openssl/test/evp_test.c
Richard Levitte dfbdf4abb7 Fix the evp_test Ctrl keyword processing
Skip the test if the value after ":" is a disabled algorithm, rather
than failing it

Reviewed-by: Matt Caswell <matt@openssl.org>
2016-11-10 10:19:27 +00:00

1860 lines
50 KiB
C

/*
* Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/x509v3.h>
#include <openssl/pkcs12.h>
#include <openssl/kdf.h>
#include "internal/numbers.h"
/* Remove spaces from beginning and end of a string */
static void remove_space(char **pval)
{
unsigned char *p = (unsigned char *)*pval;
while (isspace(*p))
p++;
*pval = (char *)p;
p = p + strlen(*pval) - 1;
/* Remove trailing space */
while (isspace(*p))
*p-- = 0;
}
/*
* Given a line of the form:
* name = value # comment
* extract name and value. NB: modifies passed buffer.
*/
static int parse_line(char **pkw, char **pval, char *linebuf)
{
char *p;
p = linebuf + strlen(linebuf) - 1;
if (*p != '\n') {
fprintf(stderr, "FATAL: missing EOL\n");
exit(1);
}
/* Look for # */
p = strchr(linebuf, '#');
if (p)
*p = '\0';
/* Look for = sign */
p = strchr(linebuf, '=');
/* If no '=' exit */
if (!p)
return 0;
*p++ = '\0';
*pkw = linebuf;
*pval = p;
/* Remove spaces from keyword and value */
remove_space(pkw);
remove_space(pval);
return 1;
}
/*
* Unescape some escape sequences in string literals.
* Return the result in a newly allocated buffer.
* Currently only supports '\n'.
* If the input length is 0, returns a valid 1-byte buffer, but sets
* the length to 0.
*/
static unsigned char* unescape(const char *input, size_t input_len,
size_t *out_len)
{
unsigned char *ret, *p;
size_t i;
if (input_len == 0) {
*out_len = 0;
return OPENSSL_zalloc(1);
}
/* Escaping is non-expanding; over-allocate original size for simplicity. */
ret = p = OPENSSL_malloc(input_len);
if (ret == NULL)
return NULL;
for (i = 0; i < input_len; i++) {
if (input[i] == '\\') {
if (i == input_len - 1 || input[i+1] != 'n')
goto err;
*p++ = '\n';
i++;
} else {
*p++ = input[i];
}
}
*out_len = p - ret;
return ret;
err:
OPENSSL_free(ret);
return NULL;
}
/* For a hex string "value" convert to a binary allocated buffer */
static int test_bin(const char *value, unsigned char **buf, size_t *buflen)
{
long len;
*buflen = 0;
if (!*value) {
/*
* Don't return NULL for zero length buffer.
* This is needed for some tests with empty keys: HMAC_Init_ex() expects
* a non-NULL key buffer even if the key length is 0, in order to detect
* key reset.
*/
*buf = OPENSSL_malloc(1);
if (!*buf)
return 0;
**buf = 0;
*buflen = 0;
return 1;
}
/* Check for string literal */
if (value[0] == '"') {
size_t vlen;
value++;
vlen = strlen(value);
if (value[vlen - 1] != '"')
return 0;
vlen--;
*buf = unescape(value, vlen, buflen);
if (*buf == NULL)
return 0;
return 1;
}
*buf = OPENSSL_hexstr2buf(value, &len);
if (!*buf) {
fprintf(stderr, "Value=%s\n", value);
ERR_print_errors_fp(stderr);
return -1;
}
/* Size of input buffer means we'll never overflow */
*buflen = len;
return 1;
}
#ifndef OPENSSL_NO_SCRYPT
/* Currently only used by scrypt tests */
/* Parse unsigned decimal 64 bit integer value */
static int test_uint64(const char *value, uint64_t *pr)
{
const char *p = value;
if (!*p) {
fprintf(stderr, "Invalid empty integer value\n");
return -1;
}
*pr = 0;
while (*p) {
if (*pr > UINT64_MAX/10) {
fprintf(stderr, "Integer string overflow value=%s\n", value);
return -1;
}
*pr *= 10;
if (*p < '0' || *p > '9') {
fprintf(stderr, "Invalid integer string value=%s\n", value);
return -1;
}
*pr += *p - '0';
p++;
}
return 1;
}
#endif
/* Structure holding test information */
struct evp_test {
/* file being read */
BIO *in;
/* List of public and private keys */
struct key_list *private;
struct key_list *public;
/* method for this test */
const struct evp_test_method *meth;
