openssl/crypto/sha/keccak1600.c
Andy Polyakov b4f2a462b7 sha/keccak1600.c: internalize KeccakF1600 and simplify SHA3_absorb.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
2017-07-03 18:18:10 +02:00

1232 lines
40 KiB
C

/*
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/e_os2.h>
#include <string.h>
#include <assert.h>
#ifndef KECCAK1600_ASM
#if defined(__x86_64__) || defined(__aarch64__) || \
defined(__mips64) || defined(__ia64) || \
(defined(__VMS) && !defined(__vax))
/*
* These are available even in ILP32 flavours, but even then they are
* capable of performing 64-bit operations as efficiently as in *P64.
* Since it's not given that we can use sizeof(void *), just shunt it.
*/
# define BIT_INTERLEAVE (0)
#else
# define BIT_INTERLEAVE (sizeof(void *) < 8)
#endif
#define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31)))
static uint64_t ROL64(uint64_t val, int offset)
{
if (offset == 0) {
return val;
} else if (!BIT_INTERLEAVE) {
return (val << offset) | (val >> (64-offset));
} else {
uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val;
if (offset & 1) {
uint32_t tmp = hi;
offset >>= 1;
hi = ROL32(lo, offset);
lo = ROL32(tmp, offset + 1);
} else {
offset >>= 1;
lo = ROL32(lo, offset);
hi = ROL32(hi, offset);
}
return ((uint64_t)hi << 32) | lo;
}
}
static const unsigned char rhotates[5][5] = {
{ 0, 1, 62, 28, 27 },
{ 36, 44, 6, 55, 20 },
{ 3, 10, 43, 25, 39 },
{ 41, 45, 15, 21, 8 },
{ 18, 2, 61, 56, 14 }
};
static const uint64_t iotas[] = {
BIT_INTERLEAVE ? 0x0000000000000001U : 0x0000000000000001U,
BIT_INTERLEAVE ? 0x0000008900000000U : 0x0000000000008082U,
BIT_INTERLEAVE ? 0x8000008b00000000U : 0x800000000000808aU,
BIT_INTERLEAVE ? 0x8000808000000000U : 0x8000000080008000U,
BIT_INTERLEAVE ? 0x0000008b00000001U : 0x000000000000808bU,
BIT_INTERLEAVE ? 0x0000800000000001U : 0x0000000080000001U,
BIT_INTERLEAVE ? 0x8000808800000001U : 0x8000000080008081U,
BIT_INTERLEAVE ? 0x8000008200000001U : 0x8000000000008009U,
BIT_INTERLEAVE ? 0x0000000b00000000U : 0x000000000000008aU,
BIT_INTERLEAVE ? 0x0000000a00000000U : 0x0000000000000088U,
BIT_INTERLEAVE ? 0x0000808200000001U : 0x0000000080008009U,
BIT_INTERLEAVE ? 0x0000800300000000U : 0x000000008000000aU,
BIT_INTERLEAVE ? 0x0000808b00000001U : 0x000000008000808bU,
BIT_INTERLEAVE ? 0x8000000b00000001U : 0x800000000000008bU,
BIT_INTERLEAVE ? 0x8000008a00000001U : 0x8000000000008089U,
BIT_INTERLEAVE ? 0x8000008100000001U : 0x8000000000008003U,
BIT_INTERLEAVE ? 0x8000008100000000U : 0x8000000000008002U,
BIT_INTERLEAVE ? 0x8000000800000000U : 0x8000000000000080U,
BIT_INTERLEAVE ? 0x0000008300000000U : 0x000000000000800aU,
BIT_INTERLEAVE ? 0x8000800300000000U : 0x800000008000000aU,
BIT_INTERLEAVE ? 0x8000808800000001U : 0x8000000080008081U,
BIT_INTERLEAVE ? 0x8000008800000000U : 0x8000000000008080U,
BIT_INTERLEAVE ? 0x0000800000000001U : 0x0000000080000001U,
BIT_INTERLEAVE ? 0x8000808200000000U : 0x8000000080008008U
};
#if defined(KECCAK_REF)
/*
* This is straightforward or "maximum clarity" implementation aiming
* to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard:
* Permutation-Based Hash and Extendible-Output Functions" as much as
* possible. With one caveat. Because of the way C stores matrices,
* references to A[x,y] in the specification are presented as A[y][x].
