openssl/crypto/bn/asm/rsaz-avx2.pl
Rich Salz 6aa36e8e5a Add OpenSSL copyright to .pl files
Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-05-21 08:23:39 -04:00

1968 lines
53 KiB
Perl
Executable file

#! /usr/bin/env perl
# Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
##############################################################################
# #
# Copyright (c) 2012, Intel Corporation #
# #
# All rights reserved. #
# #
# Redistribution and use in source and binary forms, with or without #
# modification, are permitted provided that the following conditions are #
# met: #
# #
# * Redistributions of source code must retain the above copyright #
# notice, this list of conditions and the following disclaimer. #
# #
# * Redistributions in binary form must reproduce the above copyright #
# notice, this list of conditions and the following disclaimer in the #
# documentation and/or other materials provided with the #
# distribution. #
# #
# * Neither the name of the Intel Corporation nor the names of its #
# contributors may be used to endorse or promote products derived from #
# this software without specific prior written permission. #
# #
# #
# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY #
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE #
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR #
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR #
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, #
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR #
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF #
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS #
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #
# #
##############################################################################
# Developers and authors: #
# Shay Gueron (1, 2), and Vlad Krasnov (1) #
# (1) Intel Corporation, Israel Development Center, Haifa, Israel #
# (2) University of Haifa, Israel #
##############################################################################
# Reference: #
# [1] S. Gueron, V. Krasnov: "Software Implementation of Modular #
# Exponentiation, Using Advanced Vector Instructions Architectures", #
# F. Ozbudak and F. Rodriguez-Henriquez (Eds.): WAIFI 2012, LNCS 7369, #
# pp. 119?135, 2012. Springer-Verlag Berlin Heidelberg 2012 #
# [2] S. Gueron: "Efficient Software Implementations of Modular #
# Exponentiation", Journal of Cryptographic Engineering 2:31-43 (2012). #
# [3] S. Gueron, V. Krasnov: "Speeding up Big-numbers Squaring",IEEE #
# Proceedings of 9th International Conference on Information Technology: #
# New Generations (ITNG 2012), pp.821-823 (2012) #
# [4] S. Gueron, V. Krasnov: "[PATCH] Efficient and side channel analysis #
# resistant 1024-bit modular exponentiation, for optimizing RSA2048 #
# on AVX2 capable x86_64 platforms", #
# http://rt.openssl.org/Ticket/Display.html?id=2850&user=guest&pass=guest#
##############################################################################
#
# +13% improvement over original submission by <appro@openssl.org>
#
# rsa2048 sign/sec OpenSSL 1.0.1 scalar(*) this
# 2.3GHz Haswell 621 765/+23% 1113/+79%
# 2.3GHz Broadwell(**) 688 1200(***)/+74% 1120/+63%
#
# (*) if system doesn't support AVX2, for reference purposes;
# (**) scaled to 2.3GHz to simplify comparison;
# (***) scalar AD*X code is faster than AVX2 and is preferred code
# path for Broadwell;
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.19) + ($1>=2.22);
$addx = ($1>=2.23);
}
if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
$avx = ($1>=2.09) + ($1>=2.10);
$addx = ($1>=2.10);
}
if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./) {
$avx = ($1>=10) + ($1>=11);
$addx = ($1>=11);
}
if (!$avx && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9])\.([0-9]+)/) {
my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10
$avx = ($ver>=3.0) + ($ver>=3.01);
$addx = ($ver>=3.03);
}
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT = *OUT;
if ($avx>1) {{{
{ # void AMS_WW(
my $rp="%rdi"; # BN_ULONG *rp,
my $ap="%rsi"; # const BN_ULONG *ap,
my $np="%rdx"; # const BN_ULONG *np,
my $n0="%ecx"; # const BN_ULONG n0,
my $rep="%r8d"; # int repeat);
# The registers that hold the accumulated redundant result
# The AMM works on 1024 bit operands, and redundant word size is 29
# Therefore: ceil(1024/29)/4 = 9
my $ACC0="%ymm0";
my $ACC1="%ymm1";
my $ACC2="%ymm2";
my $ACC3="%ymm3";
my $ACC4="%ymm4";
my $ACC5="%ymm5";
my $ACC6="%ymm6";
my $ACC7="%ymm7";
my $ACC8="%ymm8";
my $ACC9="%ymm9";
# Registers that hold the broadcasted words of bp, currently used
my $B1="%ymm10";
my $B2="%ymm11";
# Registers that hold the broadcasted words of Y, currently used
my $Y1="%ymm12";
my $Y2="%ymm13";
# Helper registers
my $TEMP1="%ymm14";
my $AND_MASK="%ymm15";
# alu registers that hold the first words of the ACC
my $r0="%r9";
my $r1="%r10";
my $r2="%r11";
my $r3="%r12";
my $i="%r14d"; # loop counter
my $tmp = "%r15";
my $FrameSize=32*18+32*8; # place for A^2 and 2*A
my $aap=$r0;
my $tp0="%rbx";
my $tp1=$r3;
my $tpa=$tmp;
$np="%r13"; # reassigned argument
$code.=<<___;
.text
.globl rsaz_1024_sqr_avx2
.type rsaz_1024_sqr_avx2,\@function,5
.align 64
rsaz_1024_sqr_avx2: # 702 cycles, 14% faster than rsaz_1024_mul_avx2
lea (%rsp), %rax
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
vzeroupper
___
$code.=<<___ if ($win64);
lea -0xa8(%rsp),%rsp
vmovaps %xmm6,-0xd8(%rax)
vmovaps %xmm7,-0xc8(%rax)
vmovaps %xmm8,-0xb8(%rax)
vmovaps %xmm9,-0xa8(%rax)
vmovaps %xmm10,-0x98(%rax)
vmovaps %xmm11,-0x88(%rax)
vmovaps %xmm12,-0x78(%rax)
vmovaps %xmm13,-0x68(%rax)
vmovaps %xmm14,-0x58(%rax)
vmovaps %xmm15,-0x48(%rax)
.Lsqr_1024_body:
___
$code.=<<___;
mov %rax,%rbp
mov %rdx, $np # reassigned argument
sub \$$FrameSize, %rsp
mov $np, $tmp
sub \$-128, $rp # size optimization
sub \$-128, $ap
sub \$-128, $np
and \$4095, $tmp # see if $np crosses page
add \$32*10, $tmp
shr \$12, $tmp
vpxor $ACC9,$ACC9,$ACC9
jz .Lsqr_1024_no_n_copy
