openssl/crypto/modes/asm/ghashp8-ppc.pl
Josh Soref 46f4e1bec5 Many spelling fixes/typo's corrected.
Around 138 distinct errors found and fixed; thanks!

Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3459)
2017-11-11 19:03:10 -05:00

670 lines
14 KiB
Perl
Executable file

#! /usr/bin/env perl
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for for PowerISA v2.07.
#
# July 2014
#
# Accurate performance measurements are problematic, because it's
# always virtualized setup with possibly throttled processor.
# Relative comparison is therefore more informative. This initial
# version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x
# faster than "4-bit" integer-only compiler-generated 64-bit code.
# "Initial version" means that there is room for further improvement.
# May 2016
#
# 2x aggregated reduction improves performance by 50% (resulting
# performance on POWER8 is 1 cycle per processed byte), and 4x
# aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb).
$flavour=shift;
$output =shift;
if ($flavour =~ /64/) {
$SIZE_T=8;
$LRSAVE=2*$SIZE_T;
$STU="stdu";
$POP="ld";
$PUSH="std";
$UCMP="cmpld";
$SHRI="srdi";
} elsif ($flavour =~ /32/) {
$SIZE_T=4;
$LRSAVE=$SIZE_T;
$STU="stwu";
$POP="lwz";
$PUSH="stw";
$UCMP="cmplw";
$SHRI="srwi";
} else { die "nonsense $flavour"; }
$sp="r1";
$FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
die "can't locate ppc-xlate.pl";
open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!";
my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block
my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3));
my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12));
my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19));
my $vrsave="r12";
$code=<<___;
.machine "any"
.text
.globl .gcm_init_p8
.align 5
.gcm_init_p8:
li r0,-4096
li r8,0x10
mfspr $vrsave,256
li r9,0x20
mtspr 256,r0
li r10,0x30
lvx_u $H,0,r4 # load H
vspltisb $xC2,-16 # 0xf0
vspltisb $t0,1 # one
vaddubm $xC2,$xC2,$xC2 # 0xe0
vxor $zero,$zero,$zero
vor $xC2,$xC2,$t0 # 0xe1
vsldoi $xC2,$xC2,$zero,15 # 0xe1...
vsldoi $t1,$zero,$t0,1 # ...1
vaddubm $xC2,$xC2,$xC2 # 0xc2...
vspltisb $t2,7
vor $xC2,$xC2,$t1 # 0xc2....01
vspltb $t1,$H,0 # most significant byte
vsl $H,$H,$t0 # H<<=1
vsrab $t1,$t1,$t2 # broadcast carry bit
vand $t1,$t1,$xC2
vxor $IN,$H,$t1 # twisted H
vsldoi $H,$IN,$IN,8 # twist even more ...
vsldoi $xC2,$zero,$xC2,8 # 0xc2.0
vsldoi $Hl,$zero,$H,8 # ... and split
vsldoi $Hh,$H,$zero,8
stvx_u $xC2,0,r3 # save pre-computed table
stvx_u $Hl,r8,r3
li r8,0x40
stvx_u $H, r9,r3
