7031ddac94
Issue 1: sh.bittable_size is a size_t but i is and int, which can result in freelist == -1 if sh.bittable_size exceeds an int. This seems to result in an OPENSSL_assert due to invalid allocation size, so maybe that is "ok." Worse, if sh.bittable_size is exactly 1<<31, then this becomes an infinite loop (because 1<<31 is a negative int, so it can be shifted right forever and sticks at -1). Issue 2: CRYPTO_secure_malloc_init() sets secure_mem_initialized=1 even when sh_init() returns 0. If sh_init() fails, we end up with secure_mem_initialized=1 but sh.minsize=0. If you then call secure_malloc(), which then calls, sh_malloc(), this then enters an infite loop since 0 << anything will never be larger than size. Issue 3: That same sh_malloc loop will loop forever for a size greater than size_t/2 because i will proceed (assuming sh.minsize=16): i=16, 32, 64, ..., size_t/8, size_t/4, size_t/2, 0, 0, 0, 0, .... This sequence will never be larger than "size". Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/3449)
613 lines
16 KiB
C
613 lines
16 KiB
C
/*
|
|
* Copyright 2015-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
|
|
* This file is distributed under the terms of the OpenSSL license.
|
|
*/
|
|
|
|
/*
|
|
* This file is in two halves. The first half implements the public API
|
|
* to be used by external consumers, and to be used by OpenSSL to store
|
|
* data in a "secure arena." The second half implements the secure arena.
|
|
* For details on that implementation, see below (look for uppercase
|
|
* "SECURE HEAP IMPLEMENTATION").
|
|
*/
|
|
#include <openssl/crypto.h>
|
|
#include <e_os.h>
|
|
|
|
#include <string.h>
|
|
|
|
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
|
|
# define IMPLEMENTED
|
|
# include <stdlib.h>
|
|
# include <assert.h>
|
|
# include <unistd.h>
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# if defined(OPENSSL_SYS_LINUX)
|
|
# include <sys/syscall.h>
|
|
# include <linux/mman.h>
|
|
# include <errno.h>
|
|
# endif
|
|
# include <sys/param.h>
|
|
# include <sys/stat.h>
|
|
# include <fcntl.h>
|
|
#endif
|
|
|
|
#define CLEAR(p, s) OPENSSL_cleanse(p, s)
|
|
#ifndef PAGE_SIZE
|
|
# define PAGE_SIZE 4096
|
|
#endif
|
|
|
|
#ifdef IMPLEMENTED
|
|
static size_t secure_mem_used;
|
|
|
|
static int secure_mem_initialized;
|
|
|
|
static CRYPTO_RWLOCK *sec_malloc_lock = NULL;
|
|
|
|
/*
|
|
* These are the functions that must be implemented by a secure heap (sh).
|
|
*/
|
|
static int sh_init(size_t size, int minsize);
|
|
static void *sh_malloc(size_t size);
|
|
static void sh_free(void *ptr);
|
|
static void sh_done(void);
|
|
static size_t sh_actual_size(char *ptr);
|
|
static int sh_allocated(const char *ptr);
|
|
#endif
|
|
|
|
int CRYPTO_secure_malloc_init(size_t size, int minsize)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
int ret = 0;
|
|
|
|
if (!secure_mem_initialized) {
|
|
sec_malloc_lock = CRYPTO_THREAD_lock_new();
|
|
if (sec_malloc_lock == NULL)
|
|
return 0;
|
|
if ((ret = sh_init(size, minsize)) != 0) {
|
|
secure_mem_initialized = 1;
|
|
} else {
|
|
CRYPTO_THREAD_lock_free(sec_malloc_lock);
|
|
sec_malloc_lock = NULL;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
int CRYPTO_secure_malloc_done()
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
if (secure_mem_used == 0) {
|
|
sh_done();