# unaligned 256-bit load that crosses page boundary can
# cause >2x performance degradation here, so if $np does
# cross page boundary, copy it to stack and make sure stack
# frame doesn't...
sub \$32*10,%rsp
vmovdqu 32*0-128($np), $ACC0
and \$-2048, %rsp
vmovdqu 32*1-128($np), $ACC1
vmovdqu 32*2-128($np), $ACC2
vmovdqu 32*3-128($np), $ACC3
vmovdqu 32*4-128($np), $ACC4
vmovdqu 32*5-128($np), $ACC5
vmovdqu 32*6-128($np), $ACC6
vmovdqu 32*7-128($np), $ACC7
vmovdqu 32*8-128($np), $ACC8
lea $FrameSize+128(%rsp),$np
vmovdqu $ACC0, 32*0-128($np)
vmovdqu $ACC1, 32*1-128($np)
vmovdqu $ACC2, 32*2-128($np)
vmovdqu $ACC3, 32*3-128($np)
vmovdqu $ACC4, 32*4-128($np)
vmovdqu $ACC5, 32*5-128($np)
vmovdqu $ACC6, 32*6-128($np)
vmovdqu $ACC7, 32*7-128($np)
vmovdqu $ACC8, 32*8-128($np)
vmovdqu $ACC9, 32*9-128($np) # $ACC9 is zero
.Lsqr_1024_no_n_copy:
and \$-1024, %rsp
vmovdqu 32*1-128($ap), $ACC1
vmovdqu 32*2-128($ap), $ACC2
vmovdqu 32*3-128($ap), $ACC3
vmovdqu 32*4-128($ap), $ACC4
vmovdqu 32*5-128($ap), $ACC5
vmovdqu 32*6-128($ap), $ACC6
vmovdqu 32*7-128($ap), $ACC7
vmovdqu 32*8-128($ap), $ACC8
lea 192(%rsp), $tp0 # 64+128=192
vpbroadcastq .Land_mask(%rip), $AND_MASK
jmp .LOOP_GRANDE_SQR_1024
.align 32
.LOOP_GRANDE_SQR_1024:
lea 32*18+128(%rsp), $aap # size optimization
lea 448(%rsp), $tp1 # 64+128+256=448
# the squaring is performed as described in Variant B of
# "Speeding up Big-Number Squaring", so start by calculating
# the A*2=A+A vector
vpaddq $ACC1, $ACC1, $ACC1
vpbroadcastq 32*0-128($ap), $B1
vpaddq $ACC2, $ACC2, $ACC2
vmovdqa $ACC1, 32*0-128($aap)
vpaddq $ACC3, $ACC3, $ACC3
vmovdqa $ACC2, 32*1-128($aap)
vpaddq $ACC4, $ACC4, $ACC4
vmovdqa $ACC3, 32*2-128($aap)
vpaddq $ACC5, $ACC5, $ACC5
vmovdqa $ACC4, 32*3-128($aap)
vpaddq $ACC6, $ACC6, $ACC6
vmovdqa $ACC5, 32*4-128($aap)
vpaddq $ACC7, $ACC7, $ACC7
vmovdqa $ACC6, 32*5-128($aap)
vpaddq $ACC8, $ACC8, $ACC8
vmovdqa $ACC7, 32*6-128($aap)
vpxor $ACC9, $ACC9, $ACC9
vmovdqa $ACC8, 32*7-128($aap)
vpmuludq 32*0-128($ap), $B1, $ACC0
vpbroadcastq 32*1-128($ap), $B2
vmovdqu $ACC9, 32*9-192($tp0) # zero upper half
vpmuludq $B1, $ACC1, $ACC1
vmovdqu $ACC9, 32*10-448($tp1)
vpmuludq $B1, $ACC2, $ACC2
vmovdqu $ACC9, 32*11-448($tp1)
vpmuludq $B1, $ACC3, $ACC3
vmovdqu $ACC9, 32*12-448($tp1)
vpmuludq $B1, $ACC4, $ACC4
vmovdqu $ACC9, 32*13-448($tp1)
vpmuludq $B1, $ACC5, $ACC5
vmovdqu $ACC9, 32*14-448($tp1)
vpmuludq $B1, $ACC6, $ACC6
vmovdqu $ACC9, 32*15-448($tp1)
vpmuludq $B1, $ACC7, $ACC7
vmovdqu $ACC9, 32*16-448($tp1)
vpmuludq $B1, $ACC8, $ACC8
vpbroadcastq 32*2-128($ap), $B1
vmovdqu $ACC9, 32*17-448($tp1)
mov $ap, $tpa
mov \$4, $i
jmp .Lsqr_entry_1024
___
$TEMP0=$Y1;
$TEMP2=$Y2;
$code.=<<___;
.align 32
.LOOP_SQR_1024:
vpbroadcastq 32*1-128($tpa), $B2
vpmuludq 32*0-128($ap), $B1, $ACC0
vpaddq 32*0-192($tp0), $ACC0, $ACC0
vpmuludq 32*0-128($aap), $B1, $ACC1
vpaddq 32*1-192($tp0), $ACC1, $ACC1
vpmuludq 32*1-128($aap), $B1, $ACC2
vpaddq 32*2-192($tp0), $ACC2, $ACC2
vpmuludq 32*2-128($aap), $B1, $ACC3
vpaddq 32*3-192($tp0), $ACC3, $ACC3
vpmuludq 32*3-128($aap), $B1, $ACC4
vpaddq 32*4-192($tp0), $ACC4, $ACC4
vpmuludq 32*4-128($aap), $B1, $ACC5
vpaddq 32*5-192($tp0), $ACC5, $ACC5
vpmuludq 32*5-128($aap), $B1, $ACC6
vpaddq 32*6-192($tp0), $ACC6, $ACC6
vpmuludq 32*6-128($aap), $B1, $ACC7
vpaddq 32*7-192($tp0), $ACC7, $ACC7
vpmuludq 32*7-128($aap), $B1, $ACC8
vpbroadcastq 32*2-128($tpa), $B1
vpaddq 32*8-192($tp0), $ACC8, $ACC8
.Lsqr_entry_1024:
vmovdqu $ACC0, 32*0-192($tp0)
vmovdqu $ACC1, 32*1-192($tp0)
vpmuludq 32*1-128($ap), $B2, $TEMP0
vpaddq $TEMP0, $ACC2, $ACC2
vpmuludq 32*1-128($aap), $B2, $TEMP1
vpaddq $TEMP1, $ACC3, $ACC3
vpmuludq 32*2-128($aap), $B2, $TEMP2
vpaddq $TEMP2, $ACC4, $ACC4
vpmuludq 32*3-128($aap), $B2, $TEMP0
vpaddq $TEMP0, $ACC5, $ACC5
vpmuludq 32*4-128($aap), $B2, $TEMP1
vpaddq $TEMP1, $ACC6, $ACC6
vpmuludq 32*5-128($aap), $B2, $TEMP2
vpaddq $TEMP2, $ACC7, $ACC7
vpmuludq 32*6-128($aap), $B2, $TEMP0
vpaddq $TEMP0, $ACC8, $ACC8
vpmuludq 32*7-128($aap), $B2, $ACC0
vpbroadcastq 32*3-128($tpa), $B2
vpaddq 32*9-192($tp0), $ACC0, $ACC0
vmovdqu $ACC2, 32*2-192($tp0)
vmovdqu $ACC3, 32*3-192($tp0)
vpmuludq 32*2-128($ap), $B1, $TEMP2
vpaddq $TEMP2, $ACC4, $ACC4
vpmuludq 32*2-128($aap), $B1, $TEMP0
vpaddq $TEMP0, $ACC5, $ACC5
vpmuludq 32*3-128($aap), $B1, $TEMP1
vpaddq $TEMP1, $ACC6, $ACC6
vpmuludq 32*4-128($aap), $B1, $TEMP2
vpaddq $TEMP2, $ACC7, $ACC7
vpmuludq 32*5-128($aap), $B1, $TEMP0
vpaddq $TEMP0, $ACC8, $ACC8
vpmuludq 32*6-128($aap), $B1, $TEMP1
vpaddq $TEMP1, $ACC0, $ACC0
vpmuludq 32*7-128($aap), $B1, $ACC1
vpbroadcastq 32*4-128($tpa), $B1
vpaddq 32*10-448($tp1), $ACC1, $ACC1
vmovdqu $ACC4, 32*4-192($tp0)
vmovdqu $ACC5, 32*5-192($tp0)
vpmuludq 32*3-128($ap), $B2, $TEMP0
vpaddq $TEMP0, $ACC6, $ACC6
vpmuludq 32*3-128($aap), $B2, $TEMP1
vpaddq $TEMP1, $ACC7, $ACC7
vpmuludq 32*4-128($aap), $B2, $TEMP2
vpaddq $TEMP2, $ACC8, $ACC8
vpmuludq 32*5-128($aap), $B2, $TEMP0
vpaddq $TEMP0, $ACC0, $ACC0
vpmuludq 32*6-128($aap), $B2, $TEMP1
vpaddq $TEMP1, $ACC1, $ACC1
vpmuludq 32*7-128($aap), $B2, $ACC2
vpbroadcastq 32*5-128($tpa), $B2
vpaddq 32*11-448($tp1), $ACC2, $ACC2
vmovdqu $ACC6, 32*6-192($tp0)
vmovdqu $ACC7, 32*7-192($tp0)
vpmuludq 32*4-128($ap), $B1, $TEMP0
vpaddq $TEMP0, $ACC8, $ACC8
vpmuludq 32*4-128($aap), $B1, $TEMP1
vpaddq $TEMP1, $ACC0, $ACC0
vpmuludq 32*5-128($aap), $B1, $TEMP2
vpaddq $TEMP2, $ACC1, $ACC1
vpmuludq 32*6-128($aap), $B1, $TEMP0
vpaddq $TEMP0, $ACC2, $ACC2
vpmuludq 32*7-128($aap), $B1, $ACC3
vpbroadcastq 32*6-128($tpa), $B1
vpaddq 32*12-448($tp1), $ACC3, $ACC3
vmovdqu $ACC8, 32*8-192($tp0)
vmovdqu $ACC0, 32*9-192($tp0)
lea 8($tp0), $tp0
vpmuludq 32*5-128($ap), $B2, $TEMP2
vpaddq $TEMP2, $ACC1, $ACC1
vpmuludq 32*5-128($aap), $B2, $TEMP0
vpaddq $TEMP0, $ACC2, $ACC2
vpmuludq 32*6-128($aap), $B2, $TEMP1
vpaddq $TEMP1, $ACC3, $ACC3
vpmuludq 32*7-128($aap), $B2, $ACC4
vpbroadcastq 32*7-128($tpa), $B2
vpaddq 32*13-448($tp1), $ACC4, $ACC4
vmovdqu $ACC1, 32*10-448($tp1)
vmovdqu $ACC2, 32*11-448($tp1)
vpmuludq 32*6-128($ap), $B1, $TEMP0
