openssl/util/perl/OpenSSL/ParseC.pm
Richard Levitte 4c2883a9bf Replumbing: Add the Provider Object, type OSSL_PROVIDER
The OSSL_PROVIDER is the core object involved in loading a provider
module, initialize a provider and do the initial communication of
provider wide and core wide dispatch tables.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8287)
2019-03-11 20:40:13 +01:00

1148 lines
46 KiB
Perl

#! /usr/bin/env perl
# Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
package OpenSSL::ParseC;
use strict;
use warnings;
use Exporter;
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
$VERSION = "0.9";
@ISA = qw(Exporter);
@EXPORT = qw(parse);
# Global handler data
my @preprocessor_conds; # A list of simple preprocessor conditions,
# each item being a list of macros defined
# or not defined.
# Handler helpers
sub all_conds {
return map { ( @$_ ) } @preprocessor_conds;
}
# A list of handlers that will look at a "complete" string and try to
# figure out what to make of it.
# Each handler is a hash with the following keys:
#
# regexp a regexp to compare the "complete" string with.
# checker a function that does a more complex comparison.
# Use this instead of regexp if that isn't enough.
# massager massages the "complete" string into an array with
# the following elements:
#
# [0] String that needs further processing (this
# applies to typedefs of structs), or empty.
# [1] The name of what was found.
# [2] A character that denotes what type of thing
# this is: 'F' for function, 'S' for struct,
# 'T' for typedef, 'M' for macro, 'V' for
# variable.
# [3] Return type (only for type 'F' and 'V')
# [4] Value (for type 'M') or signature (for type 'F',
# 'V', 'T' or 'S')
# [5...] The list of preprocessor conditions this is
# found in, as in checks for macro definitions
# (stored as the macro's name) or the absence
# of definition (stored as the macro's name
# prefixed with a '!'
#
# If the massager returns an empty list, it means the
# "complete" string has side effects but should otherwise
# be ignored.
# If the massager is undefined, the "complete" string
# should be ignored.
my @opensslcpphandlers = (
##################################################################
# OpenSSL CPP specials
#
# These are used to convert certain pre-precessor expressions into
# others that @cpphandlers have a better chance to understand.
{ regexp => qr/#if (!?)OPENSSL_API_([0-9_]+)$/,
massager => sub {
my $cnd = $1 eq '!' ? 'ndef' : 'def';
return (<<"EOF");
#if$cnd DEPRECATEDIN_$2
EOF
}
}
);
my @cpphandlers = (
##################################################################
# CPP stuff
{ regexp => qr/#ifdef ?(.*)/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
push @preprocessor_conds, [ $1 ];
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return ();
},
},
{ regexp => qr/#ifndef ?(.*)/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
push @preprocessor_conds, [ '!'.$1 ];
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return ();
},
},
{ regexp => qr/#if (0|1)/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
if ($1 eq "1") {
push @preprocessor_conds, [ "TRUE" ];
} else {
push @preprocessor_conds, [ "!TRUE" ];
}
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return ();
},
},
{ regexp => qr/#if ?(.*)/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
my @results = ();
my $conds = $1;
if ($conds =~ m|^defined<<<\(([^\)]*)\)>>>(.*)$|) {
push @results, $1; # Handle the simple case
my $rest = $2;
my $re = qr/^(?:\|\|defined<<<\([^\)]*\)>>>)*$/;
print STDERR "DEBUG[",$opts{debug_type},"]: Matching '$rest' with '$re'\n"
if $opts{debug};
if ($rest =~ m/$re/) {
my @rest = split /\|\|/, $rest;
shift @rest;
foreach (@rest) {
m|^defined<<<\(([^\)]*)\)>>>$|;
die "Something wrong...$opts{PLACE}" if $1 eq "";
push @results, $1;
}
} else {
$conds =~ s/<<<|>>>//g;
warn "Warning: complicated #if expression(1): $conds$opts{PLACE}"
if $opts{warnings};
}
} elsif ($conds =~ m|^!defined<<<\(([^\)]*)\)>>>(.*)$|) {
push @results, '!'.$1; # Handle the simple case
my $rest = $2;
my $re = qr/^(?:\&\&!defined<<<\([^\)]*\)>>>)*$/;
print STDERR "DEBUG[",$opts{debug_type},"]: Matching '$rest' with '$re'\n"