li r9,0x50
stvx_u $Hh,r10,r3
li r10,0x60
vpmsumd $Xl,$IN,$Hl # H.lo·H.lo
vpmsumd $Xm,$IN,$H # H.hi·H.lo+H.lo·H.hi
vpmsumd $Xh,$IN,$Hh # H.hi·H.hi
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vpmsumd $Xl,$Xl,$xC2
vxor $t1,$t1,$Xh
vxor $IN1,$Xl,$t1
vsldoi $H2,$IN1,$IN1,8
vsldoi $H2l,$zero,$H2,8
vsldoi $H2h,$H2,$zero,8
stvx_u $H2l,r8,r3 # save H^2
li r8,0x70
stvx_u $H2,r9,r3
li r9,0x80
stvx_u $H2h,r10,r3
li r10,0x90
___
{
my ($t4,$t5,$t6) = ($Hl,$H,$Hh);
$code.=<<___;
vpmsumd $Xl,$IN,$H2l # H.lo·H^2.lo
vpmsumd $Xl1,$IN1,$H2l # H^2.lo·H^2.lo
vpmsumd $Xm,$IN,$H2 # H.hi·H^2.lo+H.lo·H^2.hi
vpmsumd $Xm1,$IN1,$H2 # H^2.hi·H^2.lo+H^2.lo·H^2.hi
vpmsumd $Xh,$IN,$H2h # H.hi·H^2.hi
vpmsumd $Xh1,$IN1,$H2h # H^2.hi·H^2.hi
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vpmsumd $t6,$Xl1,$xC2 # 1st reduction phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vsldoi $t4,$Xm1,$zero,8
vsldoi $t5,$zero,$Xm1,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vxor $Xl1,$Xl1,$t4
vxor $Xh1,$Xh1,$t5
vsldoi $Xl,$Xl,$Xl,8
vsldoi $Xl1,$Xl1,$Xl1,8
vxor $Xl,$Xl,$t2
vxor $Xl1,$Xl1,$t6
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vsldoi $t5,$Xl1,$Xl1,8 # 2nd reduction phase
vpmsumd $Xl,$Xl,$xC2
vpmsumd $Xl1,$Xl1,$xC2
vxor $t1,$t1,$Xh
vxor $t5,$t5,$Xh1
vxor $Xl,$Xl,$t1
vxor $Xl1,$Xl1,$t5
vsldoi $H,$Xl,$Xl,8
vsldoi $H2,$Xl1,$Xl1,8
vsldoi $Hl,$zero,$H,8
vsldoi $Hh,$H,$zero,8
vsldoi $H2l,$zero,$H2,8
vsldoi $H2h,$H2,$zero,8
stvx_u $Hl,r8,r3 # save H^3
li r8,0xa0
stvx_u $H,r9,r3
li r9,0xb0
stvx_u $Hh,r10,r3
li r10,0xc0
stvx_u $H2l,r8,r3 # save H^4
stvx_u $H2,r9,r3
stvx_u $H2h,r10,r3
mtspr 256,$vrsave
blr
.long 0
.byte 0,12,0x14,0,0,0,2,0
.long 0
.size .gcm_init_p8,.-.gcm_init_p8
___
}
$code.=<<___;
.globl .gcm_gmult_p8
.align 5
.gcm_gmult_p8:
lis r0,0xfff8
li r8,0x10
mfspr $vrsave,256
li r9,0x20
mtspr 256,r0
li r10,0x30
lvx_u $IN,0,$Xip # load Xi
lvx_u $Hl,r8,$Htbl # load pre-computed table
le?lvsl $lemask,r0,r0
lvx_u $H, r9,$Htbl
le?vspltisb $t0,0x07
lvx_u $Hh,r10,$Htbl
le?vxor $lemask,$lemask,$t0
lvx_u $xC2,0,$Htbl
le?vperm $IN,$IN,$IN,$lemask
vxor $zero,$zero,$zero
vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo
vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi
vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vpmsumd $Xl,$Xl,$xC2
vxor $t1,$t1,$Xh
vxor $Xl,$Xl,$t1
le?vperm $Xl,$Xl,$Xl,$lemask
stvx_u $Xl,0,$Xip # write out Xi
mtspr 256,$vrsave
blr
.long 0
.byte 0,12,0x14,0,0,0,2,0
.long 0
.size .gcm_gmult_p8,.-.gcm_gmult_p8
.globl .gcm_ghash_p8
.align 5
.gcm_ghash_p8:
li r0,-4096