* Implementation unrolls inner x-loops so that modulo 5 operations are
* explicitly pre-computed.
*/
static void Theta(uint64_t A[5][5])
{
uint64_t C[5], D[5];
size_t y;
C[0] = A[0][0];
C[1] = A[0][1];
C[2] = A[0][2];
C[3] = A[0][3];
C[4] = A[0][4];
for (y = 1; y < 5; y++) {
C[0] ^= A[y][0];
C[1] ^= A[y][1];
C[2] ^= A[y][2];
C[3] ^= A[y][3];
C[4] ^= A[y][4];
}
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
for (y = 0; y < 5; y++) {
A[y][0] ^= D[0];
A[y][1] ^= D[1];
A[y][2] ^= D[2];
A[y][3] ^= D[3];
A[y][4] ^= D[4];
}
}
static void Rho(uint64_t A[5][5])
{
size_t y;
for (y = 0; y < 5; y++) {
A[y][0] = ROL64(A[y][0], rhotates[y][0]);
A[y][1] = ROL64(A[y][1], rhotates[y][1]);
A[y][2] = ROL64(A[y][2], rhotates[y][2]);
A[y][3] = ROL64(A[y][3], rhotates[y][3]);
A[y][4] = ROL64(A[y][4], rhotates[y][4]);
}
}
static void Pi(uint64_t A[5][5])
{
uint64_t T[5][5];
/*
* T = A
* A[y][x] = T[x][(3*y+x)%5]
*/
memcpy(T, A, sizeof(T));
A[0][0] = T[0][0];
A[0][1] = T[1][1];
A[0][2] = T[2][2];
A[0][3] = T[3][3];
A[0][4] = T[4][4];
A[1][0] = T[0][3];
A[1][1] = T[1][4];
A[1][2] = T[2][0];
A[1][3] = T[3][1];
A[1][4] = T[4][2];
A[2][0] = T[0][1];
A[2][1] = T[1][2];
A[2][2] = T[2][3];
A[2][3] = T[3][4];
A[2][4] = T[4][0];
A[3][0] = T[0][4];
A[3][1] = T[1][0];
A[3][2] = T[2][1];
A[3][3] = T[3][2];
A[3][4] = T[4][3];
A[4][0] = T[0][2];
A[4][1] = T[1][3];
A[4][2] = T[2][4];
A[4][3] = T[3][0];
A[4][4] = T[4][1];
}
static void Chi(uint64_t A[5][5])
{
uint64_t C[5];
size_t y;
for (y = 0; y < 5; y++) {
C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
A[y][0] = C[0];
A[y][1] = C[1];
A[y][2] = C[2];
A[y][3] = C[3];
A[y][4] = C[4];
}
}
static void Iota(uint64_t A[5][5], size_t i)
{
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
A[0][0] ^= iotas[i];
}
static void KeccakF1600(uint64_t A[5][5])
{
size_t i;
for (i = 0; i < 24; i++) {
Theta(A);
Rho(A);
Pi(A);
Chi(A);
Iota(A, i);
}
}
#elif defined(KECCAK_1X)
/*
* This implementation is optimization of above code featuring unroll
* of even y-loops, their fusion and code motion. It also minimizes
* temporary storage. Compiler would normally do all these things for
* you, purpose of manual optimization is to provide "unobscured"
* reference for assembly implementation [in case this approach is
* chosen for implementation on some platform]. In the nutshell it's
* equivalent of "plane-per-plane processing" approach discussed in
* section 2.4 of "Keccak implementation overview".