vpaddq $TEMP0, $ACC3, $ACC3
vpmuludq 32*6-128($aap), $B1, $TEMP1
vpbroadcastq 32*8-128($tpa), $ACC0 # borrow $ACC0 for $B1
vpaddq $TEMP1, $ACC4, $ACC4
vpmuludq 32*7-128($aap), $B1, $ACC5
vpbroadcastq 32*0+8-128($tpa), $B1 # for next iteration
vpaddq 32*14-448($tp1), $ACC5, $ACC5
vmovdqu $ACC3, 32*12-448($tp1)
vmovdqu $ACC4, 32*13-448($tp1)
lea 8($tpa), $tpa
vpmuludq 32*7-128($ap), $B2, $TEMP0
vpaddq $TEMP0, $ACC5, $ACC5
vpmuludq 32*7-128($aap), $B2, $ACC6
vpaddq 32*15-448($tp1), $ACC6, $ACC6
vpmuludq 32*8-128($ap), $ACC0, $ACC7
vmovdqu $ACC5, 32*14-448($tp1)
vpaddq 32*16-448($tp1), $ACC7, $ACC7
vmovdqu $ACC6, 32*15-448($tp1)
vmovdqu $ACC7, 32*16-448($tp1)
lea 8($tp1), $tp1
dec $i
jnz .LOOP_SQR_1024
___
$ZERO = $ACC9;
$TEMP0 = $B1;
$TEMP2 = $B2;
$TEMP3 = $Y1;
$TEMP4 = $Y2;
$code.=<<___;
# we need to fix indices 32-39 to avoid overflow
vmovdqu 32*8(%rsp), $ACC8 # 32*8-192($tp0),
vmovdqu 32*9(%rsp), $ACC1 # 32*9-192($tp0)
vmovdqu 32*10(%rsp), $ACC2 # 32*10-192($tp0)
lea 192(%rsp), $tp0 # 64+128=192
vpsrlq \$29, $ACC8, $TEMP1
vpand $AND_MASK, $ACC8, $ACC8
vpsrlq \$29, $ACC1, $TEMP2
vpand $AND_MASK, $ACC1, $ACC1
vpermq \$0x93, $TEMP1, $TEMP1
vpxor $ZERO, $ZERO, $ZERO
vpermq \$0x93, $TEMP2, $TEMP2
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC8, $ACC8
vpblendd \$3, $TEMP2, $ZERO, $TEMP2
vpaddq $TEMP1, $ACC1, $ACC1
vpaddq $TEMP2, $ACC2, $ACC2
vmovdqu $ACC1, 32*9-192($tp0)
vmovdqu $ACC2, 32*10-192($tp0)
mov (%rsp), %rax
mov 8(%rsp), $r1
mov 16(%rsp), $r2
mov 24(%rsp), $r3
vmovdqu 32*1(%rsp), $ACC1
vmovdqu 32*2-192($tp0), $ACC2
vmovdqu 32*3-192($tp0), $ACC3
vmovdqu 32*4-192($tp0), $ACC4
vmovdqu 32*5-192($tp0), $ACC5
vmovdqu 32*6-192($tp0), $ACC6
vmovdqu 32*7-192($tp0), $ACC7
mov %rax, $r0
imull $n0, %eax
and \$0x1fffffff, %eax
vmovd %eax, $Y1
mov %rax, %rdx
imulq -128($np), %rax
vpbroadcastq $Y1, $Y1
add %rax, $r0
mov %rdx, %rax
imulq 8-128($np), %rax
shr \$29, $r0
add %rax, $r1
mov %rdx, %rax
imulq 16-128($np), %rax
add $r0, $r1
add %rax, $r2
imulq 24-128($np), %rdx
add %rdx, $r3
mov $r1, %rax
imull $n0, %eax
and \$0x1fffffff, %eax
mov \$9, $i
jmp .LOOP_REDUCE_1024
.align 32
.LOOP_REDUCE_1024:
vmovd %eax, $Y2
vpbroadcastq $Y2, $Y2
vpmuludq 32*1-128($np), $Y1, $TEMP0
mov %rax, %rdx
imulq -128($np), %rax
vpaddq $TEMP0, $ACC1, $ACC1
add %rax, $r1
vpmuludq 32*2-128($np), $Y1, $TEMP1
mov %rdx, %rax
imulq 8-128($np), %rax
vpaddq $TEMP1, $ACC2, $ACC2
vpmuludq 32*3-128($np), $Y1, $TEMP2
.byte 0x67
add %rax, $r2
.byte 0x67
mov %rdx, %rax
imulq 16-128($np), %rax
shr \$29, $r1
vpaddq $TEMP2, $ACC3, $ACC3
vpmuludq 32*4-128($np), $Y1, $TEMP0
add %rax, $r3
add $r1, $r2
vpaddq $TEMP0, $ACC4, $ACC4
vpmuludq 32*5-128($np), $Y1, $TEMP1
mov $r2, %rax
imull $n0, %eax
vpaddq $TEMP1, $ACC5, $ACC5
vpmuludq 32*6-128($np), $Y1, $TEMP2
and \$0x1fffffff, %eax
vpaddq $TEMP2, $ACC6, $ACC6
vpmuludq 32*7-128($np), $Y1, $TEMP0
vpaddq $TEMP0, $ACC7, $ACC7
vpmuludq 32*8-128($np), $Y1, $TEMP1
vmovd %eax, $Y1
#vmovdqu 32*1-8-128($np), $TEMP2 # moved below
vpaddq $TEMP1, $ACC8, $ACC8
#vmovdqu 32*2-8-128($np), $TEMP0 # moved below
vpbroadcastq $Y1, $Y1
vpmuludq 32*1-8-128($np), $Y2, $TEMP2 # see above
vmovdqu 32*3-8-128($np), $TEMP1
mov %rax, %rdx
imulq -128($np), %rax
vpaddq $TEMP2, $ACC1, $ACC1
vpmuludq 32*2-8-128($np), $Y2, $TEMP0 # see above
vmovdqu 32*4-8-128($np), $TEMP2
add %rax, $r2
mov %rdx, %rax
imulq 8-128($np), %rax
vpaddq $TEMP0, $ACC2, $ACC2
add $r3, %rax
shr \$29, $r2
vpmuludq $Y2, $TEMP1, $TEMP1
vmovdqu 32*5-8-128($np), $TEMP0
add $r2, %rax
vpaddq $TEMP1, $ACC3, $ACC3
vpmuludq $Y2, $TEMP2, $TEMP2
vmovdqu 32*6-8-128($np), $TEMP1
.byte 0x67
mov %rax, $r3
imull $n0, %eax
vpaddq $TEMP2, $ACC4, $ACC4
vpmuludq $Y2, $TEMP0, $TEMP0
.byte 0xc4,0x41,0x7e,0x6f,0x9d,0x58,0x00,0x00,0x00 # vmovdqu 32*7-8-128($np), $TEMP2
and \$0x1fffffff, %eax
vpaddq $TEMP0, $ACC5, $ACC5
vpmuludq $Y2, $TEMP1, $TEMP1
vmovdqu 32*8-8-128($np), $TEMP0
vpaddq $TEMP1, $ACC6, $ACC6
vpmuludq $Y2, $TEMP2, $TEMP2
vmovdqu 32*9-8-128($np), $ACC9
vmovd %eax, $ACC0 # borrow ACC0 for Y2
imulq -128($np), %rax
vpaddq $TEMP2, $ACC7, $ACC7
vpmuludq $Y2, $TEMP0, $TEMP0
vmovdqu 32*1-16-128($np), $TEMP1
vpbroadcastq $ACC0, $ACC0
vpaddq $TEMP0, $ACC8, $ACC8
vpmuludq $Y2, $ACC9, $ACC9
vmovdqu 32*2-16-128($np), $TEMP2
add %rax, $r3
___
($ACC0,$Y2)=($Y2,$ACC0);
$code.=<<___;
vmovdqu 32*1-24-128($np), $ACC0
vpmuludq $Y1, $TEMP1, $TEMP1
vmovdqu 32*3-16-128($np), $TEMP0
vpaddq $TEMP1, $ACC1, $ACC1
vpmuludq $Y2, $ACC0, $ACC0
vpmuludq $Y1, $TEMP2, $TEMP2
.byte 0xc4,0x41,0x7e,0x6f,0xb5,0xf0,0xff,0xff,0xff # vmovdqu 32*4-16-128($np), $TEMP1
vpaddq $ACC1, $ACC0, $ACC0
vpaddq $TEMP2, $ACC2, $ACC2
vpmuludq $Y1, $TEMP0, $TEMP0
vmovdqu 32*5-16-128($np), $TEMP2
.byte 0x67
vmovq $ACC0, %rax
vmovdqu $ACC0, (%rsp) # transfer $r0-$r3
vpaddq $TEMP0, $ACC3, $ACC3
vpmuludq $Y1, $TEMP1, $TEMP1
vmovdqu 32*6-16-128($np), $TEMP0
vpaddq $TEMP1, $ACC4, $ACC4
vpmuludq $Y1, $TEMP2, $TEMP2
vmovdqu 32*7-16-128($np), $TEMP1
vpaddq $TEMP2, $ACC5, $ACC5
vpmuludq $Y1, $TEMP0, $TEMP0
vmovdqu 32*8-16-128($np), $TEMP2
vpaddq $TEMP0, $ACC6, $ACC6
vpmuludq $Y1, $TEMP1, $TEMP1
shr \$29, $r3
vmovdqu 32*9-16-128($np), $TEMP0
add $r3, %rax
vpaddq $TEMP1, $ACC7, $ACC7
vpmuludq $Y1, $TEMP2, $TEMP2
#vmovdqu 32*2-24-128($np), $TEMP1 # moved below
mov %rax, $r0
imull $n0, %eax
vpaddq $TEMP2, $ACC8, $ACC8
vpmuludq $Y1, $TEMP0, $TEMP0
and \$0x1fffffff, %eax
vmovd %eax, $Y1
vmovdqu 32*3-24-128($np), $TEMP2
.byte 0x67
vpaddq $TEMP0, $ACC9, $ACC9
vpbroadcastq $Y1, $Y1
vpmuludq 32*2-24-128($np), $Y2, $TEMP1 # see above
vmovdqu 32*4-24-128($np), $TEMP0
mov %rax, %rdx
imulq -128($np), %rax
mov 8(%rsp), $r1
vpaddq $TEMP1, $ACC2, $ACC1
vpmuludq $Y2, $TEMP2, $TEMP2
vmovdqu 32*5-24-128($np), $TEMP1
add %rax, $r0
mov %rdx, %rax
imulq 8-128($np), %rax
.byte 0x67
shr \$29, $r0
mov 16(%rsp), $r2
vpaddq $TEMP2, $ACC3, $ACC2
vpmuludq $Y2, $TEMP0, $TEMP0
vmovdqu 32*6-24-128($np), $TEMP2
add %rax, $r1
mov %rdx, %rax
imulq 16-128($np), %rax
vpaddq $TEMP0, $ACC4, $ACC3
vpmuludq $Y2, $TEMP1, $TEMP1
vmovdqu 32*7-24-128($np), $TEMP0