if $opts{debug};
if ($rest =~ m/$re/) {
my @rest = split /\&\&/, $rest;
shift @rest;
foreach (@rest) {
m|^!defined<<<\(([^\)]*)\)>>>$|;
die "Something wrong...$opts{PLACE}" if $1 eq "";
push @results, '!'.$1;
}
} else {
$conds =~ s/<<<|>>>//g;
warn "Warning: complicated #if expression(2): $conds$opts{PLACE}"
if $opts{warnings};
}
} else {
$conds =~ s/<<<|>>>//g;
warn "Warning: complicated #if expression(3): $conds$opts{PLACE}"
if $opts{warnings};
}
print STDERR "DEBUG[",$opts{debug_type},"]: Added preprocessor conds: '", join("', '", @results), "'\n"
if $opts{debug};
push @preprocessor_conds, [ @results ];
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return ();
},
},
{ regexp => qr/#elif (.*)/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
die "An #elif without corresponding condition$opts{PLACE}"
if !@preprocessor_conds;
pop @preprocessor_conds;
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return (<<"EOF");
#if $1
EOF
},
},
{ regexp => qr/#else/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
die "An #else without corresponding condition$opts{PLACE}"
if !@preprocessor_conds;
# Invert all conditions on the last level
my $stuff = pop @preprocessor_conds;
push @preprocessor_conds, [
map { m|^!(.*)$| ? $1 : '!'.$_ } @$stuff
];
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return ();
},
},
{ regexp => qr/#endif ?/,
massager => sub {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
die "An #endif without corresponding condition$opts{PLACE}"
if !@preprocessor_conds;
pop @preprocessor_conds;
print STDERR "DEBUG[",$opts{debug_type},"]: preprocessor level: ", scalar(@preprocessor_conds), "\n"
if $opts{debug};
return ();
},
},
{ regexp => qr/#define ([[:alpha:]_]\w*)(<<<\(.*?\)>>>)?( (.*))?/,
massager => sub {
my $name = $1;
my $params = $2;
my $spaceval = $3||"";
my $val = $4||"";
return ("",
$1, 'M', "", $params ? "$name$params$spaceval" : $val,
all_conds()); }
},
{ regexp => qr/#.*/,
massager => sub { return (); }
},
);
my @opensslchandlers = (
##################################################################
# OpenSSL C specials
#
# They are really preprocessor stuff, but they look like C stuff
# to this parser. All of these do replacements, anything else is
# an error.
#####
# Global variable stuff
{ regexp => qr/OPENSSL_DECLARE_GLOBAL<<<\((.*),\s*(.*)\)>>>;/,
massager => sub { return (<<"EOF");
#ifndef OPENSSL_EXPORT_VAR_AS_FUNCTION
OPENSSL_EXPORT $1 _shadow_$2;
#else
$1 *_shadow_$2(void);
#endif
EOF
},
},
#####
# Deprecated stuff, by OpenSSL release.
# We trick the parser by pretending that the declaration is wrapped in a
# check if the DEPRECATEDIN macro is defined or not. Callers of parse()
# will have to decide what to do with it.
{ regexp => qr/(DEPRECATEDIN_\d+(?:_\d+_\d+)?)<<<\((.*)\)>>>/,
massager => sub { return (<<"EOF");
#ifndef $1
$2;
#endif
EOF
},
},
#####
# LHASH stuff
# LHASH_OF(foo) is used as a type, but the chandlers won't take it
# gracefully, so we expand it here.
{ regexp => qr/(.*)\bLHASH_OF<<<\((.*?)\)>>>(.*)/,
massager => sub { return ("$1struct lhash_st_$2$3"); }
},
{ regexp => qr/DEFINE_LHASH_OF<<<\((.*)\)>>>/,
massager => sub {
return (<<"EOF");
static ossl_inline LHASH_OF($1) * lh_$1_new(unsigned long (*hfn)(const $1 *),
int (*cfn)(const $1 *, const $1 *));
static ossl_inline void lh_$1_free(LHASH_OF($1) *lh);
static ossl_inline $1 *lh_$1_insert(LHASH_OF($1) *lh, $1 *d);
static ossl_inline $1 *lh_$1_delete(LHASH_OF($1) *lh, const $1 *d);
static ossl_inline $1 *lh_$1_retrieve(LHASH_OF($1) *lh, const $1 *d);
static ossl_inline int lh_$1_error(LHASH_OF($1) *lh);
static ossl_inline unsigned long lh_$1_num_items(LHASH_OF($1) *lh);
static ossl_inline void lh_$1_node_stats_bio(const LHASH_OF($1) *lh, BIO *out);
static ossl_inline void lh_$1_node_usage_stats_bio(const LHASH_OF($1) *lh,
BIO *out);
static ossl_inline void lh_$1_stats_bio(const LHASH_OF($1) *lh, BIO *out);
static ossl_inline unsigned long lh_$1_get_down_load(LHASH_OF($1) *lh);
static ossl_inline void lh_$1_set_down_load(LHASH_OF($1) *lh, unsigned long dl);
static ossl_inline void lh_$1_doall(LHASH_OF($1) *lh, void (*doall)($1 *));
LHASH_OF($1)