|
|
secure_mem_initialized = 0;
|
|
CRYPTO_THREAD_lock_free(sec_malloc_lock);
|
|
sec_malloc_lock = NULL;
|
|
return 1;
|
|
}
|
|
#endif /* IMPLEMENTED */
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_secure_malloc_initialized()
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
return secure_mem_initialized;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
void *CRYPTO_secure_malloc(size_t num, const char *file, int line)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
void *ret;
|
|
size_t actual_size;
|
|
|
|
if (!secure_mem_initialized) {
|
|
return CRYPTO_malloc(num, file, line);
|
|
}
|
|
CRYPTO_THREAD_write_lock(sec_malloc_lock);
|
|
ret = sh_malloc(num);
|
|
actual_size = ret ? sh_actual_size(ret) : 0;
|
|
secure_mem_used += actual_size;
|
|
CRYPTO_THREAD_unlock(sec_malloc_lock);
|
|
return ret;
|
|
#else
|
|
return CRYPTO_malloc(num, file, line);
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
void *CRYPTO_secure_zalloc(size_t num, const char *file, int line)
|
|
{
|
|
void *ret = CRYPTO_secure_malloc(num, file, line);
|
|
|
|
if (ret != NULL)
|
|
memset(ret, 0, num);
|
|
return ret;
|
|
}
|
|
|
|
void CRYPTO_secure_free(void *ptr, const char *file, int line)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
size_t actual_size;
|
|
|
|
if (ptr == NULL)
|
|
return;
|
|
if (!CRYPTO_secure_allocated(ptr)) {
|
|
CRYPTO_free(ptr, file, line);
|
|
return;
|
|
}
|
|
CRYPTO_THREAD_write_lock(sec_malloc_lock);
|
|
actual_size = sh_actual_size(ptr);
|
|
CLEAR(ptr, actual_size);
|
|
secure_mem_used -= actual_size;
|
|
sh_free(ptr);
|
|
CRYPTO_THREAD_unlock(sec_malloc_lock);
|
|
#else
|
|
CRYPTO_free(ptr, file, line);
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
int CRYPTO_secure_allocated(const void *ptr)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
int ret;
|
|
|
|
if (!secure_mem_initialized)
|
|
return 0;
|
|
CRYPTO_THREAD_write_lock(sec_malloc_lock);
|
|
ret = sh_allocated(ptr);
|
|
CRYPTO_THREAD_unlock(sec_malloc_lock);
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
size_t CRYPTO_secure_used()
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
return secure_mem_used;
|
|
#else
|
|
return 0;
|
|
#endif /* IMPLEMENTED */
|
|
}
|
|
|
|
size_t CRYPTO_secure_actual_size(void *ptr)
|
|
{
|
|
#ifdef IMPLEMENTED
|
|
size_t actual_size;
|
|
|
|
CRYPTO_THREAD_write_lock(sec_malloc_lock);
|
|
actual_size = sh_actual_size(ptr);
|
|
CRYPTO_THREAD_unlock(sec_malloc_lock);
|
|
return actual_size;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
/* END OF PAGE ...
|
|
|
|
... START OF PAGE */
|
|
|
|
/*
|
|
* SECURE HEAP IMPLEMENTATION
|
|
*/
|
|
#ifdef IMPLEMENTED
|
|
|
|
|
|
/*
|
|
* The implementation provided here uses a fixed-sized mmap() heap,
|
|
* which is locked into memory, not written to core files, and protected
|
|
* on either side by an unmapped page, which will catch pointer overruns
|
|
* (or underruns) and an attempt to read data out of the secure heap.
|
|
* Free'd memory is zero'd or otherwise cleansed.
|
|
*
|
|
* This is a pretty standard buddy allocator. We keep areas in a multiple
|
|
* of "sh.minsize" units. The freelist and bitmaps are kept separately,
|
|
* so all (and only) data is kept in the mmap'd heap.
|
|
*
|
|
* This code assumes eight-bit bytes. The numbers 3 and 7 are all over the
|
|
* place.