li r8,0x10
mfspr $vrsave,256
li r9,0x20
mtspr 256,r0
li r10,0x30
lvx_u $Xl,0,$Xip # load Xi
lvx_u $Hl,r8,$Htbl # load pre-computed table
li r8,0x40
le?lvsl $lemask,r0,r0
lvx_u $H, r9,$Htbl
li r9,0x50
le?vspltisb $t0,0x07
lvx_u $Hh,r10,$Htbl
li r10,0x60
le?vxor $lemask,$lemask,$t0
lvx_u $xC2,0,$Htbl
le?vperm $Xl,$Xl,$Xl,$lemask
vxor $zero,$zero,$zero
${UCMP}i $len,64
bge Lgcm_ghash_p8_4x
lvx_u $IN,0,$inp
addi $inp,$inp,16
subic. $len,$len,16
le?vperm $IN,$IN,$IN,$lemask
vxor $IN,$IN,$Xl
beq Lshort
lvx_u $H2l,r8,$Htbl # load H^2
li r8,16
lvx_u $H2, r9,$Htbl
add r9,$inp,$len # end of input
lvx_u $H2h,r10,$Htbl
be?b Loop_2x
.align 5
Loop_2x:
lvx_u $IN1,0,$inp
le?vperm $IN1,$IN1,$IN1,$lemask
subic $len,$len,32
vpmsumd $Xl,$IN,$H2l # H^2.lo·Xi.lo
vpmsumd $Xl1,$IN1,$Hl # H.lo·Xi+1.lo
subfe r0,r0,r0 # borrow?-1:0
vpmsumd $Xm,$IN,$H2 # H^2.hi·Xi.lo+H^2.lo·Xi.hi
vpmsumd $Xm1,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+1.hi
and r0,r0,$len
vpmsumd $Xh,$IN,$H2h # H^2.hi·Xi.hi
vpmsumd $Xh1,$IN1,$Hh # H.hi·Xi+1.hi
add $inp,$inp,r0
vxor $Xl,$Xl,$Xl1
vxor $Xm,$Xm,$Xm1
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xh,$Xh,$Xh1
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
lvx_u $IN,r8,$inp
addi $inp,$inp,32
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vpmsumd $Xl,$Xl,$xC2
le?vperm $IN,$IN,$IN,$lemask
vxor $t1,$t1,$Xh
vxor $IN,$IN,$t1
vxor $IN,$IN,$Xl
$UCMP r9,$inp
bgt Loop_2x # done yet?
cmplwi $len,0
bne Leven
Lshort:
vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo
vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi
vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vpmsumd $Xl,$Xl,$xC2
vxor $t1,$t1,$Xh
Leven:
vxor $Xl,$Xl,$t1
le?vperm $Xl,$Xl,$Xl,$lemask
stvx_u $Xl,0,$Xip # write out Xi
mtspr 256,$vrsave
blr
.long 0
.byte 0,12,0x14,0,0,0,4,0
.long 0
___
{
my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h,
$Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31));
my $IN0=$IN;
my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h);
$code.=<<___;
.align 5
.gcm_ghash_p8_4x:
Lgcm_ghash_p8_4x:
$STU $sp,-$FRAME($sp)
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
stvx v20,r10,$sp
addi r10,r10,32
stvx v21,r11,$sp
addi r11,r11,32
stvx v22,r10,$sp
addi r10,r10,32
stvx v23,r11,$sp
addi r11,r11,32
stvx v24,r10,$sp
addi r10,r10,32
stvx v25,r11,$sp
addi r11,r11,32
stvx v26,r10,$sp
addi r10,r10,32
stvx v27,r11,$sp
addi r11,r11,32
stvx v28,r10,$sp
addi r10,r10,32
stvx v29,r11,$sp
addi r11,r11,32
stvx v30,r10,$sp
li r10,0x60
stvx v31,r11,$sp
li r0,-1