EOF
}
},
#####
# STACK stuff
# STACK_OF(foo) is used as a type, but the chandlers won't take it
# gracefully, so we expand it here.
{ regexp => qr/(.*)\bSTACK_OF<<<\((.*?)\)>>>(.*)/,
massager => sub { return ("$1struct stack_st_$2$3"); }
},
# { regexp => qr/(.*)\bSTACK_OF\((.*?)\)(.*)/,
# massager => sub {
# my $before = $1;
# my $stack_of = "struct stack_st_$2";
# my $after = $3;
# if ($after =~ m|^\w|) { $after = " ".$after; }
# return ("$before$stack_of$after");
# }
# },
{ regexp => qr/SKM_DEFINE_STACK_OF<<<\((.*),\s*(.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
STACK_OF($1);
typedef int (*sk_$1_compfunc)(const $3 * const *a, const $3 *const *b);
typedef void (*sk_$1_freefunc)($3 *a);
typedef $3 * (*sk_$1_copyfunc)(const $3 *a);
static ossl_inline int sk_$1_num(const STACK_OF($1) *sk);
static ossl_inline $2 *sk_$1_value(const STACK_OF($1) *sk, int idx);
static ossl_inline STACK_OF($1) *sk_$1_new(sk_$1_compfunc compare);
static ossl_inline STACK_OF($1) *sk_$1_new_null(void);
static ossl_inline STACK_OF($1) *sk_$1_new_reserve(sk_$1_compfunc compare,
int n);
static ossl_inline int sk_$1_reserve(STACK_OF($1) *sk, int n);
static ossl_inline void sk_$1_free(STACK_OF($1) *sk);
static ossl_inline void sk_$1_zero(STACK_OF($1) *sk);
static ossl_inline $2 *sk_$1_delete(STACK_OF($1) *sk, int i);
static ossl_inline $2 *sk_$1_delete_ptr(STACK_OF($1) *sk, $2 *ptr);
static ossl_inline int sk_$1_push(STACK_OF($1) *sk, $2 *ptr);
static ossl_inline int sk_$1_unshift(STACK_OF($1) *sk, $2 *ptr);
static ossl_inline $2 *sk_$1_pop(STACK_OF($1) *sk);
static ossl_inline $2 *sk_$1_shift(STACK_OF($1) *sk);
static ossl_inline void sk_$1_pop_free(STACK_OF($1) *sk,
sk_$1_freefunc freefunc);
static ossl_inline int sk_$1_insert(STACK_OF($1) *sk, $2 *ptr, int idx);
static ossl_inline $2 *sk_$1_set(STACK_OF($1) *sk, int idx, $2 *ptr);
static ossl_inline int sk_$1_find(STACK_OF($1) *sk, $2 *ptr);
static ossl_inline int sk_$1_find_ex(STACK_OF($1) *sk, $2 *ptr);
static ossl_inline void sk_$1_sort(STACK_OF($1) *sk);
static ossl_inline int sk_$1_is_sorted(const STACK_OF($1) *sk);
static ossl_inline STACK_OF($1) * sk_$1_dup(const STACK_OF($1) *sk);
static ossl_inline STACK_OF($1) *sk_$1_deep_copy(const STACK_OF($1) *sk,
sk_$1_copyfunc copyfunc,
sk_$1_freefunc freefunc);
static ossl_inline sk_$1_compfunc sk_$1_set_cmp_func(STACK_OF($1) *sk,
sk_$1_compfunc compare);
EOF
}
},
{ regexp => qr/DEFINE_SPECIAL_STACK_OF<<<\((.*),\s*(.*)\)>>>/,
massager => sub { return ("SKM_DEFINE_STACK_OF($1,$2,$2)"); },
},
{ regexp => qr/DEFINE_STACK_OF<<<\((.*)\)>>>/,
massager => sub { return ("SKM_DEFINE_STACK_OF($1,$1,$1)"); },
},
{ regexp => qr/DEFINE_SPECIAL_STACK_OF_CONST<<<\((.*),\s*(.*)\)>>>/,
massager => sub { return ("SKM_DEFINE_STACK_OF($1,const $2,$2)"); },
},
{ regexp => qr/DEFINE_STACK_OF_CONST<<<\((.*)\)>>>/,
massager => sub { return ("SKM_DEFINE_STACK_OF($1,const $1,$1)"); },
},
{ regexp => qr/PREDECLARE_STACK_OF<<<\((.*)\)>>>/,
massager => sub { return ("STACK_OF($1);"); }
},
{ regexp => qr/DECLARE_STACK_OF<<<\((.*)\)>>>/,
massager => sub { return ("STACK_OF($1);"); }
},
{ regexp => qr/DECLARE_SPECIAL_STACK_OF<<<\((.*?),\s*(.*?)\)>>>/,
massager => sub { return ("STACK_OF($1);"); }
},
#####
# ASN1 stuff
{ regexp => qr/TYPEDEF_D2I_OF<<<\((.*)\)>>>/,
massager => sub {
return ("typedef $1 *d2i_of_$1($1 **,const unsigned char **,long)");
},
},