|
|
*/
|
|
|
|
#define ONE ((size_t)1)
|
|
|
|
# define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7)))
|
|
# define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7)))
|
|
# define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7))))
|
|
|
|
#define WITHIN_ARENA(p) \
|
|
((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
|
|
#define WITHIN_FREELIST(p) \
|
|
((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
|
|
|
|
|
|
typedef struct sh_list_st
|
|
{
|
|
struct sh_list_st *next;
|
|
struct sh_list_st **p_next;
|
|
} SH_LIST;
|
|
|
|
typedef struct sh_st
|
|
{
|
|
char* map_result;
|
|
size_t map_size;
|
|
char *arena;
|
|
size_t arena_size;
|
|
char **freelist;
|
|
ossl_ssize_t freelist_size;
|
|
size_t minsize;
|
|
unsigned char *bittable;
|
|
unsigned char *bitmalloc;
|
|
size_t bittable_size; /* size in bits */
|
|
} SH;
|
|
|
|
static SH sh;
|
|
|
|
static size_t sh_getlist(char *ptr)
|
|
{
|
|
ossl_ssize_t list = sh.freelist_size - 1;
|
|
size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
|
|
|
|
for (; bit; bit >>= 1, list--) {
|
|
if (TESTBIT(sh.bittable, bit))
|
|
break;
|
|
OPENSSL_assert((bit & 1) == 0);
|
|
}
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
static int sh_testbit(char *ptr, int list, unsigned char *table)
|
|
{
|
|
size_t bit;
|
|
|
|
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
|
|
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
|
|
bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
|
|
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
|
|
return TESTBIT(table, bit);
|
|
}
|
|
|
|
static void sh_clearbit(char *ptr, int list, unsigned char *table)
|
|
{
|
|
size_t bit;
|
|
|
|
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
|
|
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
|
|
bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
|
|
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
|
|
OPENSSL_assert(TESTBIT(table, bit));
|
|
CLEARBIT(table, bit);
|
|
}
|
|
|
|
static void sh_setbit(char *ptr, int list, unsigned char *table)
|
|
{
|
|
size_t bit;
|
|
|
|
OPENSSL_assert(list >= 0 && list < sh.freelist_size);
|
|
OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
|
|
bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
|
|
OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
|
|
OPENSSL_assert(!TESTBIT(table, bit));
|
|
SETBIT(table, bit);
|
|
}
|
|
|
|
static void sh_add_to_list(char **list, char *ptr)
|
|
{
|
|
SH_LIST *temp;
|
|
|
|
OPENSSL_assert(WITHIN_FREELIST(list));
|
|
OPENSSL_assert(WITHIN_ARENA(ptr));
|
|
|
|
temp = (SH_LIST *)ptr;
|
|
temp->next = *(SH_LIST **)list;
|
|
OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
|
|
temp->p_next = (SH_LIST **)list;
|
|
|
|
if (temp->next != NULL) {
|
|
OPENSSL_assert((char **)temp->next->p_next == list);
|
|
temp->next->p_next = &(temp->next);
|
|
}
|
|
|
|
*list = ptr;
|
|
}
|
|
|
|
static void sh_remove_from_list(char *ptr)
|
|
{
|
|
SH_LIST *temp, *temp2;
|
|
|
|
temp = (SH_LIST *)ptr;
|
|
if (temp->next != NULL)
|
|
temp->next->p_next = temp->p_next;
|
|
*temp->p_next = temp->next;
|
|
if (temp->next == NULL)
|
|
return;
|
|
|
|
temp2 = temp->next;
|
|
OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
|
|
}
|
|
|
|
|
|
static int sh_init(size_t size, int minsize)
|
|
{
|
|
int ret;
|
|
size_t i;
|
|
size_t pgsize;
|
|
size_t aligned;
|
|
|
|
memset(&sh, 0, sizeof sh);
|
|
|
|
/* make sure size and minsize are powers of 2 */
|
|
OPENSSL_assert(size > 0);