stw $vrsave,`$FRAME-4`($sp) # save vrsave
mtspr 256,r0 # preserve all AltiVec registers
lvsl $t0,0,r8 # 0x0001..0e0f
#lvx_u $H2l,r8,$Htbl # load H^2
li r8,0x70
lvx_u $H2, r9,$Htbl
li r9,0x80
vspltisb $t1,8 # 0x0808..0808
#lvx_u $H2h,r10,$Htbl
li r10,0x90
lvx_u $H3l,r8,$Htbl # load H^3
li r8,0xa0
lvx_u $H3, r9,$Htbl
li r9,0xb0
lvx_u $H3h,r10,$Htbl
li r10,0xc0
lvx_u $H4l,r8,$Htbl # load H^4
li r8,0x10
lvx_u $H4, r9,$Htbl
li r9,0x20
lvx_u $H4h,r10,$Htbl
li r10,0x30
vsldoi $t2,$zero,$t1,8 # 0x0000..0808
vaddubm $hiperm,$t0,$t2 # 0x0001..1617
vaddubm $loperm,$t1,$hiperm # 0x0809..1e1f
$SHRI $len,$len,4 # this allows to use sign bit
# as carry
lvx_u $IN0,0,$inp # load input
lvx_u $IN1,r8,$inp
subic. $len,$len,8
lvx_u $IN2,r9,$inp
lvx_u $IN3,r10,$inp
addi $inp,$inp,0x40
le?vperm $IN0,$IN0,$IN0,$lemask
le?vperm $IN1,$IN1,$IN1,$lemask
le?vperm $IN2,$IN2,$IN2,$lemask
le?vperm $IN3,$IN3,$IN3,$lemask
vxor $Xh,$IN0,$Xl
vpmsumd $Xl1,$IN1,$H3l
vpmsumd $Xm1,$IN1,$H3
vpmsumd $Xh1,$IN1,$H3h
vperm $H21l,$H2,$H,$hiperm
vperm $t0,$IN2,$IN3,$loperm
vperm $H21h,$H2,$H,$loperm
vperm $t1,$IN2,$IN3,$hiperm
vpmsumd $Xm2,$IN2,$H2 # H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo
vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+2.lo+H.lo·Xi+3.lo
vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi
vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+2.hi+H.hi·Xi+3.hi
vxor $Xm2,$Xm2,$Xm1
vxor $Xl3,$Xl3,$Xl1
vxor $Xm3,$Xm3,$Xm2
vxor $Xh3,$Xh3,$Xh1
blt Ltail_4x
Loop_4x:
lvx_u $IN0,0,$inp
lvx_u $IN1,r8,$inp
subic. $len,$len,4
lvx_u $IN2,r9,$inp
lvx_u $IN3,r10,$inp
addi $inp,$inp,0x40
le?vperm $IN1,$IN1,$IN1,$lemask
le?vperm $IN2,$IN2,$IN2,$lemask
le?vperm $IN3,$IN3,$IN3,$lemask
le?vperm $IN0,$IN0,$IN0,$lemask
vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo
vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi
vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi
vpmsumd $Xl1,$IN1,$H3l
vpmsumd $Xm1,$IN1,$H3
vpmsumd $Xh1,$IN1,$H3h
vxor $Xl,$Xl,$Xl3
vxor $Xm,$Xm,$Xm3
vxor $Xh,$Xh,$Xh3
vperm $t0,$IN2,$IN3,$loperm
vperm $t1,$IN2,$IN3,$hiperm
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vpmsumd $Xl3,$t0,$H21l # H.lo·Xi+3.lo +H^2.lo·Xi+2.lo
vpmsumd $Xh3,$t1,$H21h # H.hi·Xi+3.hi +H^2.hi·Xi+2.hi
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vpmsumd $Xm2,$IN2,$H2 # H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi
vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi
vpmsumd $Xl,$Xl,$xC2
vxor $Xl3,$Xl3,$Xl1
vxor $Xh3,$Xh3,$Xh1
vxor $Xh,$Xh,$IN0
vxor $Xm2,$Xm2,$Xm1
vxor $Xh,$Xh,$t1
vxor $Xm3,$Xm3,$Xm2