{ regexp => qr/TYPEDEF_I2D_OF<<<\((.*)\)>>>/,
massager => sub {
return ("typedef $1 *i2d_of_$1($1 *,unsigned char **)");
},
},
{ regexp => qr/TYPEDEF_D2I2D_OF<<<\((.*)\)>>>/,
massager => sub {
return ("TYPEDEF_D2I_OF($1); TYPEDEF_I2D_OF($1)");
},
},
{ regexp => qr/DECLARE_ASN1_ITEM<<<\((.*)\)>>>/,
massager => sub {
return (<<"EOF");
#ifndef OPENSSL_EXPORT_VAR_AS_FUNCTION
OPENSSL_EXTERN const ASN1_ITEM *$1_it;
#else
const ASN1_ITEM *$1_it(void);
#endif
EOF
},
},
{ regexp => qr/DECLARE_ASN1_ENCODE_FUNCTIONS_only<<<\((.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int d2i_$2(void);
int i2d_$2(void);
EOF
},
},
{ regexp => qr/DECLARE_ASN1_ENCODE_FUNCTIONS<<<\((.*),\s*(.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int d2i_$3(void);
int i2d_$3(void);
DECLARE_ASN1_ITEM($2)
EOF
},
},
{ regexp => qr/DECLARE_ASN1_ENCODE_FUNCTIONS_name<<<\((.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int d2i_$2(void);
int i2d_$2(void);
DECLARE_ASN1_ITEM($2)
EOF
},
},
{ regexp => qr/DECLARE_ASN1_ALLOC_FUNCTIONS_name<<<\((.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int $2_free(void);
int $2_new(void);
EOF
},
},
{ regexp => qr/DECLARE_ASN1_ALLOC_FUNCTIONS<<<\((.*)\)>>>/,
massager => sub {
return (<<"EOF");
int $1_free(void);
int $1_new(void);
EOF
},
},
{ regexp => qr/DECLARE_ASN1_FUNCTIONS_name<<<\((.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int d2i_$2(void);
int i2d_$2(void);
int $2_free(void);
int $2_new(void);
DECLARE_ASN1_ITEM($2)
EOF
},
},
{ regexp => qr/DECLARE_ASN1_FUNCTIONS<<<\((.*)\)>>>/,
massager => sub { return (<<"EOF");
int d2i_$1(void);
int i2d_$1(void);
int $1_free(void);
int $1_new(void);
DECLARE_ASN1_ITEM($1)
EOF
}
},
{ regexp => qr/DECLARE_ASN1_NDEF_FUNCTION<<<\((.*)\)>>>/,
massager => sub {
return (<<"EOF");
int i2d_$1_NDEF(void);
EOF
}
},
{ regexp => qr/DECLARE_ASN1_PRINT_FUNCTION<<<\((.*)\)>>>/,
massager => sub {
return (<<"EOF");
int $1_print_ctx(void);
EOF
}
},
{ regexp => qr/DECLARE_ASN1_PRINT_FUNCTION_name<<<\((.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int $2_print_ctx(void);
EOF
}
},
{ regexp => qr/DECLARE_ASN1_SET_OF<<<\((.*)\)>>>/,
massager => sub { return (); }
},
{ regexp => qr/DECLARE_ASN1_DUP_FUNCTION<<<\((.*)\)>>>/,
massager => sub {
return (<<"EOF");
int $1_dup(void);
EOF
}
},
{ regexp => qr/DECLARE_ASN1_DUP_FUNCTION_name<<<\((.*),\s*(.*)\)>>>/,
massager => sub {
return (<<"EOF");
int $2_dup(void);
EOF
}
},
{ regexp => qr/DECLARE_PKCS12_SET_OF<<<\((.*)\)>>>/,
massager => sub { return (); }
},
{ regexp => qr/DECLARE_PEM(?|_rw|_rw_cb|_rw_const)<<<\((.*?),.*\)>>>/,
massager => sub { return (<<"EOF");
#ifndef OPENSSL_NO_STDIO
int PEM_read_$1(void);
int PEM_write_$1(void);
#endif
int PEM_read_bio_$1(void);
int PEM_write_bio_$1(void);
EOF
},
},
#####
# PEM stuff
{ regexp => qr/DECLARE_PEM(?|_write|_write_cb|_write_const)<<<\((.*?),.*\)>>>/,
massager => sub { return (<<"EOF");
#ifndef OPENSSL_NO_STDIO
int PEM_write_$1(void);
#endif
int PEM_write_bio_$1(void);
EOF
},
},
{ regexp => qr/DECLARE_PEM(?|_read|_read_cb)<<<\((.*?),.*\)>>>/,
massager => sub { return (<<"EOF");
#ifndef OPENSSL_NO_STDIO
int PEM_read_$1(void);
#endif
int PEM_read_bio_$1(void);
EOF
},
},
# Spurious stuff found in the OpenSSL headers
# Usually, these are just macros that expand to, well, something
{ regexp => qr/__NDK_FPABI__/,
massager => sub { return (); }
},
);
my $anoncnt = 0;