/* current line being processed */
unsigned int line;
/* start line of current test */
unsigned int start_line;
/* Error string for test */
const char *err, *aux_err;
/* Expected error value of test */
char *expected_err;
/* Number of tests */
int ntests;
/* Error count */
int errors;
/* Number of tests skipped */
int nskip;
/* If output mismatch expected and got value */
unsigned char *out_received;
size_t out_received_len;
unsigned char *out_expected;
size_t out_expected_len;
/* test specific data */
void *data;
/* Current test should be skipped */
int skip;
};
struct key_list {
char *name;
EVP_PKEY *key;
struct key_list *next;
};
/* Test method structure */
struct evp_test_method {
/* Name of test as it appears in file */
const char *name;
/* Initialise test for "alg" */
int (*init) (struct evp_test * t, const char *alg);
/* Clean up method */
void (*cleanup) (struct evp_test * t);
/* Test specific name value pair processing */
int (*parse) (struct evp_test * t, const char *name, const char *value);
/* Run the test itself */
int (*run_test) (struct evp_test * t);
};
static const struct evp_test_method digest_test_method, cipher_test_method;
static const struct evp_test_method mac_test_method;
static const struct evp_test_method psign_test_method, pverify_test_method;
static const struct evp_test_method pdecrypt_test_method;
static const struct evp_test_method pverify_recover_test_method;
static const struct evp_test_method pderive_test_method;
static const struct evp_test_method pbe_test_method;
static const struct evp_test_method encode_test_method;
static const struct evp_test_method kdf_test_method;
static const struct evp_test_method *evp_test_list[] = {
&digest_test_method,
&cipher_test_method,
&mac_test_method,
&psign_test_method,
&pverify_test_method,
&pdecrypt_test_method,
&pverify_recover_test_method,
&pderive_test_method,
&pbe_test_method,
&encode_test_method,
&kdf_test_method,
NULL
};
static const struct evp_test_method *evp_find_test(const char *name)
{
const struct evp_test_method **tt;
for (tt = evp_test_list; *tt; tt++) {
if (strcmp(name, (*tt)->name) == 0)
return *tt;
}
return NULL;
}
static void hex_print(const char *name, const unsigned char *buf, size_t len)
{
size_t i;
fprintf(stderr, "%s ", name);
for (i = 0; i < len; i++)
fprintf(stderr, "%02X", buf[i]);
fputs("\n", stderr);
}
static void free_expected(struct evp_test *t)
{
OPENSSL_free(t->expected_err);
t->expected_err = NULL;
OPENSSL_free(t->out_expected);
OPENSSL_free(t->out_received);
t->out_expected = NULL;
t->out_received = NULL;
t->out_expected_len = 0;
t->out_received_len = 0;
/* Literals. */
t->err = NULL;
}
static void print_expected(struct evp_test *t)
{
if (t->out_expected == NULL && t->out_received == NULL)
return;
hex_print("Expected:", t->out_expected, t->out_expected_len);
hex_print("Got: ", t->out_received, t->out_received_len);
free_expected(t);
}
static int check_test_error(struct evp_test *t)
{
if (!t->err && !t->expected_err)
return 1;
if (t->err && !t->expected_err) {
if (t->aux_err != NULL) {
fprintf(stderr, "Test line %d(%s): unexpected error %s\n",
t->start_line, t->aux_err, t->err);
} else {
fprintf(stderr, "Test line %d: unexpected error %s\n",
t->start_line, t->err);
}
print_expected(t);
return 0;
}
if (!t->err && t->expected_err) {
fprintf(stderr, "Test line %d: succeeded expecting %s\n",
t->start_line, t->expected_err);
return 0;
}
if (strcmp(t->err, t->expected_err) == 0)
return 1;
fprintf(stderr, "Test line %d: expecting %s got %s\n",
t->start_line, t->expected_err, t->err);
return 0;
}
/* Setup a new test, run any existing test */
static int setup_test(struct evp_test *t, const struct evp_test_method *tmeth)
{
/* If we already have a test set up run it */
if (t->meth) {
t->ntests++;
if (t->skip) {