*/
static void Round(uint64_t A[5][5], size_t i)
{
uint64_t C[5], E[2]; /* registers */
uint64_t D[5], T[2][5]; /* memory */
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
#if defined(__arm__)
D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */
T[0][1] = A[0][1] ^ E[0]; /* D[1] */
T[0][2] = A[0][2] ^ C[1]; /* D[2] */
T[0][3] = A[0][3] ^ C[2]; /* D[3] */
T[0][4] = A[0][4] ^ E[1]; /* D[4] */
C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */
C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */
C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */
C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */
C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */
#else
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */
T[0][1] = A[0][1] ^ D[1];
T[0][2] = A[0][2] ^ D[2];
T[0][3] = A[0][3] ^ D[3];
T[0][4] = A[0][4] ^ D[4];
C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
#endif
A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
A[0][1] = C[1] ^ (~C[2] & C[3]);
A[0][2] = C[2] ^ (~C[3] & C[4]);
A[0][3] = C[3] ^ (~C[4] & C[0]);
A[0][4] = C[4] ^ (~C[0] & C[1]);
T[1][0] = A[1][0] ^ (C[3] = D[0]);
T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */
T[1][2] = A[1][2] ^ (E[0] = D[2]);
T[1][3] = A[1][3] ^ (E[1] = D[3]);
T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */
C[0] = ROL64(T[0][3], rhotates[0][3]);
C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */
C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */
C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */
C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */
A[1][0] = C[0] ^ (~C[1] & C[2]);
A[1][1] = C[1] ^ (~C[2] & C[3]);
A[1][2] = C[2] ^ (~C[3] & C[4]);
A[1][3] = C[3] ^ (~C[4] & C[0]);
A[1][4] = C[4] ^ (~C[0] & C[1]);
C[0] = ROL64(T[0][1], rhotates[0][1]);
C[1] = ROL64(T[1][2], rhotates[1][2]);
C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
A[2][0] = C[0] ^ (~C[1] & C[2]);
A[2][1] = C[1] ^ (~C[2] & C[3]);
A[2][2] = C[2] ^ (~C[3] & C[4]);
A[2][3] = C[3] ^ (~C[4] & C[0]);
A[2][4] = C[4] ^ (~C[0] & C[1]);
C[0] = ROL64(T[0][4], rhotates[0][4]);
C[1] = ROL64(T[1][0], rhotates[1][0]);
C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */
C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
A[3][0] = C[0] ^ (~C[1] & C[2]);
A[3][1] = C[1] ^ (~C[2] & C[3]);
A[3][2] = C[2] ^ (~C[3] & C[4]);
A[3][3] = C[3] ^ (~C[4] & C[0]);
A[3][4] = C[4] ^ (~C[0] & C[1]);
C[0] = ROL64(T[0][2], rhotates[0][2]);
C[1] = ROL64(T[1][3], rhotates[1][3]);
C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */
C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */
C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
A[4][0] = C[0] ^ (~C[1] & C[2]);
A[4][1] = C[1] ^ (~C[2] & C[3]);
A[4][2] = C[2] ^ (~C[3] & C[4]);
A[4][3] = C[3] ^ (~C[4] & C[0]);
A[4][4] = C[4] ^ (~C[0] & C[1]);
}
static void KeccakF1600(uint64_t A[5][5])
{
size_t i;
for (i = 0; i < 24; i++) {
Round(A, i);
}
}
#elif defined(KECCAK_1X_ALT)
/*
* This is variant of above KECCAK_1X that reduces requirement for
* temporary storage even further, but at cost of more updates to A[][].
* It's less suitable if A[][] is memory bound, but better if it's
* register bound.
*/
static void Round(uint64_t A[5][5], size_t i)
{