vxor $Xh,$Xh,$Xl
bge Loop_4x
Ltail_4x:
vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo
vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi
vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi
vxor $Xl,$Xl,$Xl3
vxor $Xm,$Xm,$Xm3
vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xh,$Xh,$Xh3
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
vpmsumd $Xl,$Xl,$xC2
vxor $t1,$t1,$Xh
vxor $Xl,$Xl,$t1
addic. $len,$len,4
beq Ldone_4x
lvx_u $IN0,0,$inp
${UCMP}i $len,2
li $len,-4
blt Lone
lvx_u $IN1,r8,$inp
beq Ltwo
Lthree:
lvx_u $IN2,r9,$inp
le?vperm $IN0,$IN0,$IN0,$lemask
le?vperm $IN1,$IN1,$IN1,$lemask
le?vperm $IN2,$IN2,$IN2,$lemask
vxor $Xh,$IN0,$Xl
vmr $H4l,$H3l
vmr $H4, $H3
vmr $H4h,$H3h
vperm $t0,$IN1,$IN2,$loperm
vperm $t1,$IN1,$IN2,$hiperm
vpmsumd $Xm2,$IN1,$H2 # H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo
vpmsumd $Xm3,$IN2,$H # H.hi·Xi+2.lo +H.lo·Xi+2.hi
vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+1.lo+H.lo·Xi+2.lo
vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+1.hi+H.hi·Xi+2.hi
vxor $Xm3,$Xm3,$Xm2
b Ltail_4x
.align 4
Ltwo:
le?vperm $IN0,$IN0,$IN0,$lemask
le?vperm $IN1,$IN1,$IN1,$lemask
vxor $Xh,$IN0,$Xl
vperm $t0,$zero,$IN1,$loperm
vperm $t1,$zero,$IN1,$hiperm
vsldoi $H4l,$zero,$H2,8
vmr $H4, $H2
vsldoi $H4h,$H2,$zero,8
vpmsumd $Xl3,$t0, $H21l # H.lo·Xi+1.lo
vpmsumd $Xm3,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+2.hi
vpmsumd $Xh3,$t1, $H21h # H.hi·Xi+1.hi
b Ltail_4x
.align 4
Lone:
le?vperm $IN0,$IN0,$IN0,$lemask
vsldoi $H4l,$zero,$H,8
vmr $H4, $H
vsldoi $H4h,$H,$zero,8
vxor $Xh,$IN0,$Xl
vxor $Xl3,$Xl3,$Xl3
vxor $Xm3,$Xm3,$Xm3
vxor $Xh3,$Xh3,$Xh3
b Ltail_4x
Ldone_4x:
le?vperm $Xl,$Xl,$Xl,$lemask
stvx_u $Xl,0,$Xip # write out Xi
li r10,`15+6*$SIZE_T`
li r11,`31+6*$SIZE_T`
mtspr 256,$vrsave
lvx v20,r10,$sp
addi r10,r10,32
lvx v21,r11,$sp
addi r11,r11,32
lvx v22,r10,$sp
addi r10,r10,32
lvx v23,r11,$sp
addi r11,r11,32
lvx v24,r10,$sp
addi r10,r10,32
lvx v25,r11,$sp
addi r11,r11,32
lvx v26,r10,$sp
addi r10,r10,32
lvx v27,r11,$sp
addi r11,r11,32
lvx v28,r10,$sp
addi r10,r10,32
lvx v29,r11,$sp
addi r11,r11,32
lvx v30,r10,$sp
lvx v31,r11,$sp
addi $sp,$sp,$FRAME
blr
.long 0
.byte 0,12,0x04,0,0x80,0,4,0
.long 0
___
}
$code.=<<___;
.size .gcm_ghash_p8,.-.gcm_ghash_p8
.asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
___
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/geo;
if ($flavour =~ /le$/o) { # little-endian
s/le\?//o or
s/be\?/#be#/o;
} else {
s/le\?/#le#/o or
s/be\?//o;
}
print $_,"\n";
}
close STDOUT; # enforce flush