t->meth = tmeth;
t->nskip++;
return 1;
}
t->err = NULL;
if (t->meth->run_test(t) != 1) {
fprintf(stderr, "%s test error line %d\n",
t->meth->name, t->start_line);
return 0;
}
if (!check_test_error(t)) {
if (t->err)
ERR_print_errors_fp(stderr);
t->errors++;
}
ERR_clear_error();
t->meth->cleanup(t);
OPENSSL_free(t->data);
t->data = NULL;
OPENSSL_free(t->expected_err);
t->expected_err = NULL;
free_expected(t);
}
t->meth = tmeth;
return 1;
}
static int find_key(EVP_PKEY **ppk, const char *name, struct key_list *lst)
{
for (; lst; lst = lst->next) {
if (strcmp(lst->name, name) == 0) {
if (ppk)
*ppk = lst->key;
return 1;
}
}
return 0;
}
static void free_key_list(struct key_list *lst)
{
while (lst != NULL) {
struct key_list *ltmp;
EVP_PKEY_free(lst->key);
OPENSSL_free(lst->name);
ltmp = lst->next;
OPENSSL_free(lst);
lst = ltmp;
}
}
static int check_unsupported()
{
long err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_EVP
&& ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
ERR_clear_error();
return 1;
}
return 0;
}
static int process_test(struct evp_test *t, char *buf, int verbose)
{
char *keyword = NULL, *value = NULL;
int rv = 0, add_key = 0;
long save_pos = 0;
struct key_list **lst = NULL, *key = NULL;
EVP_PKEY *pk = NULL;
const struct evp_test_method *tmeth = NULL;
if (verbose)
fputs(buf, stdout);
if (!parse_line(&keyword, &value, buf))
return 1;
if (strcmp(keyword, "PrivateKey") == 0) {
save_pos = BIO_tell(t->in);
pk = PEM_read_bio_PrivateKey(t->in, NULL, 0, NULL);
if (pk == NULL && !check_unsupported()) {
fprintf(stderr, "Error reading private key %s\n", value);
ERR_print_errors_fp(stderr);
return 0;
}
lst = &t->private;
add_key = 1;
}
if (strcmp(keyword, "PublicKey") == 0) {
save_pos = BIO_tell(t->in);
pk = PEM_read_bio_PUBKEY(t->in, NULL, 0, NULL);
if (pk == NULL && !check_unsupported()) {
fprintf(stderr, "Error reading public key %s\n", value);
ERR_print_errors_fp(stderr);
return 0;
}
lst = &t->public;
add_key = 1;
}
/* If we have a key add to list */
if (add_key) {
char tmpbuf[80];
if (find_key(NULL, value, *lst)) {
fprintf(stderr, "Duplicate key %s\n", value);
return 0;
}
key = OPENSSL_malloc(sizeof(*key));
if (!key)
return 0;
key->name = OPENSSL_strdup(value);
key->key = pk;
key->next = *lst;
*lst = key;
/* Rewind input, read to end and update line numbers */
(void)BIO_seek(t->in, save_pos);
while (BIO_gets(t->in,tmpbuf, sizeof(tmpbuf))) {
t->line++;
if (strncmp(tmpbuf, "-----END", 8) == 0)
return 1;
}
fprintf(stderr, "Can't find key end\n");
return 0;
}
/* See if keyword corresponds to a test start */
tmeth = evp_find_test(keyword);
if (tmeth) {
if (!setup_test(t, tmeth))
return 0;
t->start_line = t->line;
t->skip = 0;
if (!tmeth->init(t, value)) {
fprintf(stderr, "Unknown %s: %s\n", keyword, value);
return 0;
}
return 1;
} else if (t->skip) {
return 1;
} else if (strcmp(keyword, "Result") == 0) {
if (t->expected_err) {
fprintf(stderr, "Line %d: multiple result lines\n", t->line);
return 0;
}
t->expected_err = OPENSSL_strdup(value);
if (!t->expected_err)
return 0;
} else {
/* Must be test specific line: try to parse it */
if (t->meth)
rv = t->meth->parse(t, keyword, value);
if (rv == 0)
fprintf(stderr, "line %d: unexpected keyword %s\n",
t->line, keyword);
if (rv < 0)
fprintf(stderr, "line %d: error processing keyword %s\n",
t->line, keyword);
if (rv <= 0)
return 0;
}
return 1;
}
static int check_var_length_output(struct evp_test *t,
const unsigned char *expected,
size_t expected_len,
const unsigned char *received,
size_t received_len)
{
if (expected_len == received_len &&
memcmp(expected, received, expected_len) == 0) {
return 0;
}
/* The result printing code expects a non-NULL buffer. */
t->out_expected = OPENSSL_memdup(expected, expected_len ? expected_len : 1);