imulq 24-128($np), %rdx # future $r3
add %rax, $r2
lea ($r0,$r1), %rax
vpaddq $TEMP1, $ACC5, $ACC4
vpmuludq $Y2, $TEMP2, $TEMP2
vmovdqu 32*8-24-128($np), $TEMP1
mov %rax, $r1
imull $n0, %eax
vpmuludq $Y2, $TEMP0, $TEMP0
vpaddq $TEMP2, $ACC6, $ACC5
vmovdqu 32*9-24-128($np), $TEMP2
and \$0x1fffffff, %eax
vpaddq $TEMP0, $ACC7, $ACC6
vpmuludq $Y2, $TEMP1, $TEMP1
add 24(%rsp), %rdx
vpaddq $TEMP1, $ACC8, $ACC7
vpmuludq $Y2, $TEMP2, $TEMP2
vpaddq $TEMP2, $ACC9, $ACC8
vmovq $r3, $ACC9
mov %rdx, $r3
dec $i
jnz .LOOP_REDUCE_1024
___
($ACC0,$Y2)=($Y2,$ACC0);
$code.=<<___;
lea 448(%rsp), $tp1 # size optimization
vpaddq $ACC9, $Y2, $ACC0
vpxor $ZERO, $ZERO, $ZERO
vpaddq 32*9-192($tp0), $ACC0, $ACC0
vpaddq 32*10-448($tp1), $ACC1, $ACC1
vpaddq 32*11-448($tp1), $ACC2, $ACC2
vpaddq 32*12-448($tp1), $ACC3, $ACC3
vpaddq 32*13-448($tp1), $ACC4, $ACC4
vpaddq 32*14-448($tp1), $ACC5, $ACC5
vpaddq 32*15-448($tp1), $ACC6, $ACC6
vpaddq 32*16-448($tp1), $ACC7, $ACC7
vpaddq 32*17-448($tp1), $ACC8, $ACC8
vpsrlq \$29, $ACC0, $TEMP1
vpand $AND_MASK, $ACC0, $ACC0
vpsrlq \$29, $ACC1, $TEMP2
vpand $AND_MASK, $ACC1, $ACC1
vpsrlq \$29, $ACC2, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC2, $ACC2
vpsrlq \$29, $ACC3, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC3, $ACC3
vpermq \$0x93, $TEMP3, $TEMP3
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC0, $ACC0
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC1, $ACC1
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC2, $ACC2
vpblendd \$3, $TEMP4, $ZERO, $TEMP4
vpaddq $TEMP3, $ACC3, $ACC3
vpaddq $TEMP4, $ACC4, $ACC4
vpsrlq \$29, $ACC0, $TEMP1
vpand $AND_MASK, $ACC0, $ACC0
vpsrlq \$29, $ACC1, $TEMP2
vpand $AND_MASK, $ACC1, $ACC1
vpsrlq \$29, $ACC2, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC2, $ACC2
vpsrlq \$29, $ACC3, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC3, $ACC3
vpermq \$0x93, $TEMP3, $TEMP3
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC0, $ACC0
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC1, $ACC1
vmovdqu $ACC0, 32*0-128($rp)
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC2, $ACC2
vmovdqu $ACC1, 32*1-128($rp)
vpblendd \$3, $TEMP4, $ZERO, $TEMP4
vpaddq $TEMP3, $ACC3, $ACC3
vmovdqu $ACC2, 32*2-128($rp)
vpaddq $TEMP4, $ACC4, $ACC4
vmovdqu $ACC3, 32*3-128($rp)
___
$TEMP5=$ACC0;
$code.=<<___;
vpsrlq \$29, $ACC4, $TEMP1
vpand $AND_MASK, $ACC4, $ACC4
vpsrlq \$29, $ACC5, $TEMP2
vpand $AND_MASK, $ACC5, $ACC5
vpsrlq \$29, $ACC6, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC6, $ACC6
vpsrlq \$29, $ACC7, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC7, $ACC7
vpsrlq \$29, $ACC8, $TEMP5
vpermq \$0x93, $TEMP3, $TEMP3
vpand $AND_MASK, $ACC8, $ACC8
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP5, $TEMP5
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC4, $ACC4
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC5, $ACC5
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC6, $ACC6
vpblendd \$3, $TEMP4, $TEMP5, $TEMP4
vpaddq $TEMP3, $ACC7, $ACC7
vpaddq $TEMP4, $ACC8, $ACC8
vpsrlq \$29, $ACC4, $TEMP1
vpand $AND_MASK, $ACC4, $ACC4
vpsrlq \$29, $ACC5, $TEMP2
vpand $AND_MASK, $ACC5, $ACC5
vpsrlq \$29, $ACC6, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC6, $ACC6
vpsrlq \$29, $ACC7, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC7, $ACC7
vpsrlq \$29, $ACC8, $TEMP5
vpermq \$0x93, $TEMP3, $TEMP3
vpand $AND_MASK, $ACC8, $ACC8
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP5, $TEMP5
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC4, $ACC4
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC5, $ACC5
vmovdqu $ACC4, 32*4-128($rp)
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC6, $ACC6
vmovdqu $ACC5, 32*5-128($rp)
vpblendd \$3, $TEMP4, $TEMP5, $TEMP4
vpaddq $TEMP3, $ACC7, $ACC7
vmovdqu $ACC6, 32*6-128($rp)
vpaddq $TEMP4, $ACC8, $ACC8
vmovdqu $ACC7, 32*7-128($rp)
vmovdqu $ACC8, 32*8-128($rp)
mov $rp, $ap
dec $rep
jne .LOOP_GRANDE_SQR_1024
vzeroall
mov %rbp, %rax
___
$code.=<<___ if ($win64);
movaps -0xd8(%rax),%xmm6
movaps -0xc8(%rax),%xmm7
movaps -0xb8(%rax),%xmm8
movaps -0xa8(%rax),%xmm9
movaps -0x98(%rax),%xmm10
movaps -0x88(%rax),%xmm11
movaps -0x78(%rax),%xmm12
movaps -0x68(%rax),%xmm13
movaps -0x58(%rax),%xmm14
movaps -0x48(%rax),%xmm15
___
$code.=<<___;
mov -48(%rax),%r15
mov -40(%rax),%r14
mov -32(%rax),%r13
mov -24(%rax),%r12
mov -16(%rax),%rbp
mov -8(%rax),%rbx
lea (%rax),%rsp # restore %rsp
.Lsqr_1024_epilogue:
ret
.size rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2
___
}
{ # void AMM_WW(
my $rp="%rdi"; # BN_ULONG *rp,
my $ap="%rsi"; # const BN_ULONG *ap,
my $bp="%rdx"; # const BN_ULONG *bp,
my $np="%rcx"; # const BN_ULONG *np,
my $n0="%r8d"; # unsigned int n0);
# The registers that hold the accumulated redundant result
# The AMM works on 1024 bit operands, and redundant word size is 29
# Therefore: ceil(1024/29)/4 = 9
my $ACC0="%ymm0";
my $ACC1="%ymm1";
my $ACC2="%ymm2";
my $ACC3="%ymm3";
my $ACC4="%ymm4";
my $ACC5="%ymm5";
my $ACC6="%ymm6";
my $ACC7="%ymm7";
my $ACC8="%ymm8";
my $ACC9="%ymm9";
# Registers that hold the broadcasted words of multiplier, currently used
my $Bi="%ymm10";
my $Yi="%ymm11";
# Helper registers
my $TEMP0=$ACC0;
my $TEMP1="%ymm12";
my $TEMP2="%ymm13";
my $ZERO="%ymm14";
my $AND_MASK="%ymm15";
# alu registers that hold the first words of the ACC
my $r0="%r9";
my $r1="%r10";
my $r2="%r11";
my $r3="%r12";
my $i="%r14d";
my $tmp="%r15";
$bp="%r13"; # reassigned argument
$code.=<<___;
.globl rsaz_1024_mul_avx2
.type rsaz_1024_mul_avx2,\@function,5
.align 64
rsaz_1024_mul_avx2:
lea (%rsp), %rax
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
___
$code.=<<___ if ($win64);
vzeroupper
lea -0xa8(%rsp),%rsp
vmovaps %xmm6,-0xd8(%rax)
vmovaps %xmm7,-0xc8(%rax)
vmovaps %xmm8,-0xb8(%rax)
vmovaps %xmm9,-0xa8(%rax)
vmovaps %xmm10,-0x98(%rax)
vmovaps %xmm11,-0x88(%rax)
vmovaps %xmm12,-0x78(%rax)
vmovaps %xmm13,-0x68(%rax)
vmovaps %xmm14,-0x58(%rax)
vmovaps %xmm15,-0x48(%rax)
.Lmul_1024_body:
___
$code.=<<___;
