02a73e2bed
higher).
221 lines
5 KiB
Raku
221 lines
5 KiB
Raku
#!/usr/bin/env perl
|
||
#
|
||
# ====================================================================
|
||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||
# project. The module is, however, dual licensed under OpenSSL and
|
||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||
# ====================================================================
|
||
#
|
||
# May 2011
|
||
#
|
||
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
|
||
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
|
||
# the time being... gcc 4.3 appeared to generate poor code, therefore
|
||
# the effort. And indeed, the module delivers 55%-90%(*) improvement
|
||
# on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit
|
||
# key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196.
|
||
# This is for 64-bit build. In 32-bit "highgprs" case improvement is
|
||
# even higher, for example on z990 it was measured 80%-150%. ECDSA
|
||
# sign is modest 9%-12% faster. Keep in mind that these coefficients
|
||
# are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is
|
||
# burnt in it...
|
||
#
|
||
# (*) gcc 4.1 was observed to deliver better results than gcc 4.3,
|
||
# so that improvement coefficients can vary from one specific
|
||
# setup to another.
|
||
|
||
$flavour = shift;
|
||
|
||
if ($flavour =~ /3[12]/) {
|
||
$SIZE_T=4;
|
||
$g="";
|
||
} else {
|
||
$SIZE_T=8;
|
||
$g="g";
|
||
}
|
||
|
||
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
||
open STDOUT,">$output";
|
||
|
||
$stdframe=16*$SIZE_T+4*8;
|
||
|
||
$rp="%r2";
|
||
$a1="%r3";
|
||
$a0="%r4";
|
||
$b1="%r5";
|
||
$b0="%r6";
|
||
|
||
$ra="%r14";
|
||
$sp="%r15";
|
||
|
||
@T=("%r0","%r1");
|
||
@i=("%r12","%r13");
|
||
|
||
($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11));
|
||
($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8;
|
||
|
||
$code.=<<___;
|
||
.text
|
||
|
||
.type _mul_1x1,\@function
|
||
.align 16
|
||
_mul_1x1:
|
||
lgr $a1,$a
|
||
sllg $a2,$a,1
|
||
sllg $a4,$a,2
|
||
sllg $a8,$a,3
|
||
|
||
srag $lo,$a1,63 # broadcast 63rd bit
|
||
nihh $a1,0x1fff
|
||
srag @i[0],$a2,63 # broadcast 62nd bit
|
||
nihh $a2,0x3fff
|
||
srag @i[1],$a4,63 # broadcast 61st bit
|
||
nihh $a4,0x7fff
|
||
ngr $lo,$b
|
||
ngr @i[0],$b
|
||
ngr @i[1],$b
|
||
|
||
lghi @T[0],0
|
||
lgr $a12,$a1
|
||
stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0
|
||
xgr $a12,$a2
|
||
stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1
|
||
lgr $a48,$a4
|
||
stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2
|
||
xgr $a48,$a8
|
||
stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2
|
||
xgr $a1,$a4
|
||
|
||
stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4
|
||
xgr $a2,$a4
|
||
stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4
|
||
xgr $a12,$a4
|
||
stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4
|
||
xgr $a1,$a48
|
||
stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4
|
||
xgr $a2,$a48
|
||
|
||
stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8
|
||