my @chandlers = (
##################################################################
# C stuff
# extern "C" of individual items
# Note that the main parse function has a special hack for 'extern "C" {'
# which can't be done in handlers
# We simply ignore it.
{ regexp => qr/extern "C" (.*;)/,
massager => sub { return ($1); },
},
# any other extern is just ignored
{ regexp => qr/^\s* # Any spaces before
extern # The keyword we look for
\b # word to non-word boundary
.* # Anything after
;
/x,
massager => sub { return (); },
},
# union, struct and enum definitions
# Because this one might appear a little everywhere within type
# definitions, we take it out and replace it with just
# 'union|struct|enum name' while registering it.
# This makes use of the parser trick to surround the outer braces
# with <<< and >>>
{ regexp => qr/(.*) # Anything before ($1)
\b # word to non-word boundary
(union|struct|enum) # The word used ($2)
(?:\s([[:alpha:]_]\w*))? # Struct or enum name ($3)
<<<(\{.*?\})>>> # Struct or enum definition ($4)
(.*) # Anything after ($5)
;
/x,
massager => sub {
my $before = $1;
my $word = $2;
my $name = $3
|| sprintf("__anon%03d", ++$anoncnt); # Anonymous struct
my $definition = $4;
my $after = $5;
my $type = $word eq "struct" ? 'S' : 'E';
if ($before ne "" || $after ne ";") {
if ($after =~ m|^\w|) { $after = " ".$after; }
return ("$before$word $name$after;",
"$word $name", $type, "", "$word$definition", all_conds());
}
# If there was no before nor after, make the return much simple
return ("", "$word $name", $type, "", "$word$definition", all_conds());
}
},
# Named struct and enum forward declarations
# We really just ignore them, but we need to parse them or the variable
# declaration handler further down will think it's a variable declaration.
{ regexp => qr/^(union|struct|enum) ([[:alpha:]_]\w*);/,
massager => sub { return (); }
},
# Function returning function pointer declaration
{ regexp => qr/(?:(typedef)\s?)? # Possible typedef ($1)
((?:\w|\*|\s)*?) # Return type ($2)
\s? # Possible space
<<<\(\*
([[:alpha:]_]\w*) # Function name ($3)
(\(.*\)) # Parameters ($4)
\)>>>
<<<(\(.*\))>>> # F.p. parameters ($5)
;
/x,
massager => sub {
return ("", $3, 'F', "", "$2(*$4)$5", all_conds())
if defined $1;
return ("", $3, 'F', "$2(*)$5", "$2(*$4)$5", all_conds()); }
},
# Function pointer declaration, or typedef thereof
{ regexp => qr/(?:(typedef)\s?)? # Possible typedef ($1)
((?:\w|\*|\s)*?) # Return type ($2)
<<<\(\*([[:alpha:]_]\w*)\)>>> # T.d. or var name ($3)
<<<(\(.*\))>>> # F.p. parameters ($4)
;
/x,
massager => sub {
return ("", $3, 'T', "", "$2(*)$4", all_conds())
if defined $1;
return ("", $3, 'V', "$2(*)$4", "$2(*)$4", all_conds());
},
},
# Function declaration, or typedef thereof
{ regexp => qr/(?:(typedef)\s?)? # Possible typedef ($1)
((?:\w|\*|\s)*?) # Return type ($2)
\s? # Possible space
([[:alpha:]_]\w*) # Function name ($3)
<<<(\(.*\))>>> # Parameters ($4)
;
/x,
massager => sub {
return ("", $3, 'T', "", "$2$4", all_conds())
if defined $1;
return ("", $3, 'F', $2, "$2$4", all_conds());
},
},
# Variable declaration, including arrays, or typedef thereof
{ regexp => qr/(?:(typedef)\s?)? # Possible typedef ($1)
((?:\w|\*|\s)*?) # Type ($2)
\s? # Possible space
([[:alpha:]_]\w*) # Variable name ($3)
((?:<<<\[[^\]]*\]>>>)*) # Possible array declaration ($4)
;
/x,
massager => sub {
return ("", $3, 'T', "", $2.($4||""), all_conds())
if defined $1;
return ("", $3, 'V', $2.($4||""), $2.($4||""), all_conds());
},
},
);
# End handlers are almost the same as handlers, except they are run through
# ONCE when the input has been parsed through. These are used to check for
# remaining stuff, such as an unfinished #ifdef and stuff like that that the
# main parser can't check on its own.
my @endhandlers = (
{ massager => sub {
my %opts = %{$_[0]};
die "Unfinished preprocessor conditions levels: ",scalar(@preprocessor_conds),($opts{filename} ? " in file ".$opts{filename}: ""),$opts{PLACE}
if @preprocessor_conds;
}
}
);