t->out_expected_len = expected_len;
t->out_received = OPENSSL_memdup(received, received_len ? received_len : 1);
t->out_received_len = received_len;
if (t->out_expected == NULL || t->out_received == NULL) {
fprintf(stderr, "Memory allocation error!\n");
exit(1);
}
return 1;
}
static int check_output(struct evp_test *t,
const unsigned char *expected,
const unsigned char *received,
size_t len)
{
return check_var_length_output(t, expected, len, received, len);
}
int main(int argc, char **argv)
{
BIO *in = NULL;
char buf[10240];
struct evp_test t;
if (argc != 2) {
fprintf(stderr, "usage: evp_test testfile.txt\n");
return 1;
}
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
memset(&t, 0, sizeof(t));
t.start_line = -1;
in = BIO_new_file(argv[1], "r");
if (in == NULL) {
fprintf(stderr, "Can't open %s for reading\n", argv[1]);
return 1;
}
t.in = in;
while (BIO_gets(in, buf, sizeof(buf))) {
t.line++;
if (!process_test(&t, buf, 0))
exit(1);
}
/* Run any final test we have */
if (!setup_test(&t, NULL))
exit(1);
fprintf(stderr, "%d tests completed with %d errors, %d skipped\n",
t.ntests, t.errors, t.nskip);
free_key_list(t.public);
free_key_list(t.private);
BIO_free(in);
#ifndef OPENSSL_NO_CRYPTO_MDEBUG
if (CRYPTO_mem_leaks_fp(stderr) <= 0)
return 1;
#endif
if (t.errors)
return 1;
return 0;
}
static void test_free(void *d)
{
OPENSSL_free(d);
}
/* Message digest tests */
struct digest_data {
/* Digest this test is for */
const EVP_MD *digest;
/* Input to digest */
unsigned char *input;
size_t input_len;
/* Repeat count for input */
size_t nrpt;
/* Expected output */
unsigned char *output;
size_t output_len;
};
static int digest_test_init(struct evp_test *t, const char *alg)
{
const EVP_MD *digest;
struct digest_data *mdat;
digest = EVP_get_digestbyname(alg);
if (!digest) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
mdat = OPENSSL_malloc(sizeof(*mdat));
mdat->digest = digest;
mdat->input = NULL;
mdat->output = NULL;
mdat->nrpt = 1;
t->data = mdat;
return 1;
}
static void digest_test_cleanup(struct evp_test *t)
{
struct digest_data *mdat = t->data;
test_free(mdat->input);
test_free(mdat->output);
}
static int digest_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct digest_data *mdata = t->data;
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &mdata->input, &mdata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &mdata->output, &mdata->output_len);
if (strcmp(keyword, "Count") == 0) {
long nrpt = atoi(value);
if (nrpt <= 0)
return 0;
mdata->nrpt = (size_t)nrpt;
return 1;
}
return 0;
}
static int digest_test_run(struct evp_test *t)
{
struct digest_data *mdata = t->data;
size_t i;
const char *err = "INTERNAL_ERROR";
EVP_MD_CTX *mctx;
unsigned char md[EVP_MAX_MD_SIZE];
unsigned int md_len;
mctx = EVP_MD_CTX_new();
if (!mctx)
goto err;
err = "DIGESTINIT_ERROR";
if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL))
goto err;
err = "DIGESTUPDATE_ERROR";
for (i = 0; i < mdata->nrpt; i++) {
if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len))
goto err;
}
err = "DIGESTFINAL_ERROR";
if (!EVP_DigestFinal(mctx, md, &md_len))
goto err;
err = "DIGEST_LENGTH_MISMATCH";
if (md_len != mdata->output_len)
goto err;
err = "DIGEST_MISMATCH";
if (check_output(t, mdata->output, md, md_len))
goto err;
err = NULL;
err:
EVP_MD_CTX_free(mctx);
t->err = err;
return 1;
}
static const struct evp_test_method digest_test_method = {
"Digest",
digest_test_init,
digest_test_cleanup,
digest_test_parse,
digest_test_run
};
/* Cipher tests */
struct cipher_data {
const EVP_CIPHER *cipher;
int enc;
/* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
int aead;
unsigned char *key;
size_t key_len;
unsigned char *iv;
size_t iv_len;
unsigned char *plaintext;
size_t plaintext_len;
unsigned char *ciphertext;
