2d,$ACC0,#26
and $ACC0,$ACC0,$MASK.2d
add $ACC4,$ACC4,$T0.2d // h3 -> h4
add $ACC1,$ACC1,$T1.2d // h0 -> h1
ushr $T0.2d,$ACC4,#26
and $ACC4,$ACC4,$MASK.2d
ushr $T1.2d,$ACC1,#26
and $ACC1,$ACC1,$MASK.2d
add $ACC2,$ACC2,$T1.2d // h1 -> h2
add $ACC0,$ACC0,$T0.2d
shl $T0.2d,$T0.2d,#2
ushr $T1.2d,$ACC2,#26
and $ACC2,$ACC2,$MASK.2d
add $ACC0,$ACC0,$T0.2d // h4 -> h0
add $ACC3,$ACC3,$T1.2d // h2 -> h3
ushr $T0.2d,$ACC0,#26
and $ACC0,$ACC0,$MASK.2d
ushr $T1.2d,$ACC3,#26
and $ACC3,$ACC3,$MASK.2d
add $ACC1,$ACC1,$T0.2d // h0 -> h1
add $ACC4,$ACC4,$T1.2d // h3 -> h4
////////////////////////////////////////////////////////////////
// write the result, can be partially reduced
st4 {$ACC0,$ACC1,$ACC2,$ACC3}[0],[$ctx],#16
st1 {$ACC4}[0],[$ctx]
.Lno_data_neon:
ldr x29,[sp],#80
ret
.size poly1305_blocks_neon,.-poly1305_blocks_neon
.type poly1305_emit_neon,%function
.align 5
poly1305_emit_neon:
ldr $is_base2_26,[$ctx,#24]
cbz $is_base2_26,poly1305_emit
ldp w10,w11,[$ctx] // load hash value base 2^26
ldp w12,w13,[$ctx,#8]
ldr w14,[$ctx,#16]
add $h0,x10,x11,lsl#26 // base 2^26 -> base 2^64
lsr $h1,x12,#12
adds $h0,$h0,x12,lsl#52
add $h1,$h1,x13,lsl#14
adc $h1,$h1,xzr
lsr $h2,x14,#24
adds $h1,$h1,x14,lsl#40
adc $h2,$h2,xzr // can be partially reduced...
ldp $t0,$t1,[$nonce] // load nonce
and $d0,$h2,#-4 // ... so reduce
add $d0,$d0,$h2,lsr#2
and $h2,$h2,#3
adds $h0,$h0,$d0
adcs $h1,$h1,xzr
adc $h2,$h2,xzr
adds $d0,$h0,#5 // compare to modulus
adcs $d1,$h1,xzr
adc $d2,$h2,xzr
tst $d2,#-4 // see if it's carried/borrowed
csel $h0,$h0,$d0,eq
csel $h1,$h1,$d1,eq
#ifdef __ARMEB__
ror $t0,$t0,#32 // flip nonce words
ror $t1,$t1,#32
#endif
adds $h0,$h0,$t0 // accumulate nonce
adc $h1,$h1,$t1
#ifdef __ARMEB__
rev $h0,$h0 // flip output bytes
rev $h1,$h1
#endif
stp $h0,$h1,[$mac] // write result
ret
.size poly1305_emit_neon,.-poly1305_emit_neon
.align 5
.Lzeros:
.long 0,0,0,0,0,0,0,0
.LOPENSSL_armcap_P:
#ifdef __ILP32__
.long OPENSSL_armcap_P-.
#else
.quad OPENSSL_armcap_P-.
#endif
.asciz "Poly1305 for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
___
foreach (split("\n",$code)) {
s/\b(shrn\s+v[0-9]+)\.[24]d/$1.2s/ or
s/\b(fmov\s+)v([0-9]+)[^,]*,\s*x([0-9]+)/$1d$2,x$3/ or
(m/\bdup\b/ and (s/\.[24]s/.2d/g or 1)) or
(m/\b(eor|and)/ and (s/\.[248][sdh]/.16b/g or 1)) or
(m/\bum(ul|la)l\b/ and (s/\.4s/.2s/g or 1)) or
(m/\bum(ul|la)l2\b/ and (s/\.2s/.4s/g or 1)) or
(m/\bst[1-4]\s+{[^}]+}\[/ and (s/\.[24]d/.s/g or 1));
s/\.[124]([sd])\[/.$1\[/;
print $_,"\n";
}
close STDOUT;