openssl/crypto/engine/eng_aesni.c

568 lines
14 KiB
C

/*
* Support for Intel AES-NI intruction set
* Author: Huang Ying <ying.huang@intel.com>
*
* Intel AES-NI is a new set of Single Instruction Multiple Data
* (SIMD) instructions that are going to be introduced in the next
* generation of Intel processor, as of 2009. These instructions
* enable fast and secure data encryption and decryption, using the
* Advanced Encryption Standard (AES), defined by FIPS Publication
* number 197. The architecture introduces six instructions that
* offer full hardware support for AES. Four of them support high
* performance data encryption and decryption, and the other two
* instructions support the AES key expansion procedure.
*
* The white paper can be downloaded from:
* http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
*
* This file is based on engines/e_padlock.c
*/
/* ====================================================================
* Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <openssl/opensslconf.h>
#if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AES_NI) && !defined(OPENSSL_NO_AES)
#include <stdio.h>
#include "cryptlib.h"
#include <openssl/dso.h>
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/modes.h>
/* AES-NI is available *ONLY* on some x86 CPUs. Not only that it
doesn't exist elsewhere, but it even can't be compiled on other
platforms! */
#undef COMPILE_HW_AESNI
#if (defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(OPENSSL_IA32_SSE2)) && !defined(OPENSSL_NO_ASM)
#define COMPILE_HW_AESNI
static ENGINE *ENGINE_aesni (void);
#endif
void ENGINE_load_aesni (void)
{
/* On non-x86 CPUs it just returns. */
#ifdef COMPILE_HW_AESNI
ENGINE *toadd = ENGINE_aesni();
if (!toadd)
return;
ENGINE_add (toadd);
ENGINE_free (toadd);
ERR_clear_error ();
#endif
}
#ifdef COMPILE_HW_AESNI
typedef unsigned int u32;
typedef unsigned char u8;
#if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
# define BSWAP4(x) ({ u32 ret=(x); \
asm volatile ("bswapl %0" \
: "+r"(ret)); ret; })
#elif defined(_MSC_VER)
# if _MSC_VER>=1300
# pragma intrinsic(_byteswap_ulong)
# define BSWAP4(x) _byteswap_ulong((u32)(x))
# elif defined(_M_IX86)
__inline u32 _bswap4(u32 val) {
_asm mov eax,val
_asm bswap eax
}
# define BSWAP4(x) _bswap4(x)
# endif
#endif
#ifdef BSWAP4
#define GETU32(p) BSWAP4(*(const u32 *)(p))
#define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
#else
#define GETU32(p) ((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)[3])
#define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v))
#endif
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void aesni_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_ecb_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
int enc);
void aesni_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
unsigned char *ivec, int enc);
void aesni_ctr32_encrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const AES_KEY *key,
const unsigned char *ivec);
/* Function for ENGINE detection and control */
static int aesni_init(ENGINE *e);
/* Cipher Stuff */
static int aesni_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid);
#define AESNI_MIN_ALIGN 16
#define AESNI_ALIGN(x) \
((void *)(((unsigned long)(x)+AESNI_MIN_ALIGN-1)&~(AESNI_MIN_ALIGN-1)))
/* Engine names */
static const char aesni_id[] = "aesni",
aesni_name[] = "Intel AES-NI engine",
no_aesni_name[] = "Intel AES-NI engine (no-aesni)";
/* ===== Engine "management" functions ===== */
/* Prepare the ENGINE structure for registration */
static int
aesni_bind_helper(ENGINE *e)
{
int engage = (OPENSSL_ia32cap_P[1] & (1 << (57-32))) != 0;
/* Register everything or return with an error */
if (!ENGINE_set_id(e, aesni_id) ||
!ENGINE_set_name(e, engage ? aesni_name : no_aesni_name) ||
!ENGINE_set_init_function(e, aesni_init) ||
(engage && !ENGINE_set_ciphers (e, aesni_ciphers))
)
return 0;
/* Everything looks good */
return 1;
}
/* Constructor */
static ENGINE *
ENGINE_aesni(void)
{
ENGINE *eng = ENGINE_new();
if (!eng) {
return NULL;
}
if (!aesni_bind_helper(eng)) {
ENGINE_free(eng);
return NULL;
}
return eng;
}
/* Check availability of the engine */
static int
aesni_init(ENGINE *e)
{
return 1;
}
#if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