uint64_t C[5], D[5];
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
D[1] = C[0] ^ ROL64(C[2], 1);
D[2] = C[1] ^ ROL64(C[3], 1);
D[3] = C[2] ^= ROL64(C[4], 1);
D[4] = C[3] ^= ROL64(C[0], 1);
D[0] = C[4] ^= ROL64(C[1], 1);
A[0][1] ^= D[1];
A[1][1] ^= D[1];
A[2][1] ^= D[1];
A[3][1] ^= D[1];
A[4][1] ^= D[1];
A[0][2] ^= D[2];
A[1][2] ^= D[2];
A[2][2] ^= D[2];
A[3][2] ^= D[2];
A[4][2] ^= D[2];
A[0][3] ^= C[2];
A[1][3] ^= C[2];
A[2][3] ^= C[2];
A[3][3] ^= C[2];
A[4][3] ^= C[2];
A[0][4] ^= C[3];
A[1][4] ^= C[3];
A[2][4] ^= C[3];
A[3][4] ^= C[3];
A[4][4] ^= C[3];
A[0][0] ^= C[4];
A[1][0] ^= C[4];
A[2][0] ^= C[4];
A[3][0] ^= C[4];
A[4][0] ^= C[4];
C[1] = A[0][1];
C[2] = A[0][2];
C[3] = A[0][3];
C[4] = A[0][4];
A[0][1] = ROL64(A[1][1], rhotates[1][1]);
A[0][2] = ROL64(A[2][2], rhotates[2][2]);
A[0][3] = ROL64(A[3][3], rhotates[3][3]);
A[0][4] = ROL64(A[4][4], rhotates[4][4]);
A[1][1] = ROL64(A[1][4], rhotates[1][4]);
A[2][2] = ROL64(A[2][3], rhotates[2][3]);
A[3][3] = ROL64(A[3][2], rhotates[3][2]);
A[4][4] = ROL64(A[4][1], rhotates[4][1]);
A[1][4] = ROL64(A[4][2], rhotates[4][2]);
A[2][3] = ROL64(A[3][4], rhotates[3][4]);
A[3][2] = ROL64(A[2][1], rhotates[2][1]);
A[4][1] = ROL64(A[1][3], rhotates[1][3]);
A[4][2] = ROL64(A[2][4], rhotates[2][4]);
A[3][4] = ROL64(A[4][3], rhotates[4][3]);
A[2][1] = ROL64(A[1][2], rhotates[1][2]);
A[1][3] = ROL64(A[3][1], rhotates[3][1]);
A[2][4] = ROL64(A[4][0], rhotates[4][0]);
A[4][3] = ROL64(A[3][0], rhotates[3][0]);
A[1][2] = ROL64(A[2][0], rhotates[2][0]);
A[3][1] = ROL64(A[1][0], rhotates[1][0]);
A[1][0] = ROL64(C[3], rhotates[0][3]);
A[2][0] = ROL64(C[1], rhotates[0][1]);
A[3][0] = ROL64(C[4], rhotates[0][4]);
A[4][0] = ROL64(C[2], rhotates[0][2]);
C[0] = A[0][0];
C[1] = A[1][0];
D[0] = A[0][1];
D[1] = A[1][1];
A[0][0] ^= (~A[0][1] & A[0][2]);
A[1][0] ^= (~A[1][1] & A[1][2]);
A[0][1] ^= (~A[0][2] & A[0][3]);
A[1][1] ^= (~A[1][2] & A[1][3]);
A[0][2] ^= (~A[0][3] & A[0][4]);
A[1][2] ^= (~A[1][3] & A[1][4]);
A[0][3] ^= (~A[0][4] & C[0]);
A[1][3] ^= (~A[1][4] & C[1]);
A[0][4] ^= (~C[0] & D[0]);
A[1][4] ^= (~C[1] & D[1]);
C[2] = A[2][0];
C[3] = A[3][0];
D[2] = A[2][1];
D[3] = A[3][1];
A[2][0] ^= (~A[2][1] & A[2][2]);
A[3][0] ^= (~A[3][1] & A[3][2]);
A[2][1] ^= (~A[2][2] & A[2][3]);
A[3][1] ^= (~A[3][2] & A[3][3]);
A[2][2] ^= (~A[2][3] & A[2][4]);
A[3][2] ^= (~A[3][3] & A[3][4]);
A[2][3] ^= (~A[2][4] & C[2]);
A[3][3] ^= (~A[3][4] & C[3]);
A[2][4] ^= (~C[2] & D[2]);
A[3][4] ^= (~C[3] & D[3]);
C[4] = A[4][0];
D[4] = A[4][1];
A[4][0] ^= (~A[4][1] & A[4][2]);
A[4][1] ^= (~A[4][2] & A[4][3]);
A[4][2] ^= (~A[4][3] & A[4][4]);
A[4][3] ^= (~A[4][4] & C[4]);
A[4][4] ^= (~C[4] & D[4]);
A[0][0] ^= iotas[i];
}
static void KeccakF1600(uint64_t A[5][5])
{
size_t i;
for (i = 0; i < 24; i++) {
Round(A, i);
}
}
#elif defined(KECCAK_2X)
/*
* This implementation is variant of KECCAK_1X above with outer-most
* round loop unrolled twice. This allows to take temporary storage
* out of round procedure and simplify references to it by alternating
* it with actual data (see round loop below). Just like original, it's
* rather meant as reference for an assembly implementation. It's likely
* to provide best instruction per processed byte ratio at minimal
* round unroll factor...
