openssl/crypto/ec/asm/ecp_nistz256-x86_64.pl
Andy Polyakov 3842a64d36 Add ECP_NISTZ256 by Shay Gueron, Intel Corp.
RT: 3149

Reviewed-by: Rich Salz <rsalz@openssl.org>
(cherry picked from commit 4d3fa06fce)
2014-09-22 00:07:44 +02:00

3092 lines
68 KiB
Raku
Executable file

#!/usr/bin/env perl
##############################################################################
# #
# Copyright 2014 Intel Corporation #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# #
##############################################################################
# #
# Developers and authors: #
# Shay Gueron (1, 2), and Vlad Krasnov (1) #
# (1) Intel Corporation, Israel Development Center #
# (2) University of Haifa #
# Reference: #
# S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with#
# 256 Bit Primes" #
# #
##############################################################################
# Further optimization by <appro@openssl.org>:
#
# this/original
# Opteron +8-33%
# Bulldozer +10-30%
# P4 +14-38%
# Westmere +8-23%
# Sandy Bridge +8-24%
# Ivy Bridge +7-25%
# Haswell +5-25%
# Atom +10-32%
# VIA Nano +37-130%
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark.
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.19) + ($1>=2.22);
$addx = ($1>=2.23);
}
if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.09) + ($1>=2.10);
$addx = ($1>=2.10);
}
if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./) {
$avx = ($1>=10) + ($1>=11);
$addx = ($1>=12);
}
if (!$addx && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9])\.([0-9]+)/) {
my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10
$avx = ($ver>=3.0) + ($ver>=3.01);
$addx = ($ver>=3.03);
}
$code.=<<___;
.text
.extern OPENSSL_ia32cap_P
# The polynomial
.align 64
.Lpoly:
.quad 0xffffffffffffffff, 0x00000000ffffffff, 0x0000000000000000, 0xffffffff00000001
# 2^512 mod P precomputed for NIST P256 polynomial
.LRR:
.quad 0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd
.LOne:
.long 1,1,1,1,1,1,1,1
.LTwo:
.long 2,2,2,2,2,2,2,2
.LThree:
.long 3,3,3,3,3,3,3,3
.LONE_mont:
.quad 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe
___
{
################################################################################
# void ecp_nistz256_mul_by_2(uint64_t res[4], uint64_t a[4]);
my ($a0,$a1,$a2,$a3)=map("%r$_",(8..11));
my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rdx","%rcx","%r12","%r13");
my ($r_ptr,$a_ptr,$b_ptr)=("%rdi","%rsi","%rdx");
$code.=<<___;
.globl ecp_nistz256_mul_by_2
.type ecp_nistz256_mul_by_2,\@function,2
.align 64
ecp_nistz256_mul_by_2:
push %r12
push %r13
mov 8*0($a_ptr), $a0
mov 8*1($a_ptr), $a1
add $a0, $a0 # a0:a3+a0:a3
mov 8*2($a_ptr), $a2
adc $a1, $a1
mov 8*3($a_ptr), $a3
lea .Lpoly(%rip), $a_ptr
mov $a0, $t0
adc $a2, $a2
adc $a3, $a3
mov $a1, $t1
sbb $t4, $t4
sub 8*0($a_ptr), $a0
mov $a2, $t2
sbb 8*1($a_ptr), $a1
sbb 8*2($a_ptr), $a2
mov $a3, $t3
sbb 8*3($a_ptr), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2
################################################################################
# void ecp_nistz256_div_by_2(uint64_t res[4], uint64_t a[4]);
.globl ecp_nistz256_div_by_2
.type ecp_nistz256_div_by_2,\@function,2
.align 32
ecp_nistz256_div_by_2:
push %r12
push %r13
mov 8*0($a_ptr), $a0
mov 8*1($a_ptr), $a1
mov 8*2($a_ptr), $a2
mov $a0, $t0
mov 8*3($a_ptr), $a3
lea .Lpoly(%rip), $a_ptr
mov $a1, $t1
xor $t4, $t4
add 8*0($a_ptr), $a0
mov $a2, $t2
adc 8*1($a_ptr), $a1
adc 8*2($a_ptr), $a2
mov $a3, $t3
adc 8*3($a_ptr), $a3
adc \$0, $t4
xor $a_ptr, $a_ptr # borrow $a_ptr
test \$1, $t0
cmovz $t0, $a0
cmovz $t1, $a1
cmovz $t2, $a2
cmovz $t3, $a3
cmovz $a_ptr, $t4
mov $a1, $t0 # a0:a3>>1
shr \$1, $a0
shl \$63, $t0
mov $a2, $t1
shr \$1, $a1
or $t0, $a0
shl \$63, $t1
mov $a3, $t2
shr \$1, $a2
or $t1, $a1
shl \$63, $t2
shr \$1, $a3
shl \$63, $t4
or $t2, $a2
or $t4, $a3
mov $a0, 8*0($r_ptr)
mov $a1, 8*1($r_ptr)
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2
################################################################################
# void ecp_nistz256_mul_by_3(uint64_t res[4], uint64_t a[4]);
.globl ecp_nistz256_mul_by_3
.type ecp_nistz256_mul_by_3,\@function,2
.align 32
ecp_nistz256_mul_by_3:
push %r12
push %r13
mov 8*0($a_ptr), $a0
xor $t4, $t4
mov 8*1($a_ptr), $a1
add $a0, $a0 # a0:a3+a0:a3
mov 8*2($a_ptr), $a2
adc $a1, $a1
mov 8*3($a_ptr), $a3
mov $a0, $t0
adc $a2, $a2
adc $a3, $a3
mov $a1, $t1
adc \$0, $t4
sub \$-1, $a0
mov $a2, $t2
sbb .Lpoly+8*1(%rip), $a1
sbb \$0, $a2
mov $a3, $t3
sbb .Lpoly+8*3(%rip), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
cmovz $t2, $a2
cmovz $t3, $a3
xor $t4, $t4
add 8*0($a_ptr), $a0 # a0:a3+=a_ptr[0:3]
adc 8*1($a_ptr), $a1
mov $a0, $t0
adc 8*2($a_ptr), $a2
adc 8*3($a_ptr), $a3
mov $a1, $t1
adc \$0, $t4
sub \$-1, $a0
mov $a2, $t2
sbb .Lpoly+8*1(%rip), $a1
sbb \$0, $a2
mov $a3, $t3
sbb .Lpoly+8*3(%rip), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3
################################################################################
# void ecp_nistz256_add(uint64_t res[4], uint64_t a[4], uint64_t b[4]);
.globl ecp_nistz256_add
.type ecp_nistz256_add,\@function,3
.align 32
ecp_nistz256_add:
push %r12
push %r13
mov 8*0($a_ptr), $a0
xor $t4, $t4
mov 8*1($a_ptr), $a1
mov 8*2($a_ptr), $a2
mov 8*3($a_ptr), $a3
lea .Lpoly(%rip), $a_ptr
add 8*0($b_ptr), $a0
adc 8*1($b_ptr), $a1
mov $a0, $t0
adc 8*2($b_ptr), $a2
adc 8*3($b_ptr), $a3
mov $a1, $t1
adc \$0, $t4
sub 8*0($a_ptr), $a0
mov $a2, $t2
sbb 8*1($a_ptr), $a1
sbb 8*2($a_ptr), $a2
mov $a3, $t3
sbb 8*3($a_ptr), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_add,.-ecp_nistz256_add
################################################################################
# void ecp_nistz256_sub(uint64_t res[4], uint64_t a[4], uint64_t b[4]);
.globl ecp_nistz256_sub
.type ecp_nistz256_sub,\@function,3
.align 32
ecp_nistz256_sub:
push %r12
push %r13
mov 8*0($a_ptr), $a0
xor $t4, $t4
mov 8*1($a_ptr), $a1
mov 8*2($a_ptr), $a2
mov 8*3($a_ptr), $a3
lea .Lpoly(%rip), $a_ptr
sub 8*0($b_ptr), $a0
sbb 8*1($b_ptr), $a1
mov $a0, $t0
sbb 8*2($b_ptr), $a2
sbb 8*3($b_ptr), $a3
mov $a1, $t1
sbb \$0, $t4
add 8*0($a_ptr), $a0
mov $a2, $t2
adc 8*1($a_ptr), $a1
adc 8*2($a_ptr), $a2
mov $a3, $t3
adc 8*3($a_ptr), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_sub,.-ecp_nistz256_sub
################################################################################
# void ecp_nistz256_neg(uint64_t res[4], uint64_t a[4]);
.globl ecp_nistz256_neg
.type ecp_nistz256_neg,\@function,2
.align 32
ecp_nistz256_neg:
push %r12
push %r13
xor $a0, $a0
xor $a1, $a1
xor $a2, $a2
xor $a3, $a3
xor $t4, $t4
sub 8*0($a_ptr), $a0
sbb 8*1($a_ptr), $a1
sbb 8*2($a_ptr), $a2
mov $a0, $t0
sbb 8*3($a_ptr), $a3
lea .Lpoly(%rip), $a_ptr
mov $a1, $t1
sbb \$0, $t4
add 8*0($a_ptr), $a0
mov $a2, $t2
adc 8*1($a_ptr), $a1
adc 8*2($a_ptr), $a2
mov $a3, $t3
adc 8*3($a_ptr), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_neg,.-ecp_nistz256_neg
___
}
{
my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx");
my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15));
my ($t0,$t1,$t2,$t3,$t4)=("%rcx","%rbp","%rbx","%rdx","%rax");
my ($poly1,$poly3)=($acc6,$acc7);
$code.=<<___;
################################################################################
# void ecp_nistz256_to_mont(
# uint64_t res[4],
# uint64_t in[4]);
.globl ecp_nistz256_to_mont
.type ecp_nistz256_to_mont,\@function,2
.align 32
ecp_nistz256_to_mont:
___
$code.=<<___ if ($addx);
mov \$0x80100, %ecx
and OPENSSL_ia32cap_P+8(%rip), %ecx
___
$code.=<<___;
lea .LRR(%rip), $b_org
jmp .Lmul_mont
.size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont
################################################################################
# void ecp_nistz256_mul_mont(
# uint64_t res[4],
# uint64_t a[4],
# uint64_t b[4]);
.globl ecp_nistz256_mul_mont
.type ecp_nistz256_mul_mont,\@function,3
.align 32
ecp_nistz256_mul_mont:
___
$code.=<<___ if ($addx);
mov \$0x80100, %ecx
and OPENSSL_ia32cap_P+8(%rip), %ecx
___
$code.=<<___;
.Lmul_mont:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
___
$code.=<<___ if ($addx);
cmp \$0x80100, %ecx
je .Lmul_montx
___
$code.=<<___;
mov $b_org, $b_ptr
mov 8*0($b_org), %rax
mov 8*0($a_ptr), $acc1
mov 8*1($a_ptr), $acc2
mov 8*2($a_ptr), $acc3
mov 8*3($a_ptr), $acc4
call __ecp_nistz256_mul_montq
___
$code.=<<___ if ($addx);
jmp .Lmul_mont_done
.align 32
.Lmul_montx:
mov $b_org, $b_ptr
mov 8*0($b_org), %rdx
mov 8*0($a_ptr), $acc1
mov 8*1($a_ptr), $acc2
mov 8*2($a_ptr), $acc3
mov 8*3($a_ptr), $acc4
lea -128($a_ptr), $a_ptr # control u-op density
call __ecp_nistz256_mul_montx
___
$code.=<<___;
.Lmul_mont_done:
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
ret
.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont
.type __ecp_nistz256_mul_montq,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_montq:
########################################################################
# Multiply a by b[0]
mov %rax, $t1
mulq $acc1
mov .Lpoly+8*1(%rip),$poly1
mov %rax, $acc0
mov $t1, %rax
mov %rdx, $acc1
mulq $acc2
mov .Lpoly+8*3(%rip),$poly3
add %rax, $acc1
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $acc2
mulq $acc3
add %rax, $acc2
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $acc3
mulq $acc4
add %rax, $acc3
mov $acc0, %rax
adc \$0, %rdx
xor $acc5, $acc5
mov %rdx, $acc4
########################################################################
# First reduction step
# Basically now we want to multiply acc[0] by p256,
# and add the result to the acc.
# Due to the special form of p256 we do some optimizations
#
# acc[0] x p256[0] = acc[0] x 2^64 - acc[0]
# then we add acc[0] and get acc[0] x 2^64
mulq $poly1
xor $t0, $t0
add $acc0, $acc1 # +=acc[0]*2^64
adc \$0, %rdx
add %rax, $acc1
mov $acc0, %rax
# acc[0] x p256[2] = 0
adc %rdx, $acc2
adc \$0, $t0
mulq $poly3
xor $acc0, $acc0
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov 8*1($b_ptr), %rax
adc %rdx, $acc4
adc \$0, $acc5
########################################################################
# Multiply by b[1]
mov %rax, $t1
mulq 8*0($a_ptr)
add %rax, $acc1
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*1($a_ptr)
add $t0, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*2($a_ptr)
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*3($a_ptr)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $acc1, %rax
adc %rdx, $acc5
adc \$0, $acc0
########################################################################
# Second reduction step
mulq $poly1
xor $t0, $t0
add $acc1, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $acc1, %rax
adc %rdx, $acc3
adc \$0, $t0
mulq $poly3
xor $acc1, $acc1
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov 8*2($b_ptr), %rax
adc %rdx, $acc5
adc \$0, $acc0
########################################################################
# Multiply by b[2]
mov %rax, $t1
mulq 8*0($a_ptr)
add %rax, $acc2
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*1($a_ptr)
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*2($a_ptr)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*3($a_ptr)
add $t0, $acc5
adc \$0, %rdx
add %rax, $acc5
mov $acc2, %rax
adc %rdx, $acc0
adc \$0, $acc1
########################################################################
# Third reduction step
mulq $poly1
xor $t0, $t0
add $acc2, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $acc2, %rax
adc %rdx, $acc4
adc \$0, $t0
mulq $poly3
xor $acc2, $acc2
add $t0, $acc5
adc \$0, %rdx
add %rax, $acc5
mov 8*3($b_ptr), %rax
adc %rdx, $acc0
adc \$0, $acc1
########################################################################
# Multiply by b[3]
mov %rax, $t1
mulq 8*0($a_ptr)
add %rax, $acc3
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*1($a_ptr)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*2($a_ptr)
add $t0, $acc5
adc \$0, %rdx
add %rax, $acc5
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*3($a_ptr)
add $t0, $acc0
adc \$0, %rdx
add %rax, $acc0
mov $acc3, %rax
adc %rdx, $acc1
adc \$0, $acc2
########################################################################
# Final reduction step
mulq $poly1
#xor $t0, $t0
add $acc3, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $acc3, %rax
adc %rdx, $acc5
#adc \$0, $t0 # doesn't overflow
mulq $poly3
#add $t0, $acc0
#adc \$0, %rdx
mov $acc4, $t0
add %rax, $acc0
adc %rdx, $acc1
mov $acc5, $t1
adc \$0, $acc2
########################################################################
# Branch-less conditional subtraction of P
sub \$-1, $acc4 # .Lpoly[0]
mov $acc0, $t2
sbb $poly1, $acc5 # .Lpoly[1]
sbb \$0, $acc0 # .Lpoly[2]
mov $acc1, $t3
sbb $poly3, $acc1 # .Lpoly[3]
neg $acc2
cmovnc $t0, $acc4
cmovnc $t1, $acc5
mov $acc4, 8*0($r_ptr)
cmovnc $t2, $acc0
mov $acc5, 8*1($r_ptr)
cmovnc $t3, $acc1
mov $acc0, 8*2($r_ptr)
mov $acc1, 8*3($r_ptr)
ret
.size __ecp_nistz256_mul_montq,.-__ecp_nistz256_mul_montq
################################################################################
# void ecp_nistz256_sqr_mont(
# uint64_t res[4],
# uint64_t a[4]);
# we optimize the square according to S.Gueron and V.Krasnov,
# "Speeding up Big-Number Squaring"
.globl ecp_nistz256_sqr_mont
.type ecp_nistz256_sqr_mont,\@function,2
.align 32
ecp_nistz256_sqr_mont:
___
$code.=<<___ if ($addx);
mov \$0x80100, %ecx
and OPENSSL_ia32cap_P+8(%rip), %ecx
___
$code.=<<___;
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
___
$code.=<<___ if ($addx);
cmp \$0x80100, %ecx
je .Lsqr_montx
___
$code.=<<___;
mov 8*0($a_ptr), %rax
mov 8*1($a_ptr), $acc6
mov 8*2($a_ptr), $acc7
mov 8*3($a_ptr), $acc0
call __ecp_nistz256_sqr_montq
___
$code.=<<___ if ($addx);
jmp .Lsqr_mont_done
.align 32
.Lsqr_montx:
mov 8*0($a_ptr), %rdx
mov 8*1($a_ptr), $acc6
mov 8*2($a_ptr), $acc7
mov 8*3($a_ptr), $acc0
lea -128($a_ptr), $a_ptr # control u-op density
call __ecp_nistz256_sqr_montx
___
$code.=<<___;
.Lsqr_mont_done:
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
ret
.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont
.type __ecp_nistz256_sqr_montq,\@abi-omnipotent
.align 32
__ecp_nistz256_sqr_montq:
mov %rax, $acc5
mulq $acc6 # a[1]*a[0]
mov %rax, $acc1
mov $acc7, %rax
mov %rdx, $acc2
mulq $acc5 # a[0]*a[2]
add %rax, $acc2
mov $acc0, %rax
adc \$0, %rdx
mov %rdx, $acc3
mulq $acc5 # a[0]*a[3]
add %rax, $acc3
mov $acc7, %rax
adc \$0, %rdx
mov %rdx, $acc4
#################################
mulq $acc6 # a[1]*a[2]
add %rax, $acc3
mov $acc0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq $acc6 # a[1]*a[3]
add %rax, $acc4
mov $acc0, %rax
adc \$0, %rdx
add $t1, $acc4
mov %rdx, $acc5
adc \$0, $acc5
#################################
mulq $acc7 # a[2]*a[3]
xor $acc7, $acc7
add %rax, $acc5
mov 8*0($a_ptr), %rax
mov %rdx, $acc6
adc \$0, $acc6
add $acc1, $acc1 # acc1:6<<1
adc $acc2, $acc2
adc $acc3, $acc3
adc $acc4, $acc4
adc $acc5, $acc5
adc $acc6, $acc6
adc \$0, $acc7
mulq %rax
mov %rax, $acc0
mov 8*1($a_ptr), %rax
mov %rdx, $t0
mulq %rax
add $t0, $acc1
adc %rax, $acc2
mov 8*2($a_ptr), %rax
adc \$0, %rdx
mov %rdx, $t0
mulq %rax
add $t0, $acc3
adc %rax, $acc4
mov 8*3($a_ptr), %rax
adc \$0, %rdx
mov %rdx, $t0
mulq %rax
add $t0, $acc5
adc %rax, $acc6
mov $acc0, %rax
adc %rdx, $acc7
mov .Lpoly+8*1(%rip), $a_ptr
mov .Lpoly+8*3(%rip), $t1
##########################################
# Now the reduction
# First iteration
mulq $a_ptr
#xor $t0, $t0