#define NID_aes_128_cfb NID_aes_128_cfb128
#endif
#if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
#define NID_aes_128_ofb NID_aes_128_ofb128
#endif
#if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
#define NID_aes_192_cfb NID_aes_192_cfb128
#endif
#if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
#define NID_aes_192_ofb NID_aes_192_ofb128
#endif
#if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
#define NID_aes_256_cfb NID_aes_256_cfb128
#endif
#if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
#define NID_aes_256_ofb NID_aes_256_ofb128
#endif
/* List of supported ciphers. */
static int aesni_cipher_nids[] = {
NID_aes_128_ecb,
NID_aes_128_cbc,
NID_aes_128_cfb,
NID_aes_128_ofb,
NID_aes_128_ctr,
NID_aes_192_ecb,
NID_aes_192_cbc,
NID_aes_192_cfb,
NID_aes_192_ofb,
NID_aes_192_ctr,
NID_aes_256_ecb,
NID_aes_256_cbc,
NID_aes_256_cfb,
NID_aes_256_ofb,
NID_aes_256_ctr,
};
static int aesni_cipher_nids_num =
(sizeof(aesni_cipher_nids)/sizeof(aesni_cipher_nids[0]));
typedef struct
{
AES_KEY ks;
unsigned int _pad1[3];
} AESNI_KEY;
static int
aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *user_key,
const unsigned char *iv, int enc)
{
int ret;
AES_KEY *key = AESNI_ALIGN(ctx->cipher_data);
if (((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_ECB_MODE
|| (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CBC_MODE)
&& !enc)
ret=aesni_set_decrypt_key(user_key, ctx->key_len * 8, key);
else
ret=aesni_set_encrypt_key(user_key, ctx->key_len * 8, key);
if(ret < 0) {
EVPerr(EVP_F_AESNI_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
if (ctx->cipher->flags&EVP_CIPH_CUSTOM_IV)
{
if (iv!=NULL)
memcpy (ctx->iv,iv,ctx->cipher->iv_len);
else {
EVPerr(EVP_F_AESNI_INIT_KEY,EVP_R_AES_IV_SETUP_FAILED);
return 0;
}
}
return 1;
}
static int aesni_cipher_ecb(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{ AES_KEY *key = AESNI_ALIGN(ctx->cipher_data);
aesni_ecb_encrypt(in, out, inl, key, ctx->encrypt);
return 1;
}
static int aesni_cipher_cbc(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{ AES_KEY *key = AESNI_ALIGN(ctx->cipher_data);
aesni_cbc_encrypt(in, out, inl, key,
ctx->iv, ctx->encrypt);
return 1;
}
static int aesni_cipher_cfb(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{ AES_KEY *key = AESNI_ALIGN(ctx->cipher_data);
CRYPTO_cfb128_encrypt(in, out, inl, key, ctx->iv,
&ctx->num, ctx->encrypt,
(block128_f)aesni_encrypt);
return 1;
}
static int aesni_cipher_ofb(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{ AES_KEY *key = AESNI_ALIGN(ctx->cipher_data);
CRYPTO_ofb128_encrypt(in, out, inl, key, ctx->iv,
&ctx->num, (block128_f)aesni_encrypt);
return 1;
}
#define AES_BLOCK_SIZE 16
#define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
#define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
#define EVP_CIPHER_block_size_OFB 1
#define EVP_CIPHER_block_size_CFB 1
/* Declaring so many ciphers by hand would be a pain.
Instead introduce a bit of preprocessor magic :-) */
#define DECLARE_AES_EVP(ksize,lmode,umode) \
static const EVP_CIPHER aesni_##ksize##_##lmode = { \
NID_aes_##ksize##_##lmode, \
EVP_CIPHER_block_size_##umode, \
ksize / 8, \
AES_BLOCK_SIZE, \
0 | EVP_CIPH_##umode##_MODE, \
aesni_init_key, \
aesni_cipher_##lmode, \
NULL, \
sizeof(AESNI_KEY), \
EVP_CIPHER_set_asn1_iv, \
EVP_CIPHER_get_asn1_iv, \
NULL, \
NULL \
}
DECLARE_AES_EVP(128,ecb,ECB);
DECLARE_AES_EVP(128,cbc,CBC);
DECLARE_AES_EVP(128,cfb,CFB);
DECLARE_AES_EVP(128,ofb,OFB);
DECLARE_AES_EVP(192,ecb,ECB);
DECLARE_AES_EVP(192,cbc,CBC);
DECLARE_AES_EVP(192,cfb,CFB);
DECLARE_AES_EVP(192,ofb,OFB);
DECLARE_AES_EVP(256,ecb,ECB);
DECLARE_AES_EVP(256,cbc,CBC);
DECLARE_AES_EVP(256,cfb,CFB);
DECLARE_AES_EVP(256,ofb,OFB);
static void ctr96_inc(unsigned char *counter) {
u32 n=12;
u8 c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c) return;
} while (n);
}
static int aesni_counter(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
AES_KEY *key = AESNI_ALIGN(ctx->cipher_data);
u32 n, ctr32;
n = ctx->num;
while (n && len) {
*(out++) = *(in++) ^ ctx->buf[n];
--len;
n = (n+1) % 16;
}
ctr32 = GETU32(ctx->iv+12);
while (len>=16) {
size_t blocks = len/16;
/*
* 1<<24 is just a not-so-small yet not-so-large number...