size_t ciphertext_len;
/* GCM, CCM only */
unsigned char *aad;
size_t aad_len;
unsigned char *tag;
size_t tag_len;
};
static int cipher_test_init(struct evp_test *t, const char *alg)
{
const EVP_CIPHER *cipher;
struct cipher_data *cdat = t->data;
cipher = EVP_get_cipherbyname(alg);
if (!cipher) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
cdat = OPENSSL_malloc(sizeof(*cdat));
cdat->cipher = cipher;
cdat->enc = -1;
cdat->key = NULL;
cdat->iv = NULL;
cdat->ciphertext = NULL;
cdat->plaintext = NULL;
cdat->aad = NULL;
cdat->tag = NULL;
t->data = cdat;
if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE
|| EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE
|| EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE)
cdat->aead = EVP_CIPHER_mode(cipher);
else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
cdat->aead = -1;
else
cdat->aead = 0;
return 1;
}
static void cipher_test_cleanup(struct evp_test *t)
{
struct cipher_data *cdat = t->data;
test_free(cdat->key);
test_free(cdat->iv);
test_free(cdat->ciphertext);
test_free(cdat->plaintext);
test_free(cdat->aad);
test_free(cdat->tag);
}
static int cipher_test_parse(struct evp_test *t, const char *keyword,
const char *value)
{
struct cipher_data *cdat = t->data;
if (strcmp(keyword, "Key") == 0)
return test_bin(value, &cdat->key, &cdat->key_len);
if (strcmp(keyword, "IV") == 0)
return test_bin(value, &cdat->iv, &cdat->iv_len);
if (strcmp(keyword, "Plaintext") == 0)
return test_bin(value, &cdat->plaintext, &cdat->plaintext_len);
if (strcmp(keyword, "Ciphertext") == 0)
return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
if (cdat->aead) {
if (strcmp(keyword, "AAD") == 0)
return test_bin(value, &cdat->aad, &cdat->aad_len);
if (strcmp(keyword, "Tag") == 0)
return test_bin(value, &cdat->tag, &cdat->tag_len);
}
if (strcmp(keyword, "Operation") == 0) {
if (strcmp(value, "ENCRYPT") == 0)
cdat->enc = 1;
else if (strcmp(value, "DECRYPT") == 0)
cdat->enc = 0;
else
return 0;
return 1;
}
return 0;
}
static int cipher_test_enc(struct evp_test *t, int enc,
size_t out_misalign, size_t inp_misalign)
{
struct cipher_data *cdat = t->data;
unsigned char *in, *out, *tmp = NULL;
size_t in_len, out_len;
int tmplen, tmpflen;
EVP_CIPHER_CTX *ctx = NULL;
const char *err;
err = "INTERNAL_ERROR";
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
goto err;
EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
if (enc) {
in = cdat->plaintext;
in_len = cdat->plaintext_len;
out = cdat->ciphertext;
out_len = cdat->ciphertext_len;
} else {
in = cdat->ciphertext;
in_len = cdat->ciphertext_len;
out = cdat->plaintext;
out_len = cdat->plaintext_len;
}
if (inp_misalign == (size_t)-1) {
/*
* Exercise in-place encryption
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign, in, in_len);
} else {
inp_misalign += 16 - ((out_misalign + in_len) & 15);
/*
* 'tmp' will store both output and copy of input. We make the copy
* of input to specifically aligned part of 'tmp'. So we just
* figured out how much padding would ensure the required alignment,
* now we allocate extended buffer and finally copy the input just
* past inp_misalign in expression below. Output will be written
* past out_misalign...
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign + in_len);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign, in, in_len);
}
err = "CIPHERINIT_ERROR";
if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc))
goto err;
err = "INVALID_IV_LENGTH";
if (cdat->iv) {
if (cdat->aead) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
cdat->iv_len, 0))
goto err;
} else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx))
goto err;
}
if (cdat->aead) {
unsigned char *tag;
/*
* If encrypting or OCB just set tag length initially, otherwise
* set tag length and value.