add $acc0, $acc1
adc \$0, %rdx
add %rax, $acc1
mov $acc0, %rax
adc %rdx, $acc2 # doesn't overflow
#adc \$0, $t0
mulq $t1
xor $acc0, $acc0
#add $t0, $acc3
#adc \$0, %rdx
add %rax, $acc3
mov $acc1, %rax
adc %rdx, $acc4
adc \$0, $acc0
##########################################
# Second iteration
mulq $a_ptr
#xor $t0, $t0
add $acc1, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $acc1, %rax
adc %rdx, $acc3 # doesn't overflow
#adc \$0, $t0
mulq $t1
xor $acc1, $acc1
#add $t0, $acc4
#adc \$0, %rdx
add %rax, $acc4
mov $acc2, %rax
adc %rdx, $acc0
adc \$0, $acc1
##########################################
# Third iteration
mulq $a_ptr
#xor $t0, $t0
add $acc2, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $acc2, %rax
adc %rdx, $acc4 # doesn't overflow
#adc \$0, $t0
mulq $t1
xor $acc2, $acc2
#add $t0, $acc0
#adc \$0, %rdx
add %rax, $acc0
mov $acc3, %rax
adc %rdx, $acc1
adc \$0, $acc2
###########################################
# Last iteration
mulq $a_ptr
#xor $t0, $t0
add $acc3, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $acc3, %rax
adc %rdx, $acc0 # doesn't overflow
#adc \$0, $t0
mulq $t1
xor $acc3, $acc3
#add $t0, $acc1
#adc \$0, %rdx
add %rax, $acc1
adc %rdx, $acc2
adc \$0, $acc3
############################################
# Add the rest of the acc
add $acc0, $acc5
mov $acc4, $acc0
adc $acc1, $acc6
adc $acc2, $acc7
mov $acc5, $acc1
adc \$0, $acc3
sub \$-1, $acc4 # .Lpoly[0]
mov $acc6, $acc2
sbb $a_ptr, $acc5 # .Lpoly[1]
sbb \$0, $acc6 # .Lpoly[2]
mov $acc7, $t0
sbb $t1, $acc7 # .Lpoly[3]
neg $acc3
cmovnc $acc0, $acc4
cmovnc $acc1, $acc5
mov $acc4, 8*0($r_ptr)
cmovnc $acc2, $acc6
mov $acc5, 8*1($r_ptr)
cmovnc $t0, $acc7
mov $acc6, 8*2($r_ptr)
mov $acc7, 8*3($r_ptr)
ret
.size __ecp_nistz256_sqr_montq,.-__ecp_nistz256_sqr_montq
___
if ($addx) {
$code.=<<___;
.type __ecp_nistz256_mul_montx,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_montx:
########################################################################
# Multiply by b[0]
mulx $acc1, $acc0, $acc1
mulx $acc2, $t0, $acc2
mov \$32, $poly1
xor $acc5, $acc5 # cf=0
mulx $acc3, $t1, $acc3
mov .Lpoly+8*3(%rip), $poly3
adc $t0, $acc1
mulx $acc4, $t0, $acc4
mov $acc0, %rdx
adc $t1, $acc2
shlx $poly1,$acc0,$t1
adc $t0, $acc3
shrx $poly1,$acc0,$t0
adc \$0, $acc4
########################################################################
# First reduction step
xor $acc0, $acc0 # $acc0=0,cf=0,of=0
adox $t1, $acc1
adox $t0, $acc2
mulx $poly3, $t0, $t1
mov 8*1($b_ptr), %rdx
adox $t0, $acc3
adcx $t1, $acc4
adox $acc0, $acc4
adcx $acc0, $acc5 # cf=0
adox $acc0, $acc5 # of=0
########################################################################
# Multiply by b[1]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc1
adox $t1, $acc2
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc1, %rdx
adcx $t0, $acc4
shlx $poly1, $acc1, $t0
adox $t1, $acc5
shrx $poly1, $acc1, $t1
adcx $acc0, $acc5
adox $acc0, $acc0
adc \$0, $acc0
########################################################################
# Second reduction step
xor $acc1 ,$acc1 # $acc1=0,cf=0,of=0
adox $t0, $acc2
adox $t1, $acc3
mulx $poly3, $t0, $t1
mov 8*2($b_ptr), %rdx
adox $t0, $acc4
adcx $t1, $acc5
adox $acc1, $acc5
adcx $acc1, $acc0 # cf=0
adox $acc1, $acc0 # of=0
########################################################################
# Multiply by b[2]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc2, %rdx
adcx $t0, $acc5
shlx $poly1, $acc2, $t0
adox $t1, $acc0
shrx $poly1, $acc2, $t1
adcx $acc1, $acc0
adox $acc1, $acc1
adc \$0, $acc1
########################################################################
# Third reduction step
xor $acc2, $acc2 # $acc2=0,cf=0,of=0
adox $t0, $acc3
adox $t1, $acc4
mulx $poly3, $t0, $t1
mov 8*3($b_ptr), %rdx
adox $t0, $acc5
adcx $t1, $acc0
adox $acc2, $acc0
adcx $acc2, $acc1 # cf=0
adox $acc2, $acc1 # of=0
########################################################################
# Multiply by b[3]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc5
adox $t1, $acc0
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc3, %rdx
adcx $t0, $acc0
shlx $poly1, $acc3, $t0
adox $t1, $acc1
shrx $poly1, $acc3, $t1
adcx $acc2, $acc1
adox $acc2, $acc2
adc \$0, $acc2
########################################################################
# Fourth reduction step
xor $acc3, $acc3 # $acc3=0,cf=0,of=0
adox $t0, $acc4
adox $t1, $acc5
mulx $poly3, $t0, $t1
mov $acc4, $t2
mov .Lpoly+8*1(%rip), $poly1
adcx $t0, $acc0
adox $t1, $acc1
mov $acc5, $t3
adcx $acc3, $acc1
adox $acc3, $acc2
adc \$0, $acc2
mov $acc0, $t0
########################################################################
# Branch-less conditional subtraction of P
xor %eax, %eax
sbb \$-1, $acc4 # .Lpoly[0]
sbb $poly1, $acc5 # .Lpoly[1]
sbb \$0, $acc0 # .Lpoly[2]
mov $acc1, $t1
sbb $poly3, $acc1 # .Lpoly[3]
bt \$0,$acc2
cmovnc $t2, $acc4
cmovnc $t3, $acc5
mov $acc4, 8*0($r_ptr)
cmovnc $t0, $acc0
mov $acc5, 8*1($r_ptr)
cmovnc $t1, $acc1
mov $acc0, 8*2($r_ptr)
mov $acc1, 8*3($r_ptr)
ret
.size __ecp_nistz256_mul_montx,.-__ecp_nistz256_mul_montx
.type __ecp_nistz256_sqr_montx,\@abi-omnipotent
.align 32
__ecp_nistz256_sqr_montx:
mulx $acc6, $acc1, $acc2 # a[0]*a[1]
mulx $acc7, $t0, $acc3 # a[0]*a[2]
xor %eax, %eax
adc $t0, $acc2
mulx $acc0, $t1, $acc4 # a[0]*a[3]
mov $acc6, %rdx
adc $t1, $acc3
adc \$0, $acc4
xor $acc5, $acc5 # $acc5=0,cf=0,of=0
#################################
mulx $acc7, $t0, $t1 # a[1]*a[2]
adcx $t0, $acc3
adox $t1, $acc4
mulx $acc0, $t0, $t1 # a[1]*a[3]
mov $acc7, %rdx
adcx $t0, $acc4
adox $t1, $acc5
adc \$0, $acc5
#################################
mulx $acc0, $t0, $acc6 # a[2]*a[3]
mov 8*0+128($a_ptr), %rdx
xor $acc7, $acc7 # $acc7=0,cf=0,of=0
adcx $acc1, $acc1 # acc1:6<<1
adox $t0, $acc5
adcx $acc2, $acc2
adox $acc7, $acc6 # of=0
mulx %rdx, $acc0, $t1
mov 8*1+128($a_ptr), %rdx
adcx $acc3, $acc3
adox $t1, $acc1
adcx $acc4, $acc4
mulx %rdx, $t0, $t4
mov 8*2+128($a_ptr), %rdx
adcx $acc5, $acc5
adox $t0, $acc2
adcx $acc6, $acc6
.byte 0x67
mulx %rdx, $t0, $t1
mov 8*3+128($a_ptr), %rdx
adox $t4, $acc3
adcx $acc7, $acc7
adox $t0, $acc4
mov \$32, $a_ptr
adox $t1, $acc5
.byte 0x67,0x67
mulx %rdx, $t0, $t4
mov $acc0, %rdx
adox $t0, $acc6
shlx $a_ptr, $acc0, $t0
adox $t4, $acc7
shrx $a_ptr, $acc0, $t4
mov .Lpoly+8*3(%rip), $t1
# reduction step 1
xor $acc0, $acc0
adcx $t0, $acc1
adcx $t4, $acc2
mulx $t1, $t0, $t4
mov $acc1, %rdx
adcx $t0, $acc3
shlx $a_ptr, $acc1, $t0
adox $t4, $acc0
shrx $a_ptr, $acc1, $t4
adc \$0, $acc0