*/
static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i)
{
uint64_t C[5], D[5];
assert(i < (sizeof(iotas) / sizeof(iotas[0])));
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
C[0] = A[0][0] ^ D[0]; /* rotate by 0 */
C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i];
R[0][1] = C[1] ^ (~C[2] | C[3]);
R[0][2] = C[2] ^ ( C[3] & C[4]);
R[0][3] = C[3] ^ ( C[4] | C[0]);
R[0][4] = C[4] ^ ( C[0] & C[1]);
#else
R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
R[0][1] = C[1] ^ (~C[2] & C[3]);
R[0][2] = C[2] ^ (~C[3] & C[4]);
R[0][3] = C[3] ^ (~C[4] & C[0]);
R[0][4] = C[4] ^ (~C[0] & C[1]);
#endif
C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
R[1][0] = C[0] ^ (C[1] | C[2]);
R[1][1] = C[1] ^ (C[2] & C[3]);
R[1][2] = C[2] ^ (C[3] | ~C[4]);
R[1][3] = C[3] ^ (C[4] | C[0]);
R[1][4] = C[4] ^ (C[0] & C[1]);
#else
R[1][0] = C[0] ^ (~C[1] & C[2]);
R[1][1] = C[1] ^ (~C[2] & C[3]);
R[1][2] = C[2] ^ (~C[3] & C[4]);
R[1][3] = C[3] ^ (~C[4] & C[0]);
R[1][4] = C[4] ^ (~C[0] & C[1]);
#endif
C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
R[2][0] = C[0] ^ ( C[1] | C[2]);
R[2][1] = C[1] ^ ( C[2] & C[3]);
R[2][2] = C[2] ^ (~C[3] & C[4]);
R[2][3] = ~C[3] ^ ( C[4] | C[0]);
R[2][4] = C[4] ^ ( C[0] & C[1]);
#else
R[2][0] = C[0] ^ (~C[1] & C[2]);
R[2][1] = C[1] ^ (~C[2] & C[3]);
R[2][2] = C[2] ^ (~C[3] & C[4]);
R[2][3] = C[3] ^ (~C[4] & C[0]);
R[2][4] = C[4] ^ (~C[0] & C[1]);
#endif
C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
R[3][0] = C[0] ^ ( C[1] & C[2]);
R[3][1] = C[1] ^ ( C[2] | C[3]);
R[3][2] = C[2] ^ (~C[3] | C[4]);
R[3][3] = ~C[3] ^ ( C[4] & C[0]);
R[3][4] = C[4] ^ ( C[0] | C[1]);
#else
R[3][0] = C[0] ^ (~C[1] & C[2]);
R[3][1] = C[1] ^ (~C[2] & C[3]);
R[3][2] = C[2] ^ (~C[3] & C[4]);
R[3][3] = C[3] ^ (~C[4] & C[0]);
R[3][4] = C[4] ^ (~C[0] & C[1]);
#endif
C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
R[4][0] = C[0] ^ (~C[1] & C[2]);
R[4][1] = ~C[1] ^ ( C[2] | C[3]);
R[4][2] = C[2] ^ ( C[3] & C[4]);
R[4][3] = C[3] ^ ( C[4] | C[0]);
R[4][4] = C[4] ^ ( C[0] & C[1]);
#else
R[4][0] = C[0] ^ (~C[1] & C[2]);
R[4][1] = C[1] ^ (~C[2] & C[3]);
R[4][2] = C[2] ^ (~C[3] & C[4]);
R[4][3] = C[3] ^ (~C[4] & C[0]);
R[4][4] = C[4] ^ (~C[0] & C[1]);
#endif
}
static void KeccakF1600(uint64_t A[5][5])
{
uint64_t T[5][5];
size_t i;
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
A[0][1] = ~A[0][1];
A[0][2] = ~A[0][2];
A[1][3] = ~A[1][3];
A[2][2] = ~A[2][2];
A[3][2] = ~A[3][2];
A[4][0] = ~A[4][0];
#endif
for (i = 0; i < 24; i += 2) {
Round(T, A, i);
Round(A, T, i + 1);
}
#ifdef KECCAK_COMPLEMENTING_TRANSFORM
A[0][1] = ~A[0][1];
A[0][2] = ~A[0][2];
A[1][3] = ~A[1][3];
A[2][2] = ~A[2][2];
A[3][2] = ~A[3][2];
A[4][0] = ~A[4][0];
#endif
}
#else
/*
* This implementation is KECCAK_1X from above combined 4 times with
* a twist that allows to omit temporary storage and perform in-place
* processing. It's discussed in section 2.5 of "Keccak implementation
* overview". It's likely to be best suited for processors with large
* register bank...