*/
if (enc || cdat->aead == EVP_CIPH_OCB_MODE) {
err = "TAG_LENGTH_SET_ERROR";
tag = NULL;
} else {
err = "TAG_SET_ERROR";
tag = cdat->tag;
}
if (tag || cdat->aead != EVP_CIPH_GCM_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
cdat->tag_len, tag))
goto err;
}
}
err = "INVALID_KEY_LENGTH";
if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len))
goto err;
err = "KEY_SET_ERROR";
if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1))
goto err;
if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
cdat->tag_len, cdat->tag)) {
err = "TAG_SET_ERROR";
goto err;
}
}
if (cdat->aead == EVP_CIPH_CCM_MODE) {
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
goto err;
}
}
if (cdat->aad) {
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, cdat->aad, cdat->aad_len)) {
err = "AAD_SET_ERROR";
goto err;
}
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
err = "CIPHERUPDATE_ERROR";
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
goto err;
if (cdat->aead == EVP_CIPH_CCM_MODE)
tmpflen = 0;
else {
err = "CIPHERFINAL_ERROR";
if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen))
goto err;
}
err = "LENGTH_MISMATCH";
if (out_len != (size_t)(tmplen + tmpflen))
goto err;
err = "VALUE_MISMATCH";
if (check_output(t, out, tmp + out_misalign, out_len))
goto err;
if (enc && cdat->aead) {
unsigned char rtag[16];
if (cdat->tag_len > sizeof(rtag)) {
err = "TAG_LENGTH_INTERNAL_ERROR";
goto err;
}
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
cdat->tag_len, rtag)) {
err = "TAG_RETRIEVE_ERROR";
goto err;
}
if (check_output(t, cdat->tag, rtag, cdat->tag_len)) {
err = "TAG_VALUE_MISMATCH";
goto err;
}
}
err = NULL;
err:
OPENSSL_free(tmp);
EVP_CIPHER_CTX_free(ctx);
t->err = err;
return err ? 0 : 1;
}
static int cipher_test_run(struct evp_test *t)
{
struct cipher_data *cdat = t->data;
int rv;
size_t out_misalign, inp_misalign;
if (!cdat->key) {
t->err = "NO_KEY";
return 0;
}
if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
/* IV is optional and usually omitted in wrap mode */
if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
t->err = "NO_IV";
return 0;
}
}
if (cdat->aead && !cdat->tag) {
t->err = "NO_TAG";
return 0;
}
for (out_misalign = 0; out_misalign <= 1; out_misalign++) {
static char aux_err[64];
t->aux_err = aux_err;
for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
if (inp_misalign == (size_t)-1) {
/* kludge: inp_misalign == -1 means "exercise in-place" */
BIO_snprintf(aux_err, sizeof(aux_err), "%s in-place",
out_misalign ? "misaligned" : "aligned");
} else {
BIO_snprintf(aux_err, sizeof(aux_err), "%s output and %s input",
out_misalign ? "misaligned" : "aligned",
inp_misalign ? "misaligned" : "aligned");
}
if (cdat->enc) {
rv = cipher_test_enc(t, 1, out_misalign, inp_misalign);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
if (cdat->enc != 1) {
rv = cipher_test_enc(t, 0, out_misalign, inp_misalign);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
}
}
t->aux_err = NULL;
return 1;
}
static const struct evp_test_method cipher_test_method = {
"Cipher",
cipher_test_init,
cipher_test_cleanup,
cipher_test_parse,
cipher_test_run
};
struct mac_data {
/* MAC type */
int type;
/* Algorithm string for this MAC */
char *alg;
/* MAC key */
unsigned char *key;
size_t key_len;
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
};
static int mac_test_init(struct evp_test *t, const char *alg)
{
int type;
struct mac_data *mdat;
if (strcmp(alg, "HMAC") == 0) {
type = EVP_PKEY_HMAC;
} else if (strcmp(alg, "CMAC") == 0) {
#ifndef OPENSSL_NO_CMAC
type = EVP_PKEY_CMAC;
#else
t->skip = 1;
return 1;
#endif
} else
return 0;
mdat = OPENSSL_malloc(sizeof(*mdat));
mdat->type = type;
mdat->alg = NULL;
mdat->key = NULL;
mdat->input = NULL;
mdat->output = NULL;
t->data = mdat;
return 1;
}
static void mac_test_cleanup(struct evp_test *t)
{
struct mac_data *mdat = t->data;
test_free(mdat->alg);
test_free(mdat->key);
test_free(mdat->input);