mov %rax,%rbp
vzeroall
mov %rdx, $bp # reassigned argument
sub \$64,%rsp
# unaligned 256-bit load that crosses page boundary can
# cause severe performance degradation here, so if $ap does
# cross page boundary, swap it with $bp [meaning that caller
# is advised to lay down $ap and $bp next to each other, so
# that only one can cross page boundary].
.byte 0x67,0x67
mov $ap, $tmp
and \$4095, $tmp
add \$32*10, $tmp
shr \$12, $tmp
mov $ap, $tmp
cmovnz $bp, $ap
cmovnz $tmp, $bp
mov $np, $tmp
sub \$-128,$ap # size optimization
sub \$-128,$np
sub \$-128,$rp
and \$4095, $tmp # see if $np crosses page
add \$32*10, $tmp
.byte 0x67,0x67
shr \$12, $tmp
jz .Lmul_1024_no_n_copy
# unaligned 256-bit load that crosses page boundary can
# cause severe performance degradation here, so if $np does
# cross page boundary, copy it to stack and make sure stack
# frame doesn't...
sub \$32*10,%rsp
vmovdqu 32*0-128($np), $ACC0
and \$-512, %rsp
vmovdqu 32*1-128($np), $ACC1
vmovdqu 32*2-128($np), $ACC2
vmovdqu 32*3-128($np), $ACC3
vmovdqu 32*4-128($np), $ACC4
vmovdqu 32*5-128($np), $ACC5
vmovdqu 32*6-128($np), $ACC6
vmovdqu 32*7-128($np), $ACC7
vmovdqu 32*8-128($np), $ACC8
lea 64+128(%rsp),$np
vmovdqu $ACC0, 32*0-128($np)
vpxor $ACC0, $ACC0, $ACC0
vmovdqu $ACC1, 32*1-128($np)
vpxor $ACC1, $ACC1, $ACC1
vmovdqu $ACC2, 32*2-128($np)
vpxor $ACC2, $ACC2, $ACC2
vmovdqu $ACC3, 32*3-128($np)
vpxor $ACC3, $ACC3, $ACC3
vmovdqu $ACC4, 32*4-128($np)
vpxor $ACC4, $ACC4, $ACC4
vmovdqu $ACC5, 32*5-128($np)
vpxor $ACC5, $ACC5, $ACC5
vmovdqu $ACC6, 32*6-128($np)
vpxor $ACC6, $ACC6, $ACC6
vmovdqu $ACC7, 32*7-128($np)
vpxor $ACC7, $ACC7, $ACC7
vmovdqu $ACC8, 32*8-128($np)
vmovdqa $ACC0, $ACC8
vmovdqu $ACC9, 32*9-128($np) # $ACC9 is zero after vzeroall
.Lmul_1024_no_n_copy:
and \$-64,%rsp
mov ($bp), %rbx
vpbroadcastq ($bp), $Bi
vmovdqu $ACC0, (%rsp) # clear top of stack
xor $r0, $r0
.byte 0x67
xor $r1, $r1
xor $r2, $r2
xor $r3, $r3
vmovdqu .Land_mask(%rip), $AND_MASK
mov \$9, $i
vmovdqu $ACC9, 32*9-128($rp) # $ACC9 is zero after vzeroall
jmp .Loop_mul_1024
.align 32
.Loop_mul_1024:
vpsrlq \$29, $ACC3, $ACC9 # correct $ACC3(*)
mov %rbx, %rax
imulq -128($ap), %rax
add $r0, %rax
mov %rbx, $r1
imulq 8-128($ap), $r1
add 8(%rsp), $r1
mov %rax, $r0
imull $n0, %eax
and \$0x1fffffff, %eax
mov %rbx, $r2
imulq 16-128($ap), $r2
add 16(%rsp), $r2
mov %rbx, $r3
imulq 24-128($ap), $r3
add 24(%rsp), $r3
vpmuludq 32*1-128($ap),$Bi,$TEMP0
vmovd %eax, $Yi
vpaddq $TEMP0,$ACC1,$ACC1
vpmuludq 32*2-128($ap),$Bi,$TEMP1
vpbroadcastq $Yi, $Yi
vpaddq $TEMP1,$ACC2,$ACC2
vpmuludq 32*3-128($ap),$Bi,$TEMP2
vpand $AND_MASK, $ACC3, $ACC3 # correct $ACC3
vpaddq $TEMP2,$ACC3,$ACC3
vpmuludq 32*4-128($ap),$Bi,$TEMP0
vpaddq $TEMP0,$ACC4,$ACC4
vpmuludq 32*5-128($ap),$Bi,$TEMP1
vpaddq $TEMP1,$ACC5,$ACC5
vpmuludq 32*6-128($ap),$Bi,$TEMP2
vpaddq $TEMP2,$ACC6,$ACC6
vpmuludq 32*7-128($ap),$Bi,$TEMP0
vpermq \$0x93, $ACC9, $ACC9 # correct $ACC3
vpaddq $TEMP0,$ACC7,$ACC7
vpmuludq 32*8-128($ap),$Bi,$TEMP1
vpbroadcastq 8($bp), $Bi
vpaddq $TEMP1,$ACC8,$ACC8
mov %rax,%rdx
imulq -128($np),%rax
add %rax,$r0
mov %rdx,%rax
imulq 8-128($np),%rax
add %rax,$r1
mov %rdx,%rax
imulq 16-128($np),%rax
add %rax,$r2
shr \$29, $r0
imulq 24-128($np),%rdx
add %rdx,$r3
add $r0, $r1
vpmuludq 32*1-128($np),$Yi,$TEMP2
vmovq $Bi, %rbx
vpaddq $TEMP2,$ACC1,$ACC1
vpmuludq 32*2-128($np),$Yi,$TEMP0
vpaddq $TEMP0,$ACC2,$ACC2
vpmuludq 32*3-128($np),$Yi,$TEMP1
vpaddq $TEMP1,$ACC3,$ACC3
vpmuludq 32*4-128($np),$Yi,$TEMP2
vpaddq $TEMP2,$ACC4,$ACC4
vpmuludq 32*5-128($np),$Yi,$TEMP0
vpaddq $TEMP0,$ACC5,$ACC5
vpmuludq 32*6-128($np),$Yi,$TEMP1
vpaddq $TEMP1,$ACC6,$ACC6
vpmuludq 32*7-128($np),$Yi,$TEMP2
vpblendd \$3, $ZERO, $ACC9, $ACC9 # correct $ACC3
vpaddq $TEMP2,$ACC7,$ACC7
vpmuludq 32*8-128($np),$Yi,$TEMP0
vpaddq $ACC9, $ACC3, $ACC3 # correct $ACC3
vpaddq $TEMP0,$ACC8,$ACC8
mov %rbx, %rax
imulq -128($ap),%rax
add %rax,$r1
vmovdqu -8+32*1-128($ap),$TEMP1
mov %rbx, %rax
imulq 8-128($ap),%rax
add %rax,$r2
vmovdqu -8+32*2-128($ap),$TEMP2
mov $r1, %rax
imull $n0, %eax
and \$0x1fffffff, %eax
imulq 16-128($ap),%rbx
add %rbx,$r3
vpmuludq $Bi,$TEMP1,$TEMP1
vmovd %eax, $Yi
vmovdqu -8+32*3-128($ap),$TEMP0
vpaddq $TEMP1,$ACC1,$ACC1
vpmuludq $Bi,$TEMP2,$TEMP2
vpbroadcastq $Yi, $Yi
vmovdqu -8+32*4-128($ap),$TEMP1
vpaddq $TEMP2,$ACC2,$ACC2
vpmuludq $Bi,$TEMP0,$TEMP0
vmovdqu -8+32*5-128($ap),$TEMP2
vpaddq $TEMP0,$ACC3,$ACC3
vpmuludq $Bi,$TEMP1,$TEMP1
vmovdqu -8+32*6-128($ap),$TEMP0
vpaddq $TEMP1,$ACC4,$ACC4
vpmuludq $Bi,$TEMP2,$TEMP2
vmovdqu -8+32*7-128($ap),$TEMP1
vpaddq $TEMP2,$ACC5,$ACC5
vpmuludq $Bi,$TEMP0,$TEMP0
vmovdqu -8+32*8-128($ap),$TEMP2
vpaddq $TEMP0,$ACC6,$ACC6
vpmuludq $Bi,$TEMP1,$TEMP1
vmovdqu -8+32*9-128($ap),$ACC9
vpaddq $TEMP1,$ACC7,$ACC7
vpmuludq $Bi,$TEMP2,$TEMP2
vpaddq $TEMP2,$ACC8,$ACC8
vpmuludq $Bi,$ACC9,$ACC9
vpbroadcastq 16($bp), $Bi
mov %rax,%rdx
imulq -128($np),%rax
add %rax,$r1
vmovdqu -8+32*1-128($np),$TEMP0
mov %rdx,%rax
imulq 8-128($np),%rax
add %rax,$r2
vmovdqu -8+32*2-128($np),$TEMP1
shr \$29, $r1
imulq 16-128($np),%rdx
add %rdx,$r3
add $r1, $r2
vpmuludq $Yi,$TEMP0,$TEMP0
vmovq $Bi, %rbx
vmovdqu -8+32*3-128($np),$TEMP2
vpaddq $TEMP0,$ACC1,$ACC1
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu -8+32*4-128($np),$TEMP0
vpaddq $TEMP1,$ACC2,$ACC2
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -8+32*5-128($np),$TEMP1
vpaddq $TEMP2,$ACC3,$ACC3
vpmuludq $Yi,$TEMP0,$TEMP0
vmovdqu -8+32*6-128($np),$TEMP2
vpaddq $TEMP0,$ACC4,$ACC4
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu -8+32*7-128($np),$TEMP0
vpaddq $TEMP1,$ACC5,$ACC5
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -8+32*8-128($np),$TEMP1
vpaddq $TEMP2,$ACC6,$ACC6
vpmuludq $Yi,$TEMP0,$TEMP0
vmovdqu -8+32*9-128($np),$TEMP2
vpaddq $TEMP0,$ACC7,$ACC7
vpmuludq $Yi,$TEMP1,$TEMP1
vpaddq $TEMP1,$ACC8,$ACC8
vpmuludq $Yi,$TEMP2,$TEMP2
vpaddq $TEMP2,$ACC9,$ACC9
vmovdqu -16+32*1-128($ap),$TEMP0
mov %rbx,%rax
imulq -128($ap),%rax
add $r2,%rax
vmovdqu -16+32*2-128($ap),$TEMP1
mov %rax,$r2
imull $n0, %eax
and \$0x1fffffff, %eax
imulq 8-128($ap),%rbx
add %rbx,$r3
vpmuludq $Bi,$TEMP0,$TEMP0