# takes a list of strings that can each contain one or several lines of code
# also takes a hash of options as last argument.
#
# returns a list of hashes with information:
#
# name name of the thing
# type type, see the massage handler function
# returntype return type of functions and variables
# value value for macros, signature for functions, variables
# and structs
# conds preprocessor conditions (array ref)
sub parse {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
my %state = (
in_extern_C => 0, # An exception to parenthesis processing.
cpp_parens => [], # A list of ending parens and braces found in
# preprocessor directives
c_parens => [], # A list of ending parens and braces found in
# C statements
in_string => "", # empty string when outside a string, otherwise
# "'" or '"' depending on the starting quote.
in_comment => "", # empty string when outside a comment, otherwise
# "/*" or "//" depending on the type of comment
# found. The latter will never be multiline
# NOTE: in_string and in_comment will never be
# true (in perl semantics) at the same time.
current_line => 0,
);
my @result = ();
my $normalized_line = ""; # $input_line, but normalized. In essence, this
# means that ALL whitespace is removed unless
# it absolutely has to be present, and in that
# case, there's only one space.
# The cases where a space needs to stay present
# are:
# 1. between words
# 2. between words and number
# 3. after the first word of a preprocessor
# directive.
# 4. for the #define directive, between the macro
# name/args and its value, so we end up with:
# #define FOO val
# #define BAR(x) something(x)
my $collected_stmt = ""; # Where we're building up a C line until it's a
# complete definition/declaration, as determined
# by any handler being capable of matching it.
# We use $_ shamelessly when looking through @lines.
# In case we find a \ at the end, we keep filling it up with more lines.
$_ = undef;
foreach my $line (@_) {
# split tries to be smart when a string ends with the thing we split on
$line .= "\n" unless $line =~ m|\R$|;
$line .= "#";
# We use ¦undef¦ as a marker for a new line from the file.
# Since we convert one line to several and unshift that into @lines,
# that's the only safe way we have to track the original lines
my @lines = map { ( undef, $_ ) } split $/, $line;
# Remember that extra # we added above? Now we remove it
pop @lines;
pop @lines; # Don't forget the undef
while (@lines) {
if (!defined($lines[0])) {
shift @lines;
$state{current_line}++;
if (!defined($_)) {
$opts{PLACE} = " at ".$opts{filename}." line ".$state{current_line}."\n";
$opts{PLACE2} = $opts{filename}.":".$state{current_line};
}
next;
}
$_ = "" unless defined $_;
$_ .= shift @lines;
if (m|\\$|) {
$_ = $`;
next;
}
if ($opts{debug}) {
print STDERR "DEBUG:----------------------------\n";
print STDERR "DEBUG: \$_ = '$_'\n";
}
##########################################################
# Now that we have a full line, let's process through it
while(1) {
unless ($state{in_comment}) {
# Begin with checking if the current $normalized_line
# contains a preprocessor directive
# This is only done if we're not inside a comment and
# if it's a preprocessor directive and it's finished.
if ($normalized_line =~ m|^#| && $_ eq "") {
print STDERR "DEBUG[OPENSSL CPP]: \$normalized_line = '$normalized_line'\n"
if $opts{debug};
$opts{debug_type} = "OPENSSL CPP";
my @r = ( _run_handlers($normalized_line,
@opensslcpphandlers,
\%opts) );
if (shift @r) {
# Checking if there are lines to inject.
if (@r) {
@r = split $/, (pop @r).$_;
print STDERR "DEBUG[OPENSSL CPP]: injecting '", join("', '", @r),"'\n"
if $opts{debug} && @r;
@lines = ( @r, @lines );
$_ = "";
}
} else {
print STDERR "DEBUG[CPP]: \$normalized_line = '$normalized_line'\n"
if $opts{debug};
$opts{debug_type} = "CPP";
my @r = ( _run_handlers($normalized_line,
@cpphandlers,
\%opts) );
if (shift @r) {
if (ref($r[0]) eq "HASH") {
push @result, shift @r;