|
|
OPENSSL_assert((size & (size - 1)) == 0);
|
|
OPENSSL_assert(minsize > 0);
|
|
OPENSSL_assert((minsize & (minsize - 1)) == 0);
|
|
if (size <= 0 || (size & (size - 1)) != 0)
|
|
goto err;
|
|
if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
|
|
goto err;
|
|
|
|
while (minsize < (int)sizeof(SH_LIST))
|
|
minsize *= 2;
|
|
|
|
sh.arena_size = size;
|
|
sh.minsize = minsize;
|
|
sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
|
|
|
|
/* Prevent allocations of size 0 later on */
|
|
if (sh.bittable_size >> 3 == 0)
|
|
goto err;
|
|
|
|
sh.freelist_size = -1;
|
|
for (i = sh.bittable_size; i; i >>= 1)
|
|
sh.freelist_size++;
|
|
|
|
sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof (char *));
|
|
OPENSSL_assert(sh.freelist != NULL);
|
|
if (sh.freelist == NULL)
|
|
goto err;
|
|
|
|
sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
|
|
OPENSSL_assert(sh.bittable != NULL);
|
|
if (sh.bittable == NULL)
|
|
goto err;
|
|
|
|
sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
|
|
OPENSSL_assert(sh.bitmalloc != NULL);
|
|
if (sh.bitmalloc == NULL)
|
|
goto err;
|
|
|
|
/* Allocate space for heap, and two extra pages as guards */
|
|
#if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
|
|
{
|
|
# if defined(_SC_PAGE_SIZE)
|
|
long tmppgsize = sysconf(_SC_PAGE_SIZE);
|
|
# else
|
|
long tmppgsize = sysconf(_SC_PAGESIZE);
|
|
# endif
|
|
if (tmppgsize < 1)
|
|
pgsize = PAGE_SIZE;
|
|
else
|
|
pgsize = (size_t)tmppgsize;
|
|
}
|
|
#else
|
|
pgsize = PAGE_SIZE;
|
|
#endif
|
|
sh.map_size = pgsize + sh.arena_size + pgsize;
|
|
if (1) {
|
|
#ifdef MAP_ANON
|
|
sh.map_result = mmap(NULL, sh.map_size,
|
|
PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
|
|
} else {
|
|
#endif
|
|
int fd;
|
|
|
|
sh.map_result = MAP_FAILED;
|
|
if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
|
|
sh.map_result = mmap(NULL, sh.map_size,
|
|
PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
close(fd);
|
|
}
|
|
}
|
|
OPENSSL_assert(sh.map_result != MAP_FAILED);
|
|
if (sh.map_result == MAP_FAILED)
|
|
goto err;
|
|
sh.arena = (char *)(sh.map_result + pgsize);
|
|
sh_setbit(sh.arena, 0, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[0], sh.arena);
|
|
|
|
/* Now try to add guard pages and lock into memory. */
|
|
ret = 1;
|
|
|
|
/* Starting guard is already aligned from mmap. */
|
|
if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
|
|
ret = 2;
|
|
|
|
/* Ending guard page - need to round up to page boundary */
|
|
aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
|
|
if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
|
|
ret = 2;
|
|
|
|
#if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2)
|
|
if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) {
|
|
if (errno == ENOSYS) {
|
|
if (mlock(sh.arena, sh.arena_size) < 0)
|
|
ret = 2;
|
|
} else {
|
|
ret = 2;
|
|
}
|
|
}
|
|
#else
|
|
if (mlock(sh.arena, sh.arena_size) < 0)
|
|
ret = 2;
|
|
#endif
|
|
#ifdef MADV_DONTDUMP
|
|
if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
|
|
ret = 2;
|
|
#endif
|
|
|
|
return ret;
|
|
|
|
err:
|
|
sh_done();
|
|
return 0;
|
|
}
|
|
|
|
static void sh_done()
|
|
{
|
|
OPENSSL_free(sh.freelist);
|
|
OPENSSL_free(sh.bittable);
|
|
OPENSSL_free(sh.bitmalloc);
|
|
if (sh.map_result != NULL && sh.map_size)
|
|
munmap(sh.map_result, sh.map_size);
|
|
memset(&sh, 0, sizeof sh);
|
|
}
|
|
|
|
static int sh_allocated(const char *ptr)
|
|
{
|
|
return WITHIN_ARENA(ptr) ? 1 : 0;
|
|