*/
static void FourRounds(uint64_t A[5][5], size_t i)
{
uint64_t B[5], C[5], D[5];
assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4));
/* Round 4*n */
C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i];
C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]);
C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]);
C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]);
C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
/* Round 4*n+1 */
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]);
B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]);
B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]);
B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]);
C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1];
C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]);
C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]);
C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]);
C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]);
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]);
B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]);
B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]);
C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]);
B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]);
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]);
B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]);
C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]);
B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]);
B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]);
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]);
C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]);
B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]);
B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]);
B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]);
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
/* Round 4*n+2 */
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]);
B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]);
B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]);
B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]);
C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2];
C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]);
C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]);
C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]);
C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]);
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]);
B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]);
B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]);
C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]);
B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]);
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]);
B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]);
C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]);
B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]);
B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]);
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]);
C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]);
B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]);
B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]);
B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]);
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
/* Round 4*n+3 */
D[0] = ROL64(C[1], 1) ^ C[4];
D[1] = ROL64(C[2], 1) ^ C[0];
D[2] = ROL64(C[3], 1) ^ C[1];
D[3] = ROL64(C[4], 1) ^ C[2];
D[4] = ROL64(C[0], 1) ^ C[3];
B[0] = A[0][0] ^ D[0]; /* rotate by 0 */
B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]);
B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]);
B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]);
B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]);
/* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3];
/* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]);
/* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]);
/* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]);
/* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]);
B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]);
B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]);
B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]);
/* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]);
/* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]);
/* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]);
/* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]);
/* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]);
B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]);
B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]);
B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]);
/* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]);
/* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]);
/* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]);
/* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]);
/* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]);
B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]);
B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]);
B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]);
/* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]);
/* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]);
/* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]);
/* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]);
/* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]);
B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]);
B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]);
B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]);
B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]);
B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
/* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]);
/* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]);
/* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]);
/* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]);
/* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]);
}
static void KeccakF1600(uint64_t A[5][5])
{
size_t i;
for (i = 0; i < 24; i += 4) {
FourRounds(A, i);
}
}
#endif
static uint64_t BitInterleave(uint64_t Ai)
{
if (BIT_INTERLEAVE) {
uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
uint32_t t0, t1;
t0 = lo & 0x55555555;
t0 |= t0 >> 1; t0 &= 0x33333333;
t0 |= t0 >> 2; t0 &= 0x0f0f0f0f;
t0 |= t0 >> 4; t0 &= 0x00ff00ff;
t0 |= t0 >> 8; t0 &= 0x0000ffff;
t1 = hi & 0x55555555;
t1 |= t1 >> 1; t1 &= 0x33333333;
t1 |= t1 >> 2; t1 &= 0x0f0f0f0f;
t1 |= t1 >> 4; t1 &= 0x00ff00ff;
t1 |= t1 >> 8; t1 <<= 16;
lo &= 0xaaaaaaaa;
lo |= lo << 1; lo &= 0xcccccccc;
lo |= lo << 2; lo &= 0xf0f0f0f0;
lo |= lo << 4; lo &= 0xff00ff00;
lo |= lo << 8; lo >>= 16;
hi &= 0xaaaaaaaa;
hi |= hi << 1; hi &= 0xcccccccc;
hi |= hi << 2; hi &= 0xf0f0f0f0;
hi |= hi << 4; hi &= 0xff00ff00;
hi |= hi << 8; hi &= 0xffff0000;
Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
}
return Ai;
}
static uint64_t BitDeinterleave(uint64_t Ai)
{
if (BIT_INTERLEAVE) {
uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
uint32_t t0, t1;
t0 = lo & 0x0000ffff;
t0 |= t0 << 8; t0 &= 0x00ff00ff;
t0 |= t0 << 4; t0 &= 0x0f0f0f0f;
t0 |= t0 << 2; t0 &= 0x33333333;
t0 |= t0 << 1; t0 &= 0x55555555;
t1 = hi << 16;
t1 |= t1 >> 8; t1 &= 0xff00ff00;
t1 |= t1 >> 4; t1 &= 0xf0f0f0f0;
t1 |= t1 >> 2; t1 &= 0xcccccccc;
t1 |= t1 >> 1; t1 &= 0xaaaaaaaa;
lo >>= 16;
lo |= lo << 8; lo &= 0x00ff00ff;
lo |= lo << 4; lo &= 0x0f0f0f0f;
lo |= lo << 2; lo &= 0x33333333;
lo |= lo << 1; lo &= 0x55555555;
hi &= 0xffff0000;
hi |= hi >> 8; hi &= 0xff00ff00;
hi |= hi >> 4; hi &= 0xf0f0f0f0;
hi |= hi >> 2; hi &= 0xcccccccc;
hi |= hi >> 1; hi &= 0xaaaaaaaa;
Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
}
return Ai;
}
/*
* SHA3_absorb can be called multiple times, but at each invocation
* largest multiple of |r| out of |len| bytes are processed. Then
* remaining amount of bytes is returned. This is done to spare caller
* trouble of calculating the largest multiple of |r|. |r| can be viewed
* as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104,
* 72, but can also be (1600 - 448)/8 = 144. All this means that message
* padding and intermediate sub-block buffering, byte- or bitwise, is
* caller's reponsibility.