# reduction step 2
xor $acc1, $acc1
adcx $t0, $acc2
adcx $t4, $acc3
mulx $t1, $t0, $t4
mov $acc2, %rdx
adcx $t0, $acc0
shlx $a_ptr, $acc2, $t0
adox $t4, $acc1
shrx $a_ptr, $acc2, $t4
adc \$0, $acc1
# reduction step 3
xor $acc2, $acc2
adcx $t0, $acc3
adcx $t4, $acc0
mulx $t1, $t0, $t4
mov $acc3, %rdx
adcx $t0, $acc1
shlx $a_ptr, $acc3, $t0
adox $t4, $acc2
shrx $a_ptr, $acc3, $t4
adc \$0, $acc2
# reduction step 4
xor $acc3, $acc3
adcx $t0, $acc0
adcx $t4, $acc1
mulx $t1, $t0, $t4
adcx $t0, $acc2
adox $t4, $acc3
adc \$0, $acc3
xor $t3, $t3 # cf=0
adc $acc0, $acc4 # accumulate upper half
mov .Lpoly+8*1(%rip), $a_ptr
adc $acc1, $acc5
mov $acc4, $acc0
adc $acc2, $acc6
adc $acc3, $acc7
mov $acc5, $acc1
adc \$0, $t3
xor %eax, %eax # cf=0
sbb \$-1, $acc4 # .Lpoly[0]
mov $acc6, $acc2
sbb $a_ptr, $acc5 # .Lpoly[1]
sbb \$0, $acc6 # .Lpoly[2]
mov $acc7, $acc3
sbb $t1, $acc7 # .Lpoly[3]
bt \$0,$t3
cmovnc $acc0, $acc4
cmovnc $acc1, $acc5
mov $acc4, 8*0($r_ptr)
cmovnc $acc2, $acc6
mov $acc5, 8*1($r_ptr)
cmovnc $acc3, $acc7
mov $acc6, 8*2($r_ptr)
mov $acc7, 8*3($r_ptr)
ret
.size __ecp_nistz256_sqr_montx,.-__ecp_nistz256_sqr_montx
___
}
}
{
my ($r_ptr,$in_ptr)=("%rdi","%rsi");
my ($acc0,$acc1,$acc2,$acc3,$acc4)=map("%r$_",(8..12));
my ($t0,$t1)=("%rcx","%rsi");
$code.=<<___;
################################################################################
# void ecp_nistz256_from_mont(
# uint64_t res[4],
# uint64_t in[4]);
# This one performs Montgomery multiplication by 1, so we only need the reduction
.globl ecp_nistz256_from_mont
.type ecp_nistz256_from_mont,\@function,2
.align 32
ecp_nistz256_from_mont:
push %r12
push %r13
mov 8*0($in_ptr), %rax
mov 8*1($in_ptr), $acc1
mov 8*2($in_ptr), $acc2
mov 8*3($in_ptr), $acc3
lea .Lpoly(%rip), $in_ptr
xor $acc4, $acc4
mov %rax, $acc0
#########################################
# First iteration
mulq 1*8($in_ptr)
xor $t0, $t0
add $acc0, $acc1
adc \$0, %rdx
add %rax, $acc1
mov $acc0, %rax
adc %rdx, $acc2
adc \$0, $t0
mulq 3*8($in_ptr)
xor $acc0, $acc0
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $acc1, %rax
adc %rdx, $acc4
adc \$0, $acc0
#########################################
# Second iteration
mulq 1*8($in_ptr)
xor $t0, $t0
add $acc1, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $acc1, %rax
adc %rdx, $acc3
adc \$0, $t0
mulq 3*8($in_ptr)
xor $acc1, $acc1
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $acc2, %rax
adc %rdx, $acc0
adc \$0, $acc1
##########################################
# Third iteration
mulq 1*8($in_ptr)
xor $t0, $t0
add $acc2, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $acc2, %rax
adc %rdx, $acc4
adc \$0, $t0
mulq 3*8($in_ptr)
xor $acc2, $acc2
add $t0, $acc0
adc \$0, %rdx
add %rax, $acc0
mov $acc3, %rax
adc %rdx, $acc1
adc \$0, $acc2
###########################################
# Last iteration
mulq 1*8($in_ptr)
xor $t0, $t0
add $acc3, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $acc3, %rax
adc %rdx, $acc0
adc \$0, $t0
mulq 3*8($in_ptr)
add $t0, $acc1
adc \$0, %rdx
add %rax, $acc1
adc %rdx, $acc2
sbb $acc3, $acc3
mov 0*8($in_ptr), %rax
mov 1*8($in_ptr), %rdx
mov 2*8($in_ptr), $t0
mov 3*8($in_ptr), $t1
and $acc3, %rax
and $acc3, %rdx
and $acc3, $t0
and $acc3, $t1
sub %rax, $acc4
sbb %rdx, $acc0
mov $acc4, 8*0($r_ptr)
sbb $t0, $acc1
mov $acc0, 8*1($r_ptr)
sbb $t1, $acc2
mov $acc1, 8*2($r_ptr)
mov $acc2, 8*3($r_ptr)
pop %r13
pop %r12
ret
.size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont
___
}
{
my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx");
my ($ONE,$INDEX,$Ra,$Rb,$Rc,$Rd,$Re,$Rf)=map("%xmm$_",(0..7));
my ($M0,$T0a,$T0b,$T0c,$T0d,$T0e,$T0f,$TMP0)=map("%xmm$_",(8..15));
my ($M1,$T2a,$T2b,$TMP2,$M2,$T2a,$T2b,$TMP2)=map("%xmm$_",(8..15));
$code.=<<___;
################################################################################
# void ecp_nistz256_select_w5(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_select_w5
.type ecp_nistz256_select_w5,\@abi-omnipotent
.align 32
ecp_nistz256_select_w5:
___
$code.=<<___ if ($avx>1);
mov OPENSSL_ia32cap_P+8(%rip), %eax
test \$`1<<5`, %eax
jnz .Lavx2_select_w5
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_select_w5:
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp
.byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax)
.byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax)
.byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax)
.byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax)
.byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax)
.byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax)
.byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax)
.byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax)
.byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax)
.byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax)
___
$code.=<<___;
movdqa .LOne(%rip), $ONE
movd $index, $INDEX
pxor $Ra, $Ra
pxor $Rb, $Rb
pxor $Rc, $Rc
pxor $Rd, $Rd
pxor $Re, $Re
pxor $Rf, $Rf
movdqa $ONE, $M0
pshufd \$0, $INDEX, $INDEX
mov \$16, %rax
.Lselect_loop_sse_w5:
movdqa $M0, $TMP0
paddd $ONE, $M0
pcmpeqd $INDEX, $TMP0
movdqa 16*0($in_t), $T0a
movdqa 16*1($in_t), $T0b
movdqa 16*2($in_t), $T0c
movdqa 16*3($in_t), $T0d
movdqa 16*4($in_t), $T0e
movdqa 16*5($in_t), $T0f
lea 16*6($in_t), $in_t
pand $TMP0, $T0a
pand $TMP0, $T0b
por $T0a, $Ra
pand $TMP0, $T0c
por $T0b, $Rb
pand $TMP0, $T0d
por $T0c, $Rc
pand $TMP0, $T0e
por $T0d, $Rd
pand $TMP0, $T0f
por $T0e, $Re
por $T0f, $Rf
dec %rax
jnz .Lselect_loop_sse_w5
movdqu $Ra, 16*0($val)
movdqu $Rb, 16*1($val)
movdqu $Rc, 16*2($val)
movdqu $Rd, 16*3($val)
movdqu $Re, 16*4($val)
movdqu $Rf, 16*5($val)
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea 0xa8(%rsp), %rsp
.LSEH_end_ecp_nistz256_select_w5:
___
$code.=<<___;
ret
.size ecp_nistz256_select_w5,.-ecp_nistz256_select_w5
################################################################################
# void ecp_nistz256_select_w7(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_select_w7
.type ecp_nistz256_select_w7,\@abi-omnipotent
.align 32
ecp_nistz256_select_w7:
___
$code.=<<___ if ($avx>1);
mov OPENSSL_ia32cap_P+8(%rip), %eax
test \$`1<<5`, %eax
jnz .Lavx2_select_w7
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_select_w7:
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp
.byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax)
.byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax)
.byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax)
.byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax)
.byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax)
.byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax)
.byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax)
.byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax)
.byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax)
.byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax)
___
$code.=<<___;
movdqa .LOne(%rip), $M0
movd $index, $INDEX
pxor $Ra, $Ra
pxor $Rb, $Rb
pxor $Rc, $Rc
pxor $Rd, $Rd
movdqa $M0, $ONE
pshufd \$0, $INDEX, $INDEX
mov \$64, %rax
.Lselect_loop_sse_w7:
movdqa $M0, $TMP0
paddd $ONE, $M0
movdqa 16*0($in_t), $T0a
movdqa 16*1($in_t), $T0b
pcmpeqd $INDEX, $TMP0
movdqa 16*2($in_t), $T0c
movdqa 16*3($in_t), $T0d
lea 16*4($in_t), $in_t
pand $TMP0, $T0a
pand $TMP0, $T0b
por $T0a, $Ra
pand $TMP0, $T0c
por $T0b, $Rb
pand $TMP0, $T0d
por $T0c, $Rc
prefetcht0 255($in_t)
por $T0d, $Rd
dec %rax
jnz .Lselect_loop_sse_w7
movdqu $Ra, 16*0($val)
movdqu $Rb, 16*1($val)
movdqu $Rc, 16*2($val)
movdqu $Rd, 16*3($val)
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea 0xa8(%rsp), %rsp
.LSEH_end_ecp_nistz256_select_w7:
___
$code.=<<___;
ret
.size ecp_nistz256_select_w7,.-ecp_nistz256_select_w7
___
}
if ($avx>1) {
my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx");
my ($TWO,$INDEX,$Ra,$Rb,$Rc)=map("%ymm$_",(0..4));
my ($M0,$T0a,$T0b,$T0c,$TMP0)=map("%ymm$_",(5..9));
my ($M1,$T1a,$T1b,$T1c,$TMP1)=map("%ymm$_",(10..14));
$code.=<<___;
################################################################################
# void ecp_nistz256_avx2_select_w5(uint64_t *val, uint64_t *in_t, int index);
.type ecp_nistz256_avx2_select_w5,\@abi-omnipotent
.align 32
ecp_nistz256_avx2_select_w5:
.Lavx2_select_w5:
vzeroupper
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_avx2_select_w5:
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp
.byte 0xc5,0xf8,0x29,0x70,0xe0 #vmovaps %xmm6, -0x20(%rax)
.byte 0xc5,0xf8,0x29,0x78,0xf0 #vmovaps %xmm7, -0x10(%rax)
.byte 0xc5,0x78,0x29,0x40,0x00 #vmovaps %xmm8, 8(%rax)
.byte 0xc5,0x78,0x29,0x48,0x10 #vmovaps %xmm9, 0x10(%rax)
.byte 0xc5,0x78,0x29,0x50,0x20 #vmovaps %xmm10, 0x20(%rax)
.byte 0xc5,0x78,0x29,0x58,0x30 #vmovaps %xmm11, 0x30(%rax)
.byte 0xc5,0x78,0x29,0x60,0x40 #vmovaps %xmm12, 0x40(%rax)
.byte 0xc5,0x78,0x29,0x68,0x50 #vmovaps %xmm13, 0x50(%rax)
.byte 0xc5,0x78,0x29,0x70,0x60 #vmovaps %xmm14, 0x60(%rax)
.byte 0xc5,0x78,0x29,0x78,0x70 #vmovaps %xmm15, 0x70(%rax)
___
$code.=<<___;
vmovdqa .LTwo(%rip), $TWO
vpxor $Ra, $Ra, $Ra
vpxor $Rb, $Rb, $Rb
vpxor $Rc, $Rc, $Rc
vmovdqa .LOne(%rip), $M0
vmovdqa .LTwo(%rip), $M1
vmovd $index, %xmm1
vpermd $INDEX, $Ra, $INDEX
mov \$8, %rax
.Lselect_loop_avx2_w5:
vmovdqa 32*0($in_t), $T0a
vmovdqa 32*1($in_t), $T0b
vmovdqa 32*2($in_t), $T0c
vmovdqa 32*3($in_t), $T1a
vmovdqa 32*4($in_t), $T1b
vmovdqa 32*5($in_t), $T1c
vpcmpeqd $INDEX, $M0, $TMP0
vpcmpeqd $INDEX, $M1, $TMP1
vpaddd $TWO, $M0, $M0
vpaddd $TWO, $M1, $M1
lea 32*6($in_t), $in_t
vpand $TMP0, $T0a, $T0a
vpand $TMP0, $T0b, $T0b
vpand $TMP0, $T0c, $T0c
vpand $TMP1, $T1a, $T1a
vpand $TMP1, $T1b, $T1b
vpand $TMP1, $T1c, $T1c
vpxor $T0a, $Ra, $Ra
vpxor $T0b, $Rb, $Rb
vpxor $T0c, $Rc, $Rc
vpxor $T1a, $Ra, $Ra
vpxor $T1b, $Rb, $Rb
vpxor $T1c, $Rc, $Rc
dec %rax
jnz .Lselect_loop_avx2_w5
vmovdqu $Ra, 32*0($val)
vmovdqu $Rb, 32*1($val)
vmovdqu $Rc, 32*2($val)
vzeroupper
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea 0xa8(%rsp), %rsp
.LSEH_end_ecp_nistz256_avx2_select_w5:
___
$code.=<<___;
ret
.size ecp_nistz256_avx2_select_w5,.-ecp_nistz256_avx2_select_w5
___
}
if ($avx>1) {
my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx");
my ($THREE,$INDEX,$Ra,$Rb)=map("%ymm$_",(0..3));
my ($M0,$T0a,$T0b,$TMP0)=map("%ymm$_",(4..7));
my ($M1,$T1a,$T1b,$TMP1)=map("%ymm$_",(8..11));
my ($M2,$T2a,$T2b,$TMP2)=map("%ymm$_",(12..15));
$code.=<<___;
################################################################################
# void ecp_nistz256_avx2_select_w7(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_avx2_select_w7
.type ecp_nistz256_avx2_select_w7,\@abi-omnipotent
.align 32
ecp_nistz256_avx2_select_w7:
.Lavx2_select_w7:
vzeroupper
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_avx2_select_w7:
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp
.byte 0xc5,0xf8,0x29,0x70,0xe0 #vmovaps %xmm6, -0x20(%rax)
.byte 0xc5,0xf8,0x29,0x78,0xf0 #vmovaps %xmm7, -0x10(%rax)
.byte 0xc5,0x78,0x29,0x40,0x00 #vmovaps %xmm8, 8(%rax)
.byte 0xc5,0x78,0x29,0x48,0x10 #vmovaps %xmm9, 0x10(%rax)
.byte 0xc5,0x78,0x29,0x50,0x20 #vmovaps %xmm10, 0x20(%rax)
.byte 0xc5,0x78,0x29,0x58,0x30 #vmovaps %xmm11, 0x30(%rax)
.byte 0xc5,0x78,0x29,0x60,0x40 #vmovaps %xmm12, 0x40(%rax)
.byte 0xc5,0x78,0x29,0x68,0x50 #vmovaps %xmm13, 0x50(%rax)
.byte 0xc5,0x78,0x29,0x70,0x60 #vmovaps %xmm14, 0x60(%rax)
.byte 0xc5,0x78,0x29,0x78,0x70 #vmovaps %xmm15, 0x70(%rax)
___
$code.=<<___;
vmovdqa .LThree(%rip), $THREE
vpxor $Ra, $Ra, $Ra
vpxor $Rb, $Rb, $Rb
vmovdqa .LOne(%rip), $M0
vmovdqa .LTwo(%rip), $M1
vmovdqa .LThree(%rip), $M2
vmovd $index, %xmm1
vpermd $INDEX, $Ra, $INDEX
# Skip index = 0, because it is implicitly the point at infinity
mov \$21, %rax
.Lselect_loop_avx2_w7:
vmovdqa 32*0($in_t), $T0a
vmovdqa 32*1($in_t), $T0b
vmovdqa 32*2($in_t), $T1a
vmovdqa 32*3($in_t), $T1b
vmovdqa 32*4($in_t), $T2a
vmovdqa 32*5($in_t), $T2b
vpcmpeqd $INDEX, $M0, $TMP0
vpcmpeqd $INDEX, $M1, $TMP1
vpcmpeqd $INDEX, $M2, $TMP2
vpaddd $THREE, $M0, $M0
vpaddd $THREE, $M1, $M1
vpaddd $THREE, $M2, $M2
lea 32*6($in_t), $in_t
vpand $TMP0, $T0a, $T0a
vpand $TMP0, $T0b, $T0b
vpand $TMP1, $T1a, $T1a
vpand $TMP1, $T1b, $T1b
vpand $TMP2, $T2a, $T2a
vpand $TMP2, $T2b, $T2b
vpxor $T0a, $Ra, $Ra
vpxor $T0b, $Rb, $Rb
vpxor $T1a, $Ra, $Ra
vpxor $T1b, $Rb, $Rb
vpxor $T2a, $Ra, $Ra
vpxor $T2b, $Rb, $Rb
dec %rax
jnz .Lselect_loop_avx2_w7
vmovdqa 32*0($in_t), $T0a
vmovdqa 32*1($in_t), $T0b
vpcmpeqd $INDEX, $M0, $TMP0
vpand $TMP0, $T0a, $T0a
vpand $TMP0, $T0b, $T0b
vpxor $T0a, $Ra, $Ra
vpxor $T0b, $Rb, $Rb
vmovdqu $Ra, 32*0($val)
vmovdqu $Rb, 32*1($val)
vzeroupper
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea 0xa8(%rsp), %rsp
.LSEH_end_ecp_nistz256_avx2_select_w7:
___
$code.=<<___;
ret
.size ecp_nistz256_avx2_select_w7,.-ecp_nistz256_avx2_select_w7
___
} else {
$code.=<<___;
.globl ecp_nistz256_avx2_select_w7
.type ecp_nistz256_avx2_select_w7,\@function,3
.align 32
ecp_nistz256_avx2_select_w7:
.byte 0x0f,0x0b # ud2
ret
.size ecp_nistz256_avx2_select_w7,.-ecp_nistz256_avx2_select_w7
___
}
{{{
########################################################################
# This block implements higher level point_double, point_add and
# point_add_affine. The key to performance in this case is to allow
# out-of-order execution logic to overlap computations from next step
# with tail processing from current step. By using tailored calling
# sequence we minimize inter-step overhead to give processor better
# shot at overlapping operations...
#
# You will notice that input data is copied to stack. Trouble is that
# there are no registers to spare for holding original pointers and
# reloading them, pointers, would create undesired dependencies on
# effective addresses calculation paths. In other words it's too done
# to favour out-of-order execution logic.
# <appro@openssl.org>
my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx");
my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15));
my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rbp","%rcx",$acc4,$acc4);
my ($poly1,$poly3)=($acc6,$acc7);
sub load_for_mul () {
my ($a,$b,$src0) = @_;
my $bias = $src0 eq "%rax" ? 0 : -128;
" mov $b, $src0
lea $b, $b_ptr
mov 8*0+$a, $acc1
mov 8*1+$a, $acc2
lea $bias+$a, $a_ptr
mov 8*2+$a, $acc3
mov 8*3+$a, $acc4"
}
sub load_for_sqr () {
my ($a,$src0) = @_;
my $bias = $src0 eq "%rax" ? 0 : -128;
" mov 8*0+$a, $src0
mov 8*1+$a, $acc6
lea $bias+$a, $a_ptr
mov 8*2+$a, $acc7
mov 8*3+$a, $acc0"
}
{
########################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
$code.=<<___;
.type __ecp_nistz256_add_toq,\@abi-omnipotent
.align 32
__ecp_nistz256_add_toq:
add 8*0($b_ptr), $a0
adc 8*1($b_ptr), $a1
mov $a0, $t0
adc 8*2($b_ptr), $a2
adc 8*3($b_ptr), $a3
mov $a1, $t1
sbb $t4, $t4
sub \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.size __ecp_nistz256_add_toq,.-__ecp_nistz256_add_toq
.type __ecp_nistz256_sub_fromq,\@abi-omnipotent
.align 32
__ecp_nistz256_sub_fromq:
sub 8*0($b_ptr), $a0
sbb 8*1($b_ptr), $a1
mov $a0, $t0
sbb 8*2($b_ptr), $a2
sbb 8*3($b_ptr), $a3
mov $a1, $t1
sbb $t4, $t4
add \$-1, $a0
mov $a2, $t2
adc $poly1, $a1
adc \$0, $a2
mov $a3, $t3
adc $poly3, $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.size __ecp_nistz256_sub_fromq,.-__ecp_nistz256_sub_fromq
.type __ecp_nistz256_subq,\@abi-omnipotent
.align 32
__ecp_nistz256_subq:
sub $a0, $t0
sbb $a1, $t1
mov $t0, $a0
sbb $a2, $t2
sbb $a3, $t3
mov $t1, $a1
sbb $t4, $t4
add \$-1, $t0
mov $t2, $a2
adc $poly1, $t1
adc \$0, $t2
mov $t3, $a3
adc $poly3, $t3
test $t4, $t4
cmovnz $t0, $a0
cmovnz $t1, $a1
cmovnz $t2, $a2
cmovnz $t3, $a3
ret
.size __ecp_nistz256_subq,.-__ecp_nistz256_subq
.type __ecp_nistz256_mul_by_2q,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_by_2q:
add $a0, $a0 # a0:a3+a0:a3
adc $a1, $a1
mov $a0, $t0
adc $a2, $a2
adc $a3, $a3
mov $a1, $t1
sbb $t4, $t4
sub \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.size __ecp_nistz256_mul_by_2q,.-__ecp_nistz256_mul_by_2q
___
}
sub gen_double () {
my $x = shift;
my ($src0,$sfx,$bias);
my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
if ($x ne "x") {
$src0 = "%rax";
$sfx = "";
$bias = 0;
$code.=<<___;
.globl ecp_nistz256_point_double
.type ecp_nistz256_point_double,\@function,2
.align 32
ecp_nistz256_point_double:
___
$code.=<<___ if ($addx);
mov \$0x80100, %ecx
and OPENSSL_ia32cap_P+8(%rip), %ecx
cmp \$0x80100, %ecx
je .Lpoint_doublex
___
} else {
$src0 = "%rdx";
$sfx = "x";
$bias = 128;
$code.=<<___;
.type ecp_nistz256_point_doublex,\@function,2
.align 32
ecp_nistz256_point_doublex:
.Lpoint_doublex:
___
}
$code.=<<___;
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
sub \$32*5+8, %rsp
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr.x
mov $a_ptr, $b_ptr # backup copy
movdqu 0x10($a_ptr), %xmm1
mov 0x20+8*0($a_ptr), $acc4 # load in_y in "5-4-0-1" order
mov 0x20+8*1($a_ptr), $acc5
mov 0x20+8*2($a_ptr), $acc0
mov 0x20+8*3($a_ptr), $acc1
mov .Lpoly+8*1(%rip), $poly1
mov .Lpoly+8*3(%rip), $poly3
movdqa %xmm0, $in_x(%rsp)
movdqa %xmm1, $in_x+0x10(%rsp)
lea 0x20($r_ptr), $acc2
lea 0x40($r_ptr), $acc3
movq $r_ptr, %xmm0
movq $acc2, %xmm1
movq $acc3, %xmm2
lea $S(%rsp), $r_ptr
call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(S, in_y);
mov 0x40+8*0($a_ptr), $src0
mov 0x40+8*1($a_ptr), $acc6
mov 0x40+8*2($a_ptr), $acc7
mov 0x40+8*3($a_ptr), $acc0
lea 0x40-$bias($a_ptr), $a_ptr
lea $Zsqr(%rsp), $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Zsqr, in_z);
`&load_for_sqr("$S(%rsp)", "$src0")`
lea $S(%rsp), $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(S, S);
mov 0x20($b_ptr), $src0 # $b_ptr is still valid
mov 0x40+8*0($b_ptr), $acc1
mov 0x40+8*1($b_ptr), $acc2
mov 0x40+8*2($b_ptr), $acc3
mov 0x40+8*3($b_ptr), $acc4
lea 0x40-$bias($b_ptr), $a_ptr
lea 0x20($b_ptr), $b_ptr
movq %xmm2, $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, in_z, in_y);
call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(res_z, res_z);
mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order
mov $in_x+8*1(%rsp), $acc5
lea $Zsqr(%rsp), $b_ptr
mov $in_x+8*2(%rsp), $acc0
mov $in_x+8*3(%rsp), $acc1
lea $M(%rsp), $r_ptr
call __ecp_nistz256_add_to$x # p256_add(M, in_x, Zsqr);
mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order
mov $in_x+8*1(%rsp), $acc5
lea $Zsqr(%rsp), $b_ptr
mov $in_x+8*2(%rsp), $acc0
mov $in_x+8*3(%rsp), $acc1
lea $Zsqr(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(Zsqr, in_x, Zsqr);
`&load_for_sqr("$S(%rsp)", "$src0")`
movq %xmm1, $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_y, S);
___
{
######## ecp_nistz256_div_by_2(res_y, res_y); ##########################
# operate in 4-5-6-7 "name space" that matches squaring output
#
my ($poly1,$poly3)=($a_ptr,$t1);
my ($a0,$a1,$a2,$a3,$t3,$t4,$t1)=($acc4,$acc5,$acc6,$acc7,$acc0,$acc1,$acc2);
$code.=<<___;
xor $t4, $t4
mov $a0, $t0
add \$-1, $a0
mov $a1, $t1
adc $poly1, $a1
mov $a2, $t2
adc \$0, $a2
mov $a3, $t3
adc $poly3, $a3
adc \$0, $t4
xor $a_ptr, $a_ptr # borrow $a_ptr
test \$1, $t0
cmovz $t0, $a0
cmovz $t1, $a1
cmovz $t2, $a2
cmovz $t3, $a3
cmovz $a_ptr, $t4
mov $a1, $t0 # a0:a3>>1
shr \$1, $a0
shl \$63, $t0
mov $a2, $t1
shr \$1, $a1
or $t0, $a0
shl \$63, $t1
mov $a3, $t2
shr \$1, $a2
or $t1, $a1
shl \$63, $t2
mov $a0, 8*0($r_ptr)
shr \$1, $a3
mov $a1, 8*1($r_ptr)
shl \$63, $t4
or $t2, $a2
or $t4, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
___
}
$code.=<<___;
`&load_for_mul("$M(%rsp)", "$Zsqr(%rsp)", "$src0")`
lea $M(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(M, M, Zsqr);
lea $tmp0(%rsp), $r_ptr
call __ecp_nistz256_mul_by_2$x
lea $M(%rsp), $b_ptr
lea $M(%rsp), $r_ptr
call __ecp_nistz256_add_to$x # p256_mul_by_3(M, M);
`&load_for_mul("$S(%rsp)", "$in_x(%rsp)", "$src0")`
lea $S(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, in_x);
lea $tmp0(%rsp), $r_ptr
call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(tmp0, S);
`&load_for_sqr("$M(%rsp)", "$src0")`
movq %xmm0, $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_x, M);
lea $tmp0(%rsp), $b_ptr
mov $acc6, $acc0 # harmonize sqr output and sub input
mov $acc7, $acc1
mov $a_ptr, $poly1
mov $t1, $poly3
call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, tmp0);
mov $S+8*0(%rsp), $t0
mov $S+8*1(%rsp), $t1
mov $S+8*2(%rsp), $t2
mov $S+8*3(%rsp), $acc2 # "4-5-0-1" order
lea $S(%rsp), $r_ptr
call __ecp_nistz256_sub$x # p256_sub(S, S, res_x);
mov $M(%rsp), $src0
lea $M(%rsp), $b_ptr
mov $acc4, $acc6 # harmonize sub output and mul input
xor %ecx, %ecx
mov $acc4, $S+8*0(%rsp) # have to save:-(
mov $acc5, $acc2
mov $acc5, $S+8*1(%rsp)
cmovz $acc0, $acc3
mov $acc0, $S+8*2(%rsp)
lea $S-$bias(%rsp), $a_ptr
cmovz $acc1, $acc4
mov $acc1, $S+8*3(%rsp)
mov $acc6, $acc1
lea $S(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, M);
movq %xmm1, $b_ptr
movq %xmm1, $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_y, S, res_y);
add \$32*5+8, %rsp
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
ret
.size ecp_nistz256_point_double$sfx,.-ecp_nistz256_point_double$sfx
___
}
&gen_double("q");
sub gen_add () {
my $x = shift;
my ($src0,$sfx,$bias);
my ($H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2,