}
# Now, check if there are lines to inject.
# Really, this should never happen, it IS a
# preprocessor directive after all...
if (@r) {
@r = split $/, pop @r;
print STDERR "DEBUG[CPP]: injecting '", join("', '", @r),"'\n"
if $opts{debug} && @r;
@lines = ( @r, @lines );
$_ = "";
}
}
}
# Note: we simply ignore all directives that no
# handler matches
$normalized_line = "";
}
# If the two strings end and start with a character that
# shouldn't get concatenated, add a space
my $space =
($collected_stmt =~ m/(?:"|')$/
|| ($collected_stmt =~ m/(?:\w|\d)$/
&& $normalized_line =~ m/^(?:\w|\d)/)) ? " " : "";
# Now, unless we're building up a preprocessor directive or
# are in the middle of a string, or the parens et al aren't
# balanced up yet, let's try and see if there's a OpenSSL
# or C handler that can make sense of what we have so far.
if ( $normalized_line !~ m|^#|
&& ($collected_stmt ne "" || $normalized_line ne "")
&& ! @{$state{c_parens}}
&& ! $state{in_string} ) {
if ($opts{debug}) {
print STDERR "DEBUG[OPENSSL C]: \$collected_stmt = '$collected_stmt'\n";
print STDERR "DEBUG[OPENSSL C]: \$normalized_line = '$normalized_line'\n";
}
$opts{debug_type} = "OPENSSL C";
my @r = ( _run_handlers($collected_stmt
.$space
.$normalized_line,
@opensslchandlers,
\%opts) );
if (shift @r) {
# Checking if there are lines to inject.
if (@r) {
@r = split $/, (pop @r).$_;
print STDERR "DEBUG[OPENSSL]: injecting '", join("', '", @r),"'\n"
if $opts{debug} && @r;
@lines = ( @r, @lines );
$_ = "";
}
$normalized_line = "";
$collected_stmt = "";
} else {
if ($opts{debug}) {
print STDERR "DEBUG[C]: \$collected_stmt = '$collected_stmt'\n";
print STDERR "DEBUG[C]: \$normalized_line = '$normalized_line'\n";
}
$opts{debug_type} = "C";
my @r = ( _run_handlers($collected_stmt
.$space
.$normalized_line,
@chandlers,
\%opts) );
if (shift @r) {
if (ref($r[0]) eq "HASH") {
push @result, shift @r;
}
# Checking if there are lines to inject.
if (@r) {
@r = split $/, (pop @r).$_;
print STDERR "DEBUG[C]: injecting '", join("', '", @r),"'\n"
if $opts{debug} && @r;
@lines = ( @r, @lines );
$_ = "";
}
$normalized_line = "";
$collected_stmt = "";
}
}
}
if ($_ eq "") {
$collected_stmt .= $space.$normalized_line;
$normalized_line = "";
}
}
if ($_ eq "") {
$_ = undef;
last;
}
# Take care of inside string first.
if ($state{in_string}) {
if (m/ (?:^|(?<!\\)) # Make sure it's not escaped
$state{in_string} # Look for matching quote
/x) {
$normalized_line .= $`.$&;
$state{in_string} = "";
$_ = $';
next;
} else {
die "Unfinished string without continuation found$opts{PLACE}\n";
}
}
# ... or inside comments, whichever happens to apply
elsif ($state{in_comment}) {
# This should never happen
die "Something went seriously wrong, multiline //???$opts{PLACE}\n"
if ($state{in_comment} eq "//");
# A note: comments are simply discarded.
if (m/ (?:^|(?<!\\)) # Make sure it's not escaped
\*\/ # Look for C comment end
/x) {
$state{in_comment} = "";
$_ = $';
print STDERR "DEBUG: Found end of comment, followed by '$_'\n"
if $opts{debug};
next;
} else {
$_ = "";
next;
}
}
# At this point, it's safe to remove leading whites, but
# we need to be careful with some preprocessor lines
if (m|^\s+|) {
my $rest = $';
my $space = "";
$space = " "
if ($normalized_line =~ m/^
\#define\s\w(?:\w|\d)*(?:<<<\([^\)]*\)>>>)?
| \#[a-z]+
$/x);
print STDERR "DEBUG: Processing leading spaces: \$normalized_line = '$normalized_line', \$space = '$space', \$rest = '$rest'\n"
if $opts{debug};
$_ = $space.$rest;
}
my $parens =
$normalized_line =~ m|^#| ? 'cpp_parens' : 'c_parens';
(my $paren_singular = $parens) =~ s|s$||;