}
|
|
|
|
static char *sh_find_my_buddy(char *ptr, int list)
|
|
{
|
|
size_t bit;
|
|
char *chunk = NULL;
|
|
|
|
bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list);
|
|
bit ^= 1;
|
|
|
|
if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
|
|
chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list));
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static void *sh_malloc(size_t size)
|
|
{
|
|
ossl_ssize_t list, slist;
|
|
size_t i;
|
|
char *chunk;
|
|
|
|
if (size > sh.arena_size)
|
|
return NULL;
|
|
|
|
list = sh.freelist_size - 1;
|
|
for (i = sh.minsize; i < size; i <<= 1)
|
|
list--;
|
|
if (list < 0)
|
|
return NULL;
|
|
|
|
/* try to find a larger entry to split */
|
|
for (slist = list; slist >= 0; slist--)
|
|
if (sh.freelist[slist] != NULL)
|
|
break;
|
|
if (slist < 0)
|
|
return NULL;
|
|
|
|
/* split larger entry */
|
|
while (slist != list) {
|
|
char *temp = sh.freelist[slist];
|
|
|
|
/* remove from bigger list */
|
|
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
|
|
sh_clearbit(temp, slist, sh.bittable);
|
|
sh_remove_from_list(temp);
|
|
OPENSSL_assert(temp != sh.freelist[slist]);
|
|
|
|
/* done with bigger list */
|
|
slist++;
|
|
|
|
/* add to smaller list */
|
|
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
|
|
sh_setbit(temp, slist, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[slist], temp);
|
|
OPENSSL_assert(sh.freelist[slist] == temp);
|
|
|
|
/* split in 2 */
|
|
temp += sh.arena_size >> slist;
|
|
OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
|
|
sh_setbit(temp, slist, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[slist], temp);
|
|
OPENSSL_assert(sh.freelist[slist] == temp);
|
|
|
|
OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
|
|
}
|
|
|
|
/* peel off memory to hand back */
|
|
chunk = sh.freelist[list];
|
|
OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
|
|
sh_setbit(chunk, list, sh.bitmalloc);
|
|
sh_remove_from_list(chunk);
|
|
|
|
OPENSSL_assert(WITHIN_ARENA(chunk));
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static void sh_free(void *ptr)
|
|
{
|
|
size_t list;
|
|
void *buddy;
|
|
|
|
if (ptr == NULL)
|
|
return;
|
|
OPENSSL_assert(WITHIN_ARENA(ptr));
|
|
if (!WITHIN_ARENA(ptr))
|
|
return;
|
|
|
|
list = sh_getlist(ptr);
|
|
OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
|
|
sh_clearbit(ptr, list, sh.bitmalloc);
|
|
sh_add_to_list(&sh.freelist[list], ptr);
|
|
|
|
/* Try to coalesce two adjacent free areas. */
|
|
while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
|
|
OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
|
|
OPENSSL_assert(ptr != NULL);
|
|
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
|
|
sh_clearbit(ptr, list, sh.bittable);
|
|
sh_remove_from_list(ptr);
|
|
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
|
|
sh_clearbit(buddy, list, sh.bittable);
|
|
sh_remove_from_list(buddy);
|
|
|
|
list--;
|
|
|
|
if (ptr > buddy)
|
|
ptr = buddy;
|
|
|
|
OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
|
|
sh_setbit(ptr, list, sh.bittable);
|
|
sh_add_to_list(&sh.freelist[list], ptr);
|
|
OPENSSL_assert(sh.freelist[list] == ptr);
|
|
}
|
|
}
|
|
|
|
static size_t sh_actual_size(char *ptr)
|
|
{
|
|
int list;
|
|
|
|
OPENSSL_assert(WITHIN_ARENA(ptr));
|
|
if (!WITHIN_ARENA(ptr))
|
|
return 0;
|
|
list = sh_getlist(ptr);
|
|
OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
|
|
return sh.arena_size / (ONE << list);
|
|
}
|
|
#endif /* IMPLEMENTED */
|