$res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y,$in2_z)=map(32*$_,(0..17));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
if ($x ne "x") {
$src0 = "%rax";
$sfx = "";
$bias = 0;
$code.=<<___;
.globl ecp_nistz256_point_add
.type ecp_nistz256_point_add,\@function,3
.align 32
ecp_nistz256_point_add:
___
$code.=<<___ if ($addx);
mov \$0x80100, %ecx
and OPENSSL_ia32cap_P+8(%rip), %ecx
cmp \$0x80100, %ecx
je .Lpoint_addx
___
} else {
$src0 = "%rdx";
$sfx = "x";
$bias = 128;
$code.=<<___;
.type ecp_nistz256_point_addx,\@function,3
.align 32
ecp_nistz256_point_addx:
.Lpoint_addx:
___
}
$code.=<<___;
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
sub \$32*18+8, %rsp
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr
movdqu 0x10($a_ptr), %xmm1
movdqu 0x20($a_ptr), %xmm2
movdqu 0x30($a_ptr), %xmm3
movdqu 0x40($a_ptr), %xmm4
movdqu 0x50($a_ptr), %xmm5
mov $a_ptr, $b_ptr # reassign
mov $b_org, $a_ptr # reassign
movdqa %xmm0, $in1_x(%rsp)
movdqa %xmm1, $in1_x+0x10(%rsp)
por %xmm0, %xmm1
movdqa %xmm2, $in1_y(%rsp)
movdqa %xmm3, $in1_y+0x10(%rsp)
por %xmm2, %xmm3
movdqa %xmm4, $in1_z(%rsp)
movdqa %xmm5, $in1_z+0x10(%rsp)
por %xmm1, %xmm3
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$b_ptr
pshufd \$0xb1, %xmm3, %xmm5
movdqu 0x10($a_ptr), %xmm1
movdqu 0x20($a_ptr), %xmm2
por %xmm3, %xmm5
movdqu 0x30($a_ptr), %xmm3
mov 0x40+8*0($a_ptr), $src0 # load original in2_z
mov 0x40+8*1($a_ptr), $acc6
mov 0x40+8*2($a_ptr), $acc7
mov 0x40+8*3($a_ptr), $acc0
movdqa %xmm0, $in2_x(%rsp)
pshufd \$0x1e, %xmm5, %xmm4
movdqa %xmm1, $in2_x+0x10(%rsp)
por %xmm0, %xmm1
movq $r_ptr, %xmm0 # save $r_ptr
movdqa %xmm2, $in2_y(%rsp)
movdqa %xmm3, $in2_y+0x10(%rsp)
por %xmm2, %xmm3
por %xmm4, %xmm5
pxor %xmm4, %xmm4
por %xmm1, %xmm3
lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid
mov $src0, $in2_z+8*0(%rsp) # make in2_z copy
mov $acc6, $in2_z+8*1(%rsp)
mov $acc7, $in2_z+8*2(%rsp)
mov $acc0, $in2_z+8*3(%rsp)
lea $Z2sqr(%rsp), $r_ptr # Z2^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z2sqr, in2_z);
pcmpeqd %xmm4, %xmm5
pshufd \$0xb1, %xmm3, %xmm4
por %xmm3, %xmm4
pshufd \$0, %xmm5, %xmm5 # in1infty
pshufd \$0x1e, %xmm4, %xmm3
por %xmm3, %xmm4
pxor %xmm3, %xmm3
pcmpeqd %xmm3, %xmm4
pshufd \$0, %xmm4, %xmm4 # in2infty
mov 0x40+8*0($b_ptr), $src0 # load original in1_z
mov 0x40+8*1($b_ptr), $acc6
mov 0x40+8*2($b_ptr), $acc7
mov 0x40+8*3($b_ptr), $acc0
lea 0x40-$bias($b_ptr), $a_ptr
lea $Z1sqr(%rsp), $r_ptr # Z1^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z);
`&load_for_mul("$Z2sqr(%rsp)", "$in2_z(%rsp)", "$src0")`
lea $S1(%rsp), $r_ptr # S1 = Z2^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, Z2sqr, in2_z);
`&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z);
`&load_for_mul("$S1(%rsp)", "$in1_y(%rsp)", "$src0")`
lea $S1(%rsp), $r_ptr # S1 = Y1*Z2^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, S1, in1_y);
`&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y);
lea $S1(%rsp), $b_ptr
lea $R(%rsp), $r_ptr # R = S2 - S1
call __ecp_nistz256_sub_from$x # p256_sub(R, S2, S1);
or $acc5, $acc4 # see if result is zero
movdqa %xmm4, %xmm2
or $acc0, $acc4
or $acc1, $acc4
por %xmm5, %xmm2 # in1infty || in2infty
movq $acc4, %xmm3
`&load_for_mul("$Z2sqr(%rsp)", "$in1_x(%rsp)", "$src0")`
lea $U1(%rsp), $r_ptr # U1 = X1*Z2^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U1, in1_x, Z2sqr);
`&load_for_mul("$Z1sqr(%rsp)", "$in2_x(%rsp)", "$src0")`
lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in2_x, Z1sqr);
lea $U1(%rsp), $b_ptr
lea $H(%rsp), $r_ptr # H = U2 - U1
call __ecp_nistz256_sub_from$x # p256_sub(H, U2, U1);
or $acc5, $acc4 # see if result is zero
or $acc0, $acc4
or $acc1, $acc4
.byte 0x3e # predict taken
jnz .Ladd_proceed$x # is_equal(U1,U2)?
movq %xmm2, $acc0
movq %xmm3, $acc1
test $acc0, $acc0
jnz .Ladd_proceed$x # (in1infty || in2infty)?
test $acc1, $acc1
jz .Ladd_proceed$x # is_equal(S1,S2)?
movq %xmm0, $r_ptr # restore $r_ptr
pxor %xmm0, %xmm0
movdqu %xmm0, 0x00($r_ptr)
movdqu %xmm0, 0x10($r_ptr)
movdqu %xmm0, 0x20($r_ptr)
movdqu %xmm0, 0x30($r_ptr)
movdqu %xmm0, 0x40($r_ptr)
movdqu %xmm0, 0x50($r_ptr)
jmp .Ladd_done$x
.align 32
.Ladd_proceed$x:
`&load_for_sqr("$R(%rsp)", "$src0")`
lea $Rsqr(%rsp), $r_ptr # R^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R);
`&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z);
`&load_for_sqr("$H(%rsp)", "$src0")`
lea $Hsqr(%rsp), $r_ptr # H^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H);
`&load_for_mul("$res_z(%rsp)", "$in2_z(%rsp)", "$src0")`
lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, res_z, in2_z);
`&load_for_mul("$Hsqr(%rsp)", "$H(%rsp)", "$src0")`
lea $Hcub(%rsp), $r_ptr # H^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H);
`&load_for_mul("$Hsqr(%rsp)", "$U1(%rsp)", "$src0")`
lea $U2(%rsp), $r_ptr # U1*H^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, U1, Hsqr);
___
{
#######################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
my ($poly1, $poly3)=($acc6,$acc7);
$code.=<<___;
#lea $U2(%rsp), $a_ptr
#lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2
#call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2);
add $acc0, $acc0 # a0:a3+a0:a3
lea $Rsqr(%rsp), $a_ptr
adc $acc1, $acc1
mov $acc0, $t0
adc $acc2, $acc2
adc $acc3, $acc3
mov $acc1, $t1
sbb $t4, $t4
sub \$-1, $acc0
mov $acc2, $t2
sbb $poly1, $acc1
sbb \$0, $acc2
mov $acc3, $t3
sbb $poly3, $acc3
test $t4, $t4
cmovz $t0, $acc0
mov 8*0($a_ptr), $t0
cmovz $t1, $acc1
mov 8*1($a_ptr), $t1
cmovz $t2, $acc2
mov 8*2($a_ptr), $t2
cmovz $t3, $acc3
mov 8*3($a_ptr), $t3
call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr);
lea $Hcub(%rsp), $b_ptr
lea $res_x(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub);
mov $U2+8*0(%rsp), $t0
mov $U2+8*1(%rsp), $t1
mov $U2+8*2(%rsp), $t2
mov $U2+8*3(%rsp), $t3
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_sub$x # p256_sub(res_y, U2, res_x);
mov $acc0, 8*0($r_ptr) # save the result, as
mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't
mov $acc2, 8*2($r_ptr)
mov $acc3, 8*3($r_ptr)
___
}
$code.=<<___;
`&load_for_mul("$S1(%rsp)", "$Hcub(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S1, Hcub);
`&load_for_mul("$R(%rsp)", "$res_y(%rsp)", "$src0")`
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_y, R, res_y);
lea $S2(%rsp), $b_ptr
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_y, res_y, S2);
movq %xmm0, $r_ptr # restore $r_ptr
movdqa %xmm5, %xmm0 # copy_conditional(res_z, in2_z, in1infty);
movdqa %xmm5, %xmm1
pandn $res_z(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_z+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_z(%rsp), %xmm2
pand $in2_z+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_z(%rsp), %xmm2
pand $in1_z+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x40($r_ptr)
movdqu %xmm3, 0x50($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty);
movdqa %xmm5, %xmm1
pandn $res_x(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_x+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_x(%rsp), %xmm2
pand $in2_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_x(%rsp), %xmm2
pand $in1_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x00($r_ptr)
movdqu %xmm3, 0x10($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty);
movdqa %xmm5, %xmm1
pandn $res_y(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_y+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_y(%rsp), %xmm2
pand $in2_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_y(%rsp), %xmm2
pand $in1_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x20($r_ptr)
movdqu %xmm3, 0x30($r_ptr)
.Ladd_done$x:
add \$32*18+8, %rsp
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
ret
.size ecp_nistz256_point_add$sfx,.-ecp_nistz256_point_add$sfx
___
}
&gen_add("q");
sub gen_add_affine () {
my $x = shift;
my ($src0,$sfx,$bias);
my ($U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr,
$res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y)=map(32*$_,(0..14));
my $Z1sqr = $S2;
if ($x ne "x") {
$src0 = "%rax";
$sfx = "";
$bias = 0;
$code.=<<___;
.globl ecp_nistz256_point_add_affine
.type ecp_nistz256_point_add_affine,\@function,3
.align 32
ecp_nistz256_point_add_affine:
___
$code.=<<___ if ($addx);
mov \$0x80100, %ecx
and OPENSSL_ia32cap_P+8(%rip), %ecx
cmp \$0x80100, %ecx