test_free(mdat->output);
}
static int mac_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct mac_data *mdata = t->data;
if (strcmp(keyword, "Key") == 0)
return test_bin(value, &mdata->key, &mdata->key_len);
if (strcmp(keyword, "Algorithm") == 0) {
mdata->alg = OPENSSL_strdup(value);
if (!mdata->alg)
return 0;
return 1;
}
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &mdata->input, &mdata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &mdata->output, &mdata->output_len);
return 0;
}
static int mac_test_run(struct evp_test *t)
{
struct mac_data *mdata = t->data;
const char *err = "INTERNAL_ERROR";
EVP_MD_CTX *mctx = NULL;
EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
EVP_PKEY *key = NULL;
const EVP_MD *md = NULL;
unsigned char *mac = NULL;
size_t mac_len;
#ifdef OPENSSL_NO_DES
if (strstr(mdata->alg, "DES") != NULL) {
/* Skip DES */
err = NULL;
goto err;
}
#endif
err = "MAC_PKEY_CTX_ERROR";
genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL);
if (!genctx)
goto err;
err = "MAC_KEYGEN_INIT_ERROR";
if (EVP_PKEY_keygen_init(genctx) <= 0)
goto err;
if (mdata->type == EVP_PKEY_CMAC) {
err = "MAC_ALGORITHM_SET_ERROR";
if (EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0)
goto err;
}
err = "MAC_KEY_SET_ERROR";
if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0)
goto err;
err = "MAC_KEY_GENERATE_ERROR";
if (EVP_PKEY_keygen(genctx, &key) <= 0)
goto err;
if (mdata->type == EVP_PKEY_HMAC) {
err = "MAC_ALGORITHM_SET_ERROR";
md = EVP_get_digestbyname(mdata->alg);
if (!md)
goto err;
}
mctx = EVP_MD_CTX_new();
if (!mctx)
goto err;
err = "DIGESTSIGNINIT_ERROR";
if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key))
goto err;
err = "DIGESTSIGNUPDATE_ERROR";
if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len))
goto err;
err = "DIGESTSIGNFINAL_LENGTH_ERROR";
if (!EVP_DigestSignFinal(mctx, NULL, &mac_len))
goto err;
mac = OPENSSL_malloc(mac_len);
if (!mac) {
fprintf(stderr, "Error allocating mac buffer!\n");
exit(1);
}
if (!EVP_DigestSignFinal(mctx, mac, &mac_len))
goto err;
err = "MAC_LENGTH_MISMATCH";
if (mac_len != mdata->output_len)
goto err;
err = "MAC_MISMATCH";
if (check_output(t, mdata->output, mac, mac_len))
goto err;
err = NULL;
err:
EVP_MD_CTX_free(mctx);
OPENSSL_free(mac);
EVP_PKEY_CTX_free(genctx);
EVP_PKEY_free(key);
t->err = err;
return 1;
}
static const struct evp_test_method mac_test_method = {
"MAC",
mac_test_init,
mac_test_cleanup,
mac_test_parse,
mac_test_run
};
/*
* Public key operations. These are all very similar and can share
* a lot of common code.
*/
struct pkey_data {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Key operation to perform */
int (*keyop) (EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs, size_t tbslen);
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
};
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int pkey_test_init(struct evp_test *t, const char *name,
int use_public,
int (*keyopinit) (EVP_PKEY_CTX *ctx),
int (*keyop) (EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs,
size_t tbslen)
)
{
struct pkey_data *kdata;
EVP_PKEY *pkey = NULL;
int rv = 0;
if (use_public)
rv = find_key(&pkey, name, t->public);
if (!rv)
rv = find_key(&pkey, name, t->private);
if (!rv)
return 0;
if (!pkey) {
t->skip = 1;
return 1;
}
kdata = OPENSSL_malloc(sizeof(*kdata));
if (!kdata) {
EVP_PKEY_free(pkey);
return 0;
}
kdata->ctx = NULL;
kdata->input = NULL;
kdata->output = NULL;
kdata->keyop = keyop;
t->data = kdata;
kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL);
if (!kdata->ctx)
return 0;
if (keyopinit(kdata->ctx) <= 0)
return 0;
return 1;
}
static void pkey_test_cleanup(struct evp_test *t)
{
struct pkey_data *kdata = t->data;
OPENSSL_free(kdata->input);
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int pkey_test_ctrl(struct evp_test *t, EVP_PKEY_CTX *pctx,
const char *value)
{
int rv;
char *p, *tmpval;
tmpval = OPENSSL_strdup(value);
if (tmpval == NULL)