*/
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
size_t r)
{
uint64_t *A_flat = (uint64_t *)A;
size_t i, w = r / 8;
assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
while (len >= r) {
for (i = 0; i < w; i++) {
uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 |
(uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
(uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
(uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
inp += 8;
A_flat[i] ^= BitInterleave(Ai);
}
KeccakF1600(A);
len -= r;
}
return len;
}
/*
* SHA3_squeeze is called once at the end to generate |out| hash value
* of |len| bytes.
*/
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r)
{
uint64_t *A_flat = (uint64_t *)A;
size_t i, w = r / 8;
assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
while (len != 0) {
for (i = 0; i < w && len != 0; i++) {
uint64_t Ai = BitDeinterleave(A_flat[i]);
if (len < 8) {
for (i = 0; i < len; i++) {
*out++ = (unsigned char)Ai;
Ai >>= 8;
}
return;
}
out[0] = (unsigned char)(Ai);
out[1] = (unsigned char)(Ai >> 8);
out[2] = (unsigned char)(Ai >> 16);
out[3] = (unsigned char)(Ai >> 24);
out[4] = (unsigned char)(Ai >> 32);
out[5] = (unsigned char)(Ai >> 40);
out[6] = (unsigned char)(Ai >> 48);
out[7] = (unsigned char)(Ai >> 56);
out += 8;
len -= 8;
}
if (len)
KeccakF1600(A);
}
}
#else
size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
size_t r);
void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
#endif
#ifdef SELFTEST
/*
* Post-padding one-shot implementations would look as following:
*
* SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
* SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
* SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
* SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
* SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8);
* SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8);
*/
void SHA3_sponge(const unsigned char *inp, size_t len,
unsigned char *out, size_t d, size_t r)
{
uint64_t A[5][5];
memset(A, 0, sizeof(A));
SHA3_absorb(A, inp, len, r);
SHA3_squeeze(A, out, d, r);
}
# include <stdio.h>
int main()
{
/*
* This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
*/
unsigned char test[168] = { '\xf3', '\x3' };
unsigned char out[512];
size_t i;
static const unsigned char result[512] = {
0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B,
0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF,
0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98,
0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA,
0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB,
0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C,
0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C,
0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D,
0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD,
0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F,
0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC,
0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C,
0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6,
0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE,
0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3,
0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64,
0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6,
0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5,
0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38,
0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05,
0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98,
0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2,
0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50,
0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75,
0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0,
0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04,
0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8,
0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03,
0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9,
0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B,
0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B,
0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73,
0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6,
0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C,
0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D,
0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20,
0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D,
0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F,
0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A,
0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15,
0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D,
0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6,
0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2,
0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D,
0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30,
0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C,
0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E,
0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28,
0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A,
0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25,
0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28,
0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C,
0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41,
0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B,
0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C,
0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C,
0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA,
0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F,
0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A,
0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60,
0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6,
0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50,
0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF,
0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9
};
test[167] = '\x80';
SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
/*
* Rationale behind keeping output [formatted as below] is that
* one should be able to redirect it to a file, then copy-n-paste
* final "output val" from official example to another file, and
* compare the two with diff(1).
*/
for (i = 0; i < sizeof(out);) {
printf("%02X", out[i]);
printf(++i % 16 && i != sizeof(out) ? " " : "\n");
}
if (memcmp(out,result,sizeof(out))) {
fprintf(stderr,"failure\n");
return 1;
} else {
fprintf(stderr,"success\n");
return 0;
}
}
#endif