*/
if (blocks > (1U<<24)) blocks = (1U<<24);
/*
* As aesni_ctr32 operates on 32-bit counter, caller
* has to handle overflow. 'if' below detects the
* overflow, which is then handled by limiting the
* amount of blocks to the exact overflow point...
*/
ctr32 += (u32)blocks;
if (ctr32 < blocks) {
blocks -= ctr32;
ctr32 = 0;
}
aesni_ctr32_encrypt_blocks(in,out,blocks,key,ctx->iv);
/* aesni_ctr32 does not update ctx->iv, caller does: */
PUTU32(ctx->iv+12,ctr32);
/* ... overflow was detected, propogate carry. */
if (ctr32 == 0) ctr96_inc(ctx->iv);
blocks *= 16;
len -= blocks;
out += blocks;
in += blocks;
}
if (len) {
aesni_encrypt(ctx->iv,ctx->buf,key);
++ctr32;
PUTU32(ctx->iv+12,ctr32);
if (ctr32 == 0) ctr96_inc(ctx->iv);
while (len--) {
out[n] = in[n] ^ ctx->buf[n];
++n;
}
}
ctx->num = n;
return 1;
}
static const EVP_CIPHER aesni_128_ctr=
{
NID_aes_128_ctr,1,16,16,
EVP_CIPH_CUSTOM_IV,
aesni_init_key,
aesni_counter,
NULL,
sizeof(AESNI_KEY),
NULL,
NULL,
NULL,
NULL
};
static const EVP_CIPHER aesni_192_ctr=
{
NID_aes_192_ctr,1,24,16,
EVP_CIPH_CUSTOM_IV,
aesni_init_key,
aesni_counter,
NULL,
sizeof(AESNI_KEY),
NULL,
NULL,
NULL,
NULL
};
static const EVP_CIPHER aesni_256_ctr=
{
NID_aes_256_ctr,1,32,16,
EVP_CIPH_CUSTOM_IV,
aesni_init_key,
aesni_counter,
NULL,
sizeof(AESNI_KEY),
NULL,
NULL,
NULL,
NULL
};
static int
aesni_ciphers (ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid)
{
/* No specific cipher => return a list of supported nids ... */
if (!cipher) {
*nids = aesni_cipher_nids;
return aesni_cipher_nids_num;
}
/* ... or the requested "cipher" otherwise */
switch (nid) {
case NID_aes_128_ecb:
*cipher = &aesni_128_ecb;
break;
case NID_aes_128_cbc:
*cipher = &aesni_128_cbc;
break;
case NID_aes_128_cfb:
*cipher = &aesni_128_cfb;
break;
case NID_aes_128_ofb:
*cipher = &aesni_128_ofb;
break;
case NID_aes_128_ctr:
*cipher = &aesni_128_ctr;
break;
case NID_aes_192_ecb:
*cipher = &aesni_192_ecb;
break;
case NID_aes_192_cbc:
*cipher = &aesni_192_cbc;
break;
case NID_aes_192_cfb:
*cipher = &aesni_192_cfb;
break;
case NID_aes_192_ofb:
*cipher = &aesni_192_ofb;
break;
case NID_aes_192_ctr:
*cipher = &aesni_192_ctr;
break;
case NID_aes_256_ecb:
*cipher = &aesni_256_ecb;
break;
case NID_aes_256_cbc:
*cipher = &aesni_256_cbc;
break;
case NID_aes_256_cfb:
*cipher = &aesni_256_cfb;
break;
case NID_aes_256_ofb:
*cipher = &aesni_256_ofb;
break;
case NID_aes_256_ctr:
*cipher = &aesni_256_ctr;
break;
default:
/* Sorry, we don't support this NID */
*cipher = NULL;
return 0;
}
return 1;
}
#endif /* COMPILE_HW_AESNI */
#endif /* !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AESNI) && !defined(OPENSSL_NO_AES) */