# Now check for specific tokens, and if they are parens,
# check them against $state{$parens}. Note that we surround
# the outermost parens with extra "<<<" and ">>>". Those
# are for the benefit of handlers who to need to detect
# them, and they will be removed from the final output.
if (m|^[\{\[\(]|) {
my $body = $&;
$_ = $';
if (!@{$state{$parens}}) {
if ("$normalized_line$body" =~ m|^extern "C"\{$|) {
$state{in_extern_C} = 1;
print STDERR "DEBUG: found start of 'extern \"C\"' ($normalized_line$body)\n"
if $opts{debug};
$normalized_line = "";
} else {
$normalized_line .= "<<<".$body;
}
} else {
$normalized_line .= $body;
}
if ($normalized_line ne "") {
print STDERR "DEBUG: found $paren_singular start '$body'\n"
if $opts{debug};
$body =~ tr|\{\[\(|\}\]\)|;
print STDERR "DEBUG: pushing $paren_singular end '$body'\n"
if $opts{debug};
push @{$state{$parens}}, $body;
}
} elsif (m|^[\}\]\)]|) {
$_ = $';
if (!@{$state{$parens}}
&& $& eq '}' && $state{in_extern_C}) {
print STDERR "DEBUG: found end of 'extern \"C\"'\n"
if $opts{debug};
$state{in_extern_C} = 0;
} else {
print STDERR "DEBUG: Trying to match '$&' against '"
,join("', '", @{$state{$parens}})
,"'\n"
if $opts{debug};
die "Unmatched parentheses$opts{PLACE}\n"
unless (@{$state{$parens}}
&& pop @{$state{$parens}} eq $&);
if (!@{$state{$parens}}) {
$normalized_line .= $&.">>>";
} else {
$normalized_line .= $&;
}
}
} elsif (m|^["']|) { # string start
my $body = $&;
$_ = $';
# We want to separate strings from \w and \d with one space.
$normalized_line .= " " if $normalized_line =~ m/(\w|\d)$/;
$normalized_line .= $body;
$state{in_string} = $body;
} elsif (m|^\/\*|) { # C style comment
print STDERR "DEBUG: found start of C style comment\n"
if $opts{debug};
$state{in_comment} = $&;
$_ = $';
} elsif (m|^\/\/|) { # C++ style comment
print STDERR "DEBUG: found C++ style comment\n"
if $opts{debug};
$_ = ""; # (just discard it entirely)
} elsif (m/^ (?| (?: 0[xX][[:xdigit:]]+ | 0[bB][01]+ | [0-9]+ )
(?i: U | L | UL | LL | ULL )?
| [0-9]+\.[0-9]+(?:[eE][\-\+]\d+)? (?i: F | L)?
) /x) {
print STDERR "DEBUG: Processing numbers: \$normalized_line = '$normalized_line', \$& = '$&', \$' = '$''\n"
if $opts{debug};
$normalized_line .= $&;
$_ = $';
} elsif (m/^[[:alpha:]_]\w*/) {
my $body = $&;
my $rest = $';
my $space = "";
# Now, only add a space if it's needed to separate
# two \w characters, and we also surround strings with
# a space. In this case, that's if $normalized_line ends
# with a \w, \d, " or '.
$space = " "
if ($normalized_line =~ m/("|')$/
|| ($normalized_line =~ m/(\w|\d)$/
&& $body =~ m/^(\w|\d)/));
print STDERR "DEBUG: Processing words: \$normalized_line = '$normalized_line', \$space = '$space', \$body = '$body', \$rest = '$rest'\n"
if $opts{debug};
$normalized_line .= $space.$body;
$_ = $rest;
} elsif (m|^(?:\\)?.|) { # Catch-all
$normalized_line .= $&;
$_ = $';
}
}
}
}
foreach my $handler (@endhandlers) {
if ($handler->{massager}) {
$handler->{massager}->(\%opts);
}
}
return @result;
}
# arg1: line to check
# arg2...: handlers to check
# return undef when no handler matched
sub _run_handlers {
my %opts;
if (ref($_[$#_]) eq "HASH") {
%opts = %{$_[$#_]};
pop @_;
}
my $line = shift;
my @handlers = @_;
foreach my $handler (@handlers) {
if ($handler->{regexp}
&& $line =~ m|^$handler->{regexp}$|) {
if ($handler->{massager}) {
if ($opts{debug}) {
print STDERR "DEBUG[",$opts{debug_type},"]: Trying to handle '$line'\n";
print STDERR "DEBUG[",$opts{debug_type},"]: (matches /\^",$handler->{regexp},"\$/)\n";
}
my $saved_line = $line;
my @massaged =
map { s/(<<<|>>>)//g; $_ }
$handler->{massager}->($saved_line, \%opts);
print STDERR "DEBUG[",$opts{debug_type},"]: Got back '"
, join("', '", @massaged), "'\n"
if $opts{debug};
# Because we may get back new lines to be
# injected before whatever else that follows,
# and the injected stuff might include
# preprocessor lines, we need to inject them
# in @lines and set $_ to the empty string to
# break out from the inner loops
my $injected_lines = shift @massaged || "";
if (@massaged) {
return (1,
{
name => shift @massaged,
type => shift @massaged,
returntype => shift @massaged,
value => shift @massaged,
conds => [ @massaged ]
},
$injected_lines
);
} else {
print STDERR "DEBUG[",$opts{debug_type},"]: (ignore, possible side effects)\n"
if $opts{debug} && $injected_lines eq "";
return (1, $injected_lines);
}
}
return (1);
}
}
return (0);
}