openssl/crypto/md2/md2_dgst.c
Matt Caswell cb5ebf9613 Convert memset calls to OPENSSL_cleanse
Ensure things really do get cleared when we intend them to.

Addresses an OCAP Audit issue.

Reviewed-by: Andy Polyakov <appro@openssl.org>
2016-06-30 15:53:44 +01:00

224 lines
7.8 KiB
C

/* crypto/md2/md2_dgst.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/md2.h>
#include <openssl/opensslv.h>
#include <openssl/crypto.h>
const char MD2_version[] = "MD2" OPENSSL_VERSION_PTEXT;
/*
* Implemented from RFC1319 The MD2 Message-Digest Algorithm
*/
#define UCHAR unsigned char
static void md2_block(MD2_CTX *c, const unsigned char *d);
/*
* The magic S table - I have converted it to hex since it is basically just
* a random byte string.
*/
static const MD2_INT S[256] = {
0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01,
0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13,
0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C,
0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA,
0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16,
0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12,
0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49,
0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A,
0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F,
0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21,
0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27,
0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03,
0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1,
0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6,
0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6,
0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1,
0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20,
0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02,
0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6,
0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F,
0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A,
0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26,
0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09,
0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52,
0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA,
0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A,
0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D,
0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39,
0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4,
0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A,
0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A,
0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14,
};
const char *MD2_options(void)
{
if (sizeof(MD2_INT) == 1)
return ("md2(char)");
else
return ("md2(int)");
}
fips_md_init(MD2)
{
c->num = 0;
memset(c->state, 0, sizeof c->state);
memset(c->cksm, 0, sizeof c->cksm);
memset(c->data, 0, sizeof c->data);
return 1;
}
int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len)
{
register UCHAR *p;
if (len == 0)
return 1;
p = c->data;
if (c->num != 0) {
if ((c->num + len) >= MD2_BLOCK) {
memcpy(&(p[c->num]), data, MD2_BLOCK - c->num);
md2_block(c, c->data);
data += (MD2_BLOCK - c->num);
len -= (MD2_BLOCK - c->num);
c->num = 0;
/* drop through and do the rest */
} else {
memcpy(&(p[c->num]), data, len);
/* data+=len; */
c->num += (int)len;
return 1;
}
}
/*
* we now can process the input data in blocks of MD2_BLOCK chars and
* save the leftovers to c->data.
*/
while (len >= MD2_BLOCK) {
md2_block(c, data);
data += MD2_BLOCK;
len -= MD2_BLOCK;
}
memcpy(p, data, len);
c->num = (int)len;
return 1;
}
static void md2_block(MD2_CTX *c, const unsigned char *d)
{
register MD2_INT t, *sp1, *sp2;
register int i, j;
MD2_INT state[48];
sp1 = c->state;
sp2 = c->cksm;
j = sp2[MD2_BLOCK - 1];
for (i = 0; i < 16; i++) {
state[i] = sp1[i];
state[i + 16] = t = d[i];
state[i + 32] = (t ^ sp1[i]);
j = sp2[i] ^= S[t ^ j];
}
t = 0;
for (i = 0; i < 18; i++) {
for (j = 0; j < 48; j += 8) {
t = state[j + 0] ^= S[t];
t = state[j + 1] ^= S[t];
t = state[j + 2] ^= S[t];
t = state[j + 3] ^= S[t];
t = state[j + 4] ^= S[t];
t = state[j + 5] ^= S[t];
t = state[j + 6] ^= S[t];
t = state[j + 7] ^= S[t];
}
t = (t + i) & 0xff;
}
memcpy(sp1, state, 16 * sizeof(MD2_INT));
OPENSSL_cleanse(state, 48 * sizeof(MD2_INT));
}
int MD2_Final(unsigned char *md, MD2_CTX *c)
{
int i, v;
register UCHAR *cp;
register MD2_INT *p1, *p2;
cp = c->data;
p1 = c->state;
p2 = c->cksm;
v = MD2_BLOCK - c->num;
for (i = c->num; i < MD2_BLOCK; i++)
cp[i] = (UCHAR) v;
md2_block(c, cp);
for (i = 0; i < MD2_BLOCK; i++)
cp[i] = (UCHAR) p2[i];
md2_block(c, cp);
for (i = 0; i < 16; i++)
md[i] = (UCHAR) (p1[i] & 0xff);
OPENSSL_cleanse(c, sizeof(*c));
return 1;
}