xgr $a12,$a48
|
||
stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8
|
||
xgr $a1,$a4
|
||
stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8
|
||
xgr $a2,$a4
|
||
stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8
|
||
|
||
xgr $a12,$a4
|
||
stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8
|
||
srlg $hi,$lo,1
|
||
stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8
|
||
sllg $lo,$lo,63
|
||
stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8
|
||
srlg @T[0],@i[0],2
|
||
stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8
|
||
|
||
lghi $mask,`0xf<<3`
|
||
sllg $a1,@i[0],62
|
||
sllg @i[0],$b,3
|
||
srlg @T[1],@i[1],3
|
||
ngr @i[0],$mask
|
||
sllg $a2,@i[1],61
|
||
srlg @i[1],$b,4-3
|
||
xgr $hi,@T[0]
|
||
ngr @i[1],$mask
|
||
xgr $lo,$a1
|
||
xgr $hi,@T[1]
|
||
xgr $lo,$a2
|
||
|
||
xg $lo,$stdframe(@i[0],$sp)
|
||
srlg @i[0],$b,8-3
|
||
ngr @i[0],$mask
|
||
___
|
||
for($n=1;$n<14;$n++) {
|
||
$code.=<<___;
|
||
lg @T[1],$stdframe(@i[1],$sp)
|
||
srlg @i[1],$b,`($n+2)*4`-3
|
||
sllg @T[0],@T[1],`$n*4`
|
||
ngr @i[1],$mask
|
||
srlg @T[1],@T[1],`64-$n*4`
|
||
xgr $lo,@T[0]
|
||
xgr $hi,@T[1]
|
||
___
|
||
push(@i,shift(@i)); push(@T,shift(@T));
|
||
}
|
||
$code.=<<___;
|
||
lg @T[1],$stdframe(@i[1],$sp)
|
||
sllg @T[0],@T[1],`$n*4`
|
||
srlg @T[1],@T[1],`64-$n*4`
|
||
xgr $lo,@T[0]
|
||
xgr $hi,@T[1]
|
||
|
||
lg @T[0],$stdframe(@i[0],$sp)
|
||
sllg @T[1],@T[0],`($n+1)*4`
|
||
srlg @T[0],@T[0],`64-($n+1)*4`
|
||
xgr $lo,@T[1]
|
||
xgr $hi,@T[0]
|
||
|
||
br $ra
|
||
.size _mul_1x1,.-_mul_1x1
|
||
|
||
.globl bn_GF2m_mul_2x2
|
||
.type bn_GF2m_mul_2x2,\@function
|
||
.align 16
|
||
bn_GF2m_mul_2x2:
|
||
stm${g} %r3,%r15,3*$SIZE_T($sp)
|
||
|
||
lghi %r1,-$stdframe-128
|
||
la %r0,0($sp)
|
||
la $sp,0(%r1,$sp) # alloca
|
||
st${g} %r0,0($sp) # back chain
|
||
___
|
||
if ($SIZE_T==8) {
|
||
my @r=map("%r$_",(6..9));
|
||
$code.=<<___;
|
||
bras $ra,_mul_1x1 # a1<61>b1
|
||
stmg $lo,$hi,16($rp)
|
||
|
||
lg $a,`$stdframe+128+4*$SIZE_T`($sp)
|
||
lg $b,`$stdframe+128+6*$SIZE_T`($sp)
|
||
bras $ra,_mul_1x1 # a0<61>b0
|
||
stmg $lo,$hi,0($rp)
|
||
|
||
lg $a,`$stdframe+128+3*$SIZE_T`($sp)
|
||
lg $b,`$stdframe+128+5*$SIZE_T`($sp)
|
||
xg $a,`$stdframe+128+4*$SIZE_T`($sp)
|
||
xg $b,`$stdframe+128+6*$SIZE_T`($sp)
|
||
bras $ra,_mul_1x1 # (a0+a1)<29>(b0+b1)
|
||
lmg @r[0],@r[3],0($rp)
|
||
|
||
xgr $lo,$hi
|
||
xgr $hi,@r[1]
|
||
xgr $lo,@r[0]
|
||
xgr $hi,@r[2]
|
||
xgr $lo,@r[3]
|
||
xgr $hi,@r[3]
|
||
xgr $lo,$hi
|
||
stg $hi,16($rp)
|
||
stg $lo,8($rp)
|
||
___
|
||
} else {
|
||
$code.=<<___;
|
||
sllg %r3,%r3,32
|
||
sllg %r5,%r5,32
|
||
or %r3,%r4
|
||
or %r5,%r6
|
||
bras $ra,_mul_1x1
|
||
rllg $lo,$lo,32
|
||
rllg $hi,$hi,32
|
||
stmg $lo,$hi,0($rp)
|
||
___
|
||
}
|
||
$code.=<<___;
|
||
lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp)
|
||
br $ra
|
||
.size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
|
||
.string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
|
||
___
|
||
|
||
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
|
||
print $code;
|
||
close STDOUT;
|