vmovd %eax, $Yi
vmovdqu -16+32*3-128($ap),$TEMP2
vpaddq $TEMP0,$ACC1,$ACC1
vpmuludq $Bi,$TEMP1,$TEMP1
vpbroadcastq $Yi, $Yi
vmovdqu -16+32*4-128($ap),$TEMP0
vpaddq $TEMP1,$ACC2,$ACC2
vpmuludq $Bi,$TEMP2,$TEMP2
vmovdqu -16+32*5-128($ap),$TEMP1
vpaddq $TEMP2,$ACC3,$ACC3
vpmuludq $Bi,$TEMP0,$TEMP0
vmovdqu -16+32*6-128($ap),$TEMP2
vpaddq $TEMP0,$ACC4,$ACC4
vpmuludq $Bi,$TEMP1,$TEMP1
vmovdqu -16+32*7-128($ap),$TEMP0
vpaddq $TEMP1,$ACC5,$ACC5
vpmuludq $Bi,$TEMP2,$TEMP2
vmovdqu -16+32*8-128($ap),$TEMP1
vpaddq $TEMP2,$ACC6,$ACC6
vpmuludq $Bi,$TEMP0,$TEMP0
vmovdqu -16+32*9-128($ap),$TEMP2
vpaddq $TEMP0,$ACC7,$ACC7
vpmuludq $Bi,$TEMP1,$TEMP1
vpaddq $TEMP1,$ACC8,$ACC8
vpmuludq $Bi,$TEMP2,$TEMP2
vpbroadcastq 24($bp), $Bi
vpaddq $TEMP2,$ACC9,$ACC9
vmovdqu -16+32*1-128($np),$TEMP0
mov %rax,%rdx
imulq -128($np),%rax
add %rax,$r2
vmovdqu -16+32*2-128($np),$TEMP1
imulq 8-128($np),%rdx
add %rdx,$r3
shr \$29, $r2
vpmuludq $Yi,$TEMP0,$TEMP0
vmovq $Bi, %rbx
vmovdqu -16+32*3-128($np),$TEMP2
vpaddq $TEMP0,$ACC1,$ACC1
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu -16+32*4-128($np),$TEMP0
vpaddq $TEMP1,$ACC2,$ACC2
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -16+32*5-128($np),$TEMP1
vpaddq $TEMP2,$ACC3,$ACC3
vpmuludq $Yi,$TEMP0,$TEMP0
vmovdqu -16+32*6-128($np),$TEMP2
vpaddq $TEMP0,$ACC4,$ACC4
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu -16+32*7-128($np),$TEMP0
vpaddq $TEMP1,$ACC5,$ACC5
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -16+32*8-128($np),$TEMP1
vpaddq $TEMP2,$ACC6,$ACC6
vpmuludq $Yi,$TEMP0,$TEMP0
vmovdqu -16+32*9-128($np),$TEMP2
vpaddq $TEMP0,$ACC7,$ACC7
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu -24+32*1-128($ap),$TEMP0
vpaddq $TEMP1,$ACC8,$ACC8
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -24+32*2-128($ap),$TEMP1
vpaddq $TEMP2,$ACC9,$ACC9
add $r2, $r3
imulq -128($ap),%rbx
add %rbx,$r3
mov $r3, %rax
imull $n0, %eax
and \$0x1fffffff, %eax
vpmuludq $Bi,$TEMP0,$TEMP0
vmovd %eax, $Yi
vmovdqu -24+32*3-128($ap),$TEMP2
vpaddq $TEMP0,$ACC1,$ACC1
vpmuludq $Bi,$TEMP1,$TEMP1
vpbroadcastq $Yi, $Yi
vmovdqu -24+32*4-128($ap),$TEMP0
vpaddq $TEMP1,$ACC2,$ACC2
vpmuludq $Bi,$TEMP2,$TEMP2
vmovdqu -24+32*5-128($ap),$TEMP1
vpaddq $TEMP2,$ACC3,$ACC3
vpmuludq $Bi,$TEMP0,$TEMP0
vmovdqu -24+32*6-128($ap),$TEMP2
vpaddq $TEMP0,$ACC4,$ACC4
vpmuludq $Bi,$TEMP1,$TEMP1
vmovdqu -24+32*7-128($ap),$TEMP0
vpaddq $TEMP1,$ACC5,$ACC5
vpmuludq $Bi,$TEMP2,$TEMP2
vmovdqu -24+32*8-128($ap),$TEMP1
vpaddq $TEMP2,$ACC6,$ACC6
vpmuludq $Bi,$TEMP0,$TEMP0
vmovdqu -24+32*9-128($ap),$TEMP2
vpaddq $TEMP0,$ACC7,$ACC7
vpmuludq $Bi,$TEMP1,$TEMP1
vpaddq $TEMP1,$ACC8,$ACC8
vpmuludq $Bi,$TEMP2,$TEMP2
vpbroadcastq 32($bp), $Bi
vpaddq $TEMP2,$ACC9,$ACC9
add \$32, $bp # $bp++
vmovdqu -24+32*1-128($np),$TEMP0
imulq -128($np),%rax
add %rax,$r3
shr \$29, $r3
vmovdqu -24+32*2-128($np),$TEMP1
vpmuludq $Yi,$TEMP0,$TEMP0
vmovq $Bi, %rbx
vmovdqu -24+32*3-128($np),$TEMP2
vpaddq $TEMP0,$ACC1,$ACC0 # $ACC0==$TEMP0
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu $ACC0, (%rsp) # transfer $r0-$r3
vpaddq $TEMP1,$ACC2,$ACC1
vmovdqu -24+32*4-128($np),$TEMP0
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -24+32*5-128($np),$TEMP1
vpaddq $TEMP2,$ACC3,$ACC2
vpmuludq $Yi,$TEMP0,$TEMP0
vmovdqu -24+32*6-128($np),$TEMP2
vpaddq $TEMP0,$ACC4,$ACC3
vpmuludq $Yi,$TEMP1,$TEMP1
vmovdqu -24+32*7-128($np),$TEMP0
vpaddq $TEMP1,$ACC5,$ACC4
vpmuludq $Yi,$TEMP2,$TEMP2
vmovdqu -24+32*8-128($np),$TEMP1
vpaddq $TEMP2,$ACC6,$ACC5
vpmuludq $Yi,$TEMP0,$TEMP0
vmovdqu -24+32*9-128($np),$TEMP2
mov $r3, $r0
vpaddq $TEMP0,$ACC7,$ACC6
vpmuludq $Yi,$TEMP1,$TEMP1
add (%rsp), $r0
vpaddq $TEMP1,$ACC8,$ACC7
vpmuludq $Yi,$TEMP2,$TEMP2
vmovq $r3, $TEMP1
vpaddq $TEMP2,$ACC9,$ACC8
dec $i
jnz .Loop_mul_1024
___
# (*) Original implementation was correcting ACC1-ACC3 for overflow
# after 7 loop runs, or after 28 iterations, or 56 additions.
# But as we underutilize resources, it's possible to correct in
# each iteration with marginal performance loss. But then, as
# we do it in each iteration, we can correct less digits, and
# avoid performance penalties completely. Also note that we
# correct only three digits out of four. This works because
# most significant digit is subjected to less additions.
$TEMP0 = $ACC9;
$TEMP3 = $Bi;
$TEMP4 = $Yi;
$code.=<<___;
vpermq \$0, $AND_MASK, $AND_MASK
vpaddq (%rsp), $TEMP1, $ACC0
vpsrlq \$29, $ACC0, $TEMP1
vpand $AND_MASK, $ACC0, $ACC0
vpsrlq \$29, $ACC1, $TEMP2
vpand $AND_MASK, $ACC1, $ACC1
vpsrlq \$29, $ACC2, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC2, $ACC2
vpsrlq \$29, $ACC3, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC3, $ACC3
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP3, $TEMP3
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpermq \$0x93, $TEMP4, $TEMP4
vpaddq $TEMP0, $ACC0, $ACC0
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC1, $ACC1
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC2, $ACC2
vpblendd \$3, $TEMP4, $ZERO, $TEMP4
vpaddq $TEMP3, $ACC3, $ACC3
vpaddq $TEMP4, $ACC4, $ACC4
vpsrlq \$29, $ACC0, $TEMP1
vpand $AND_MASK, $ACC0, $ACC0
vpsrlq \$29, $ACC1, $TEMP2
vpand $AND_MASK, $ACC1, $ACC1
vpsrlq \$29, $ACC2, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC2, $ACC2
vpsrlq \$29, $ACC3, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC3, $ACC3
vpermq \$0x93, $TEMP3, $TEMP3
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC0, $ACC0
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC1, $ACC1
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC2, $ACC2
vpblendd \$3, $TEMP4, $ZERO, $TEMP4
vpaddq $TEMP3, $ACC3, $ACC3
vpaddq $TEMP4, $ACC4, $ACC4
vmovdqu $ACC0, 0-128($rp)
vmovdqu $ACC1, 32-128($rp)
vmovdqu $ACC2, 64-128($rp)
vmovdqu $ACC3, 96-128($rp)
___
$TEMP5=$ACC0;
$code.=<<___;
vpsrlq \$29, $ACC4, $TEMP1
vpand $AND_MASK, $ACC4, $ACC4
vpsrlq \$29, $ACC5, $TEMP2
vpand $AND_MASK, $ACC5, $ACC5
vpsrlq \$29, $ACC6, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC6, $ACC6
vpsrlq \$29, $ACC7, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC7, $ACC7
vpsrlq \$29, $ACC8, $TEMP5