je .Lpoint_add_affinex
___
} else {
$src0 = "%rdx";
$sfx = "x";
$bias = 128;
$code.=<<___;
.type ecp_nistz256_point_add_affinex,\@function,3
.align 32
ecp_nistz256_point_add_affinex:
.Lpoint_add_affinex:
___
}
$code.=<<___;
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
sub \$32*15+8, %rsp
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr
mov $b_org, $b_ptr # reassign
movdqu 0x10($a_ptr), %xmm1
movdqu 0x20($a_ptr), %xmm2
movdqu 0x30($a_ptr), %xmm3
movdqu 0x40($a_ptr), %xmm4
movdqu 0x50($a_ptr), %xmm5
mov 0x40+8*0($a_ptr), $src0 # load original in1_z
mov 0x40+8*1($a_ptr), $acc6
mov 0x40+8*2($a_ptr), $acc7
mov 0x40+8*3($a_ptr), $acc0
movdqa %xmm0, $in1_x(%rsp)
movdqa %xmm1, $in1_x+0x10(%rsp)
por %xmm0, %xmm1
movdqa %xmm2, $in1_y(%rsp)
movdqa %xmm3, $in1_y+0x10(%rsp)
por %xmm2, %xmm3
movdqa %xmm4, $in1_z(%rsp)
movdqa %xmm5, $in1_z+0x10(%rsp)
por %xmm1, %xmm3
movdqu 0x00($b_ptr), %xmm0 # copy *(P256_POINT_AFFINE *)$b_ptr
pshufd \$0xb1, %xmm3, %xmm5
movdqu 0x10($b_ptr), %xmm1
movdqu 0x20($b_ptr), %xmm2
por %xmm3, %xmm5
movdqu 0x30($b_ptr), %xmm3
movdqa %xmm0, $in2_x(%rsp)
pshufd \$0x1e, %xmm5, %xmm4
movdqa %xmm1, $in2_x+0x10(%rsp)
por %xmm0, %xmm1
movq $r_ptr, %xmm0 # save $r_ptr
movdqa %xmm2, $in2_y(%rsp)
movdqa %xmm3, $in2_y+0x10(%rsp)
por %xmm2, %xmm3
por %xmm4, %xmm5
pxor %xmm4, %xmm4
por %xmm1, %xmm3
lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid
lea $Z1sqr(%rsp), $r_ptr # Z1^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z);
pcmpeqd %xmm4, %xmm5
pshufd \$0xb1, %xmm3, %xmm4
mov 0x00($b_ptr), $src0 # $b_ptr is still valid
#lea 0x00($b_ptr), $b_ptr
mov $acc4, $acc1 # harmonize sqr output and mul input
por %xmm3, %xmm4
pshufd \$0, %xmm5, %xmm5 # in1infty
pshufd \$0x1e, %xmm4, %xmm3
mov $acc5, $acc2
por %xmm3, %xmm4
pxor %xmm3, %xmm3
mov $acc6, $acc3
pcmpeqd %xmm3, %xmm4
pshufd \$0, %xmm4, %xmm4 # in2infty
lea $Z1sqr-$bias(%rsp), $a_ptr
mov $acc7, $acc4
lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, Z1sqr, in2_x);
lea $in1_x(%rsp), $b_ptr
lea $H(%rsp), $r_ptr # H = U2 - U1
call __ecp_nistz256_sub_from$x # p256_sub(H, U2, in1_x);
`&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z);
`&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z);
`&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y);
lea $in1_y(%rsp), $b_ptr
lea $R(%rsp), $r_ptr # R = S2 - S1
call __ecp_nistz256_sub_from$x # p256_sub(R, S2, in1_y);
`&load_for_sqr("$H(%rsp)", "$src0")`
lea $Hsqr(%rsp), $r_ptr # H^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H);
`&load_for_sqr("$R(%rsp)", "$src0")`
lea $Rsqr(%rsp), $r_ptr # R^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R);
`&load_for_mul("$H(%rsp)", "$Hsqr(%rsp)", "$src0")`
lea $Hcub(%rsp), $r_ptr # H^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H);
`&load_for_mul("$Hsqr(%rsp)", "$in1_x(%rsp)", "$src0")`
lea $U2(%rsp), $r_ptr # U1*H^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in1_x, Hsqr);
___
{
#######################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
my ($poly1, $poly3)=($acc6,$acc7);
$code.=<<___;
#lea $U2(%rsp), $a_ptr
#lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2
#call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2);
add $acc0, $acc0 # a0:a3+a0:a3
lea $Rsqr(%rsp), $a_ptr
adc $acc1, $acc1
mov $acc0, $t0
adc $acc2, $acc2
adc $acc3, $acc3
mov $acc1, $t1
sbb $t4, $t4
sub \$-1, $acc0
mov $acc2, $t2
sbb $poly1, $acc1
sbb \$0, $acc2
mov $acc3, $t3
sbb $poly3, $acc3
test $t4, $t4
cmovz $t0, $acc0
mov 8*0($a_ptr), $t0
cmovz $t1, $acc1
mov 8*1($a_ptr), $t1
cmovz $t2, $acc2
mov 8*2($a_ptr), $t2
cmovz $t3, $acc3
mov 8*3($a_ptr), $t3
call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr);
lea $Hcub(%rsp), $b_ptr
lea $res_x(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub);
mov $U2+8*0(%rsp), $t0
mov $U2+8*1(%rsp), $t1
mov $U2+8*2(%rsp), $t2
mov $U2+8*3(%rsp), $t3
lea $H(%rsp), $r_ptr
call __ecp_nistz256_sub$x # p256_sub(H, U2, res_x);
mov $acc0, 8*0($r_ptr) # save the result, as
mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't
mov $acc2, 8*2($r_ptr)
mov $acc3, 8*3($r_ptr)
___
}
$code.=<<___;
`&load_for_mul("$Hcub(%rsp)", "$in1_y(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Hcub, in1_y);
`&load_for_mul("$H(%rsp)", "$R(%rsp)", "$src0")`
lea $H(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(H, H, R);
lea $S2(%rsp), $b_ptr
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_y, H, S2);
movq %xmm0, $r_ptr # restore $r_ptr
movdqa %xmm5, %xmm0 # copy_conditional(res_z, ONE, in1infty);
movdqa %xmm5, %xmm1
pandn $res_z(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_z+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand .LONE_mont(%rip), %xmm2
pand .LONE_mont+0x10(%rip), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_z(%rsp), %xmm2
pand $in1_z+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x40($r_ptr)
movdqu %xmm3, 0x50($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty);
movdqa %xmm5, %xmm1
pandn $res_x(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_x+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_x(%rsp), %xmm2
pand $in2_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_x(%rsp), %xmm2
pand $in1_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x00($r_ptr)
movdqu %xmm3, 0x10($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty);
movdqa %xmm5, %xmm1
pandn $res_y(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_y+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_y(%rsp), %xmm2
pand $in2_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_y(%rsp), %xmm2
pand $in1_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x20($r_ptr)
movdqu %xmm3, 0x30($r_ptr)
add \$32*15+8, %rsp
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbx
pop %rbp
ret
.size ecp_nistz256_point_add_affine$sfx,.-ecp_nistz256_point_add_affine$sfx
___
}
&gen_add_affine("q");
########################################################################
# AD*X magic
#
if ($addx) { {
########################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
$code.=<<___;
.type __ecp_nistz256_add_tox,\@abi-omnipotent
.align 32
__ecp_nistz256_add_tox:
xor $t4, $t4
adc 8*0($b_ptr), $a0
adc 8*1($b_ptr), $a1
mov $a0, $t0
adc 8*2($b_ptr), $a2
adc 8*3($b_ptr), $a3
mov $a1, $t1
adc \$0, $t4
xor $t3, $t3
sbb \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
bt \$0, $t4
cmovnc $t0, $a0
cmovnc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovnc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovnc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.size __ecp_nistz256_add_tox,.-__ecp_nistz256_add_tox
.type __ecp_nistz256_sub_fromx,\@abi-omnipotent
.align 32
__ecp_nistz256_sub_fromx:
xor $t4, $t4
sbb 8*0($b_ptr), $a0
sbb 8*1($b_ptr), $a1
mov $a0, $t0
sbb 8*2($b_ptr), $a2
sbb 8*3($b_ptr), $a3
mov $a1, $t1
sbb \$0, $t4
xor $t3, $t3
adc \$-1, $a0
mov $a2, $t2
adc $poly1, $a1
adc \$0, $a2
mov $a3, $t3
adc $poly3, $a3
bt \$0, $t4
cmovnc $t0, $a0
cmovnc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovnc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovnc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.size __ecp_nistz256_sub_fromx,.-__ecp_nistz256_sub_fromx
.type __ecp_nistz256_subx,\@abi-omnipotent
.align 32
__ecp_nistz256_subx:
xor $t4, $t4
sbb $a0, $t0
sbb $a1, $t1
mov $t0, $a0
sbb $a2, $t2
sbb $a3, $t3
mov $t1, $a1
sbb \$0, $t4
xor $a3 ,$a3
adc \$-1, $t0
mov $t2, $a2
adc $poly1, $t1
adc \$0, $t2
mov $t3, $a3
adc $poly3, $t3
bt \$0, $t4
cmovc $t0, $a0
cmovc $t1, $a1
cmovc $t2, $a2
cmovc $t3, $a3
ret
.size __ecp_nistz256_subx,.-__ecp_nistz256_subx
.type __ecp_nistz256_mul_by_2x,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_by_2x:
xor $t4, $t4
adc $a0, $a0 # a0:a3+a0:a3
adc $a1, $a1
mov $a0, $t0
adc $a2, $a2
adc $a3, $a3
mov $a1, $t1
adc \$0, $t4
xor $t3, $t3
sbb \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
bt \$0, $t4
cmovnc $t0, $a0
cmovnc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovnc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovnc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.size __ecp_nistz256_mul_by_2x,.-__ecp_nistz256_mul_by_2x
___
}
&gen_double("x");
&gen_add("x");
&gen_add_affine("x");
}
}}}
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;