vpermq \$0x93, $TEMP3, $TEMP3
vpand $AND_MASK, $ACC8, $ACC8
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP5, $TEMP5
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC4, $ACC4
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC5, $ACC5
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC6, $ACC6
vpblendd \$3, $TEMP4, $TEMP5, $TEMP4
vpaddq $TEMP3, $ACC7, $ACC7
vpaddq $TEMP4, $ACC8, $ACC8
vpsrlq \$29, $ACC4, $TEMP1
vpand $AND_MASK, $ACC4, $ACC4
vpsrlq \$29, $ACC5, $TEMP2
vpand $AND_MASK, $ACC5, $ACC5
vpsrlq \$29, $ACC6, $TEMP3
vpermq \$0x93, $TEMP1, $TEMP1
vpand $AND_MASK, $ACC6, $ACC6
vpsrlq \$29, $ACC7, $TEMP4
vpermq \$0x93, $TEMP2, $TEMP2
vpand $AND_MASK, $ACC7, $ACC7
vpsrlq \$29, $ACC8, $TEMP5
vpermq \$0x93, $TEMP3, $TEMP3
vpand $AND_MASK, $ACC8, $ACC8
vpermq \$0x93, $TEMP4, $TEMP4
vpblendd \$3, $ZERO, $TEMP1, $TEMP0
vpermq \$0x93, $TEMP5, $TEMP5
vpblendd \$3, $TEMP1, $TEMP2, $TEMP1
vpaddq $TEMP0, $ACC4, $ACC4
vpblendd \$3, $TEMP2, $TEMP3, $TEMP2
vpaddq $TEMP1, $ACC5, $ACC5
vpblendd \$3, $TEMP3, $TEMP4, $TEMP3
vpaddq $TEMP2, $ACC6, $ACC6
vpblendd \$3, $TEMP4, $TEMP5, $TEMP4
vpaddq $TEMP3, $ACC7, $ACC7
vpaddq $TEMP4, $ACC8, $ACC8
vmovdqu $ACC4, 128-128($rp)
vmovdqu $ACC5, 160-128($rp)
vmovdqu $ACC6, 192-128($rp)
vmovdqu $ACC7, 224-128($rp)
vmovdqu $ACC8, 256-128($rp)
vzeroupper
mov %rbp, %rax
___
$code.=<<___ if ($win64);
movaps -0xd8(%rax),%xmm6
movaps -0xc8(%rax),%xmm7
movaps -0xb8(%rax),%xmm8
movaps -0xa8(%rax),%xmm9
movaps -0x98(%rax),%xmm10
movaps -0x88(%rax),%xmm11
movaps -0x78(%rax),%xmm12
movaps -0x68(%rax),%xmm13
movaps -0x58(%rax),%xmm14
movaps -0x48(%rax),%xmm15
___
$code.=<<___;
mov -48(%rax),%r15
mov -40(%rax),%r14
mov -32(%rax),%r13
mov -24(%rax),%r12
mov -16(%rax),%rbp
mov -8(%rax),%rbx
lea (%rax),%rsp # restore %rsp
.Lmul_1024_epilogue:
ret
.size rsaz_1024_mul_avx2,.-rsaz_1024_mul_avx2
___
}
{
my ($out,$inp) = $win64 ? ("%rcx","%rdx") : ("%rdi","%rsi");
my @T = map("%r$_",(8..11));
$code.=<<___;
.globl rsaz_1024_red2norm_avx2
.type rsaz_1024_red2norm_avx2,\@abi-omnipotent
.align 32
rsaz_1024_red2norm_avx2:
sub \$-128,$inp # size optimization
xor %rax,%rax
___
for ($j=0,$i=0; $i<16; $i++) {
my $k=0;
while (29*$j<64*($i+1)) { # load data till boundary
$code.=" mov `8*$j-128`($inp), @T[0]\n";
$j++; $k++; push(@T,shift(@T));
}
$l=$k;
while ($k>1) { # shift loaded data but last value
$code.=" shl \$`29*($j-$k)`,@T[-$k]\n";
$k--;
}
$code.=<<___; # shift last value
mov @T[-1], @T[0]
shl \$`29*($j-1)`, @T[-1]
shr \$`-29*($j-1)`, @T[0]
___
while ($l) { # accumulate all values
$code.=" add @T[-$l], %rax\n";
$l--;
}
$code.=<<___;
adc \$0, @T[0] # consume eventual carry
mov %rax, 8*$i($out)
mov @T[0], %rax
___
push(@T,shift(@T));
}
$code.=<<___;
ret
.size rsaz_1024_red2norm_avx2,.-rsaz_1024_red2norm_avx2
.globl rsaz_1024_norm2red_avx2
.type rsaz_1024_norm2red_avx2,\@abi-omnipotent
.align 32
rsaz_1024_norm2red_avx2:
sub \$-128,$out # size optimization
mov ($inp),@T[0]
mov \$0x1fffffff,%eax
___
for ($j=0,$i=0; $i<16; $i++) {
$code.=" mov `8*($i+1)`($inp),@T[1]\n" if ($i<15);
$code.=" xor @T[1],@T[1]\n" if ($i==15);
my $k=1;
while (29*($j+1)<64*($i+1)) {
$code.=<<___;
mov @T[0],@T[-$k]
shr \$`29*$j`,@T[-$k]
and %rax,@T[-$k] # &0x1fffffff
mov @T[-$k],`8*$j-128`($out)
___
$j++; $k++;
}
$code.=<<___;
shrd \$`29*$j`,@T[1],@T[0]
and %rax,@T[0]
mov @T[0],`8*$j-128`($out)
___
$j++;
push(@T,shift(@T));
}
$code.=<<___;
mov @T[0],`8*$j-128`($out) # zero
mov @T[0],`8*($j+1)-128`($out)
mov @T[0],`8*($j+2)-128`($out)
mov @T[0],`8*($j+3)-128`($out)
ret
.size rsaz_1024_norm2red_avx2,.-rsaz_1024_norm2red_avx2
___
}
{
my ($out,$inp,$power) = $win64 ? ("%rcx","%rdx","%r8d") : ("%rdi","%rsi","%edx");
$code.=<<___;
.globl rsaz_1024_scatter5_avx2
.type rsaz_1024_scatter5_avx2,\@abi-omnipotent
.align 32
rsaz_1024_scatter5_avx2:
vzeroupper
vmovdqu .Lscatter_permd(%rip),%ymm5
shl \$4,$power
lea ($out,$power),$out
mov \$9,%eax
jmp .Loop_scatter_1024
.align 32
.Loop_scatter_1024:
vmovdqu ($inp),%ymm0
lea 32($inp),$inp
vpermd %ymm0,%ymm5,%ymm0
vmovdqu %xmm0,($out)
lea 16*32($out),$out
dec %eax
jnz .Loop_scatter_1024
vzeroupper
ret
.size rsaz_1024_scatter5_avx2,.-rsaz_1024_scatter5_avx2
.globl rsaz_1024_gather5_avx2
.type rsaz_1024_gather5_avx2,\@abi-omnipotent
.align 32
rsaz_1024_gather5_avx2:
vzeroupper
mov %rsp,%r11
___
$code.=<<___ if ($win64);
lea -0x88(%rsp),%rax
.LSEH_begin_rsaz_1024_gather5:
# I can't trust assembler to use specific encoding:-(
.byte 0x48,0x8d,0x60,0xe0 # lea -0x20(%rax),%rsp
.byte 0xc5,0xf8,0x29,0x70,0xe0 # vmovaps %xmm6,-0x20(%rax)
.byte 0xc5,0xf8,0x29,0x78,0xf0 # vmovaps %xmm7,-0x10(%rax)
.byte 0xc5,0x78,0x29,0x40,0x00 # vmovaps %xmm8,0(%rax)
.byte 0xc5,0x78,0x29,0x48,0x10 # vmovaps %xmm9,0x10(%rax)
.byte 0xc5,0x78,0x29,0x50,0x20 # vmovaps %xmm10,0x20(%rax)
.byte 0xc5,0x78,0x29,0x58,0x30 # vmovaps %xmm11,0x30(%rax)
.byte 0xc5,0x78,0x29,0x60,0x40 # vmovaps %xmm12,0x40(%rax)
.byte 0xc5,0x78,0x29,0x68,0x50 # vmovaps %xmm13,0x50(%rax)
.byte 0xc5,0x78,0x29,0x70,0x60 # vmovaps %xmm14,0x60(%rax)
.byte 0xc5,0x78,0x29,0x78,0x70 # vmovaps %xmm15,0x70(%rax)
___
$code.=<<___;
lea -0x100(%rsp),%rsp
and \$-32, %rsp
lea .Linc(%rip), %r10
lea -128(%rsp),%rax # control u-op density
vmovd $power, %xmm4
vmovdqa (%r10),%ymm0
vmovdqa 32(%r10),%ymm1
vmovdqa 64(%r10),%ymm5
vpbroadcastd %xmm4,%ymm4
vpaddd %ymm5, %ymm0, %ymm2
vpcmpeqd %ymm4, %ymm0, %ymm0
vpaddd %ymm5, %ymm1, %ymm3
vpcmpeqd %ymm4, %ymm1, %ymm1
vmovdqa %ymm0, 32*0+128(%rax)
vpaddd %ymm5, %ymm2, %ymm0
vpcmpeqd %ymm4, %ymm2, %ymm2
vmovdqa %ymm1, 32*1+128(%rax)
vpaddd %ymm5, %ymm3, %ymm1
vpcmpeqd %ymm4, %ymm3, %ymm3
vmovdqa %ymm2, 32*2+128(%rax)
vpaddd %ymm5, %ymm0, %ymm2
vpcmpeqd %ymm4, %ymm0, %ymm0
vmovdqa %ymm3, 32*3+128(%rax)
vpaddd %ymm5, %ymm1, %ymm3
vpcmpeqd %ymm4, %ymm1, %ymm1
vmovdqa %ymm0, 32*4+128(%rax)
vpaddd %ymm5, %ymm2, %ymm8
vpcmpeqd %ymm4, %ymm2, %ymm2
vmovdqa %ymm1, 32*5+128(%rax)
vpaddd %ymm5, %ymm3, %ymm9
vpcmpeqd %ymm4, %ymm3, %ymm3
vmovdqa %ymm2, 32*6+128(%rax)
vpaddd %ymm5, %ymm8, %ymm10
vpcmpeqd %ymm4, %ymm8, %ymm8
vmovdqa %ymm3, 32*7+128(%rax)
vpaddd %ymm5, %ymm9, %ymm11
vpcmpeqd %ymm4, %ymm9, %ymm9
vpaddd %ymm5, %ymm10, %ymm12
vpcmpeqd %ymm4, %ymm10, %ymm10
vpaddd %ymm5, %ymm11, %ymm13
vpcmpeqd %ymm4, %ymm11, %ymm11
vpaddd %ymm5, %ymm12, %ymm14
vpcmpeqd %ymm4, %ymm12, %ymm12
vpaddd %ymm5, %ymm13, %ymm15
vpcmpeqd %ymm4, %ymm13, %ymm13
vpcmpeqd %ymm4, %ymm14, %ymm14
vpcmpeqd %ymm4, %ymm15, %ymm15
vmovdqa -32(%r10),%ymm7 # .Lgather_permd
lea 128($inp), $inp
mov \$9,$power
.Loop_gather_1024:
vmovdqa 32*0-128($inp), %ymm0
vmovdqa 32*1-128($inp), %ymm1
vmovdqa 32*2-128($inp), %ymm2
vmovdqa 32*3-128($inp), %ymm3
vpand 32*0+128(%rax), %ymm0, %ymm0
vpand 32*1+128(%rax), %ymm1, %ymm1
vpand 32*2+128(%rax), %ymm2, %ymm2
vpor %ymm0, %ymm1, %ymm4
vpand 32*3+128(%rax), %ymm3, %ymm3
vmovdqa 32*4-128($inp), %ymm0
vmovdqa 32*5-128($inp), %ymm1
vpor %ymm2, %ymm3, %ymm5
vmovdqa 32*6-128($inp), %ymm2
vmovdqa 32*7-128($inp), %ymm3
vpand 32*4+128(%rax), %ymm0, %ymm0
vpand 32*5+128(%rax), %ymm1, %ymm1
vpand 32*6+128(%rax), %ymm2, %ymm2
vpor %ymm0, %ymm4, %ymm4
vpand 32*7+128(%rax), %ymm3, %ymm3
vpand 32*8-128($inp), %ymm8, %ymm0
vpor %ymm1, %ymm5, %ymm5
vpand 32*9-128($inp), %ymm9, %ymm1
vpor %ymm2, %ymm4, %ymm4
vpand 32*10-128($inp),%ymm10, %ymm2
vpor %ymm3, %ymm5, %ymm5
vpand 32*11-128($inp),%ymm11, %ymm3
vpor %ymm0, %ymm4, %ymm4
vpand 32*12-128($inp),%ymm12, %ymm0
vpor %ymm1, %ymm5, %ymm5
vpand 32*13-128($inp),%ymm13, %ymm1
vpor %ymm2, %ymm4, %ymm4
vpand 32*14-128($inp),%ymm14, %ymm2
vpor %ymm3, %ymm5, %ymm5
vpand 32*15-128($inp),%ymm15, %ymm3
lea 32*16($inp), $inp
vpor %ymm0, %ymm4, %ymm4
vpor %ymm1, %ymm5, %ymm5
vpor %ymm2, %ymm4, %ymm4
vpor %ymm3, %ymm5, %ymm5
vpor %ymm5, %ymm4, %ymm4
vextracti128 \$1, %ymm4, %xmm5 # upper half is cleared
vpor %xmm4, %xmm5, %xmm5
vpermd %ymm5,%ymm7,%ymm5
vmovdqu %ymm5,($out)
lea 32($out),$out
dec $power
jnz .Loop_gather_1024
vpxor %ymm0,%ymm0,%ymm0
vmovdqu %ymm0,($out)
vzeroupper
___
$code.=<<___ if ($win64);
movaps -0xa8(%r11),%xmm6
movaps -0x98(%r11),%xmm7
movaps -0x88(%r11),%xmm8
movaps -0x78(%r11),%xmm9
movaps -0x68(%r11),%xmm10
movaps -0x58(%r11),%xmm11
movaps -0x48(%r11),%xmm12
movaps -0x38(%r11),%xmm13
movaps -0x28(%r11),%xmm14
movaps -0x18(%r11),%xmm15
.LSEH_end_rsaz_1024_gather5:
___
$code.=<<___;
lea (%r11),%rsp
ret
.size rsaz_1024_gather5_avx2,.-rsaz_1024_gather5_avx2
___
}
$code.=<<___;
.extern OPENSSL_ia32cap_P
.globl rsaz_avx2_eligible
.type rsaz_avx2_eligible,\@abi-omnipotent
.align 32
rsaz_avx2_eligible:
mov OPENSSL_ia32cap_P+8(%rip),%eax
___
$code.=<<___ if ($addx);
mov \$`1<<8|1<<19`,%ecx
mov \$0,%edx
and %eax,%ecx
cmp \$`1<<8|1<<19`,%ecx # check for BMI2+AD*X
cmove %edx,%eax
___
$code.=<<___;
and \$`1<<5`,%eax
shr \$5,%eax
ret
.size rsaz_avx2_eligible,.-rsaz_avx2_eligible
.align 64
.Land_mask:
.quad 0x1fffffff,0x1fffffff,0x1fffffff,-1
.Lscatter_permd:
.long 0,2,4,6,7,7,7,7
.Lgather_permd:
.long 0,7,1,7,2,7,3,7
.Linc:
.long 0,0,0,0, 1,1,1,1
.long 2,2,2,2, 3,3,3,3
.long 4,4,4,4, 4,4,4,4
.align 64
___
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___
.extern __imp_RtlVirtualUnwind
.type rsaz_se_handler,\@abi-omnipotent
.align 16
rsaz_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
mov 160($context),%rax # pull context->Rbp
mov -48(%rax),%r15
mov -40(%rax),%r14
mov -32(%rax),%r13
mov -24(%rax),%r12
mov -16(%rax),%rbp
mov -8(%rax),%rbx
mov %r15,240($context)
mov %r14,232($context)
mov %r13,224($context)
mov %r12,216($context)
mov %rbp,160($context)
mov %rbx,144($context)
lea -0xd8(%rax),%rsi # %xmm save area
lea 512($context),%rdi # & context.Xmm6
mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
.long 0xa548f3fc # cld; rep movsq
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size rsaz_se_handler,.-rsaz_se_handler
.section .pdata
.align 4
.rva .LSEH_begin_rsaz_1024_sqr_avx2
.rva .LSEH_end_rsaz_1024_sqr_avx2
.rva .LSEH_info_rsaz_1024_sqr_avx2
.rva .LSEH_begin_rsaz_1024_mul_avx2
.rva .LSEH_end_rsaz_1024_mul_avx2
.rva .LSEH_info_rsaz_1024_mul_avx2
.rva .LSEH_begin_rsaz_1024_gather5
.rva .LSEH_end_rsaz_1024_gather5
.rva .LSEH_info_rsaz_1024_gather5
.section .xdata
.align 8
.LSEH_info_rsaz_1024_sqr_avx2:
.byte 9,0,0,0
.rva rsaz_se_handler
.rva .Lsqr_1024_body,.Lsqr_1024_epilogue
.LSEH_info_rsaz_1024_mul_avx2:
.byte 9,0,0,0
.rva rsaz_se_handler
.rva .Lmul_1024_body,.Lmul_1024_epilogue
.LSEH_info_rsaz_1024_gather5:
.byte 0x01,0x36,0x17,0x0b
.byte 0x36,0xf8,0x09,0x00 # vmovaps 0x90(rsp),xmm15
.byte 0x31,0xe8,0x08,0x00 # vmovaps 0x80(rsp),xmm14
.byte 0x2c,0xd8,0x07,0x00 # vmovaps 0x70(rsp),xmm13
.byte 0x27,0xc8,0x06,0x00 # vmovaps 0x60(rsp),xmm12
.byte 0x22,0xb8,0x05,0x00 # vmovaps 0x50(rsp),xmm11
.byte 0x1d,0xa8,0x04,0x00 # vmovaps 0x40(rsp),xmm10
.byte 0x18,0x98,0x03,0x00 # vmovaps 0x30(rsp),xmm9
.byte 0x13,0x88,0x02,0x00 # vmovaps 0x20(rsp),xmm8
.byte 0x0e,0x78,0x01,0x00 # vmovaps 0x10(rsp),xmm7
.byte 0x09,0x68,0x00,0x00 # vmovaps 0x00(rsp),xmm6
.byte 0x04,0x01,0x15,0x00 # sub rsp,0xa8
.byte 0x00,0xb3,0x00,0x00 # set_frame r11
___
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval($1)/ge;
s/\b(sh[rl]d?\s+\$)(-?[0-9]+)/$1.$2%64/ge or
s/\b(vmov[dq])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or
s/\b(vmovdqu)\b(.+)%x%ymm([0-9]+)/$1$2%xmm$3/go or
s/\b(vpinsr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or
s/\b(vpextr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or
s/\b(vpbroadcast[qd]\s+)%ymm([0-9]+)/$1%xmm$2/go;
print $_,"\n";
}
}}} else {{{
print <<___; # assembler is too old
.text
.globl rsaz_avx2_eligible
.type rsaz_avx2_eligible,\@abi-omnipotent
rsaz_avx2_eligible:
xor %eax,%eax
ret
.size rsaz_avx2_eligible,.-rsaz_avx2_eligible
.globl rsaz_1024_sqr_avx2
.globl rsaz_1024_mul_avx2
.globl rsaz_1024_norm2red_avx2
.globl rsaz_1024_red2norm_avx2
.globl rsaz_1024_scatter5_avx2
.globl rsaz_1024_gather5_avx2
.type rsaz_1024_sqr_avx2,\@abi-omnipotent
rsaz_1024_sqr_avx2:
rsaz_1024_mul_avx2:
rsaz_1024_norm2red_avx2:
rsaz_1024_red2norm_avx2:
rsaz_1024_scatter5_avx2:
rsaz_1024_gather5_avx2:
.byte 0x0f,0x0b # ud2
ret
.size rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2
___
}}}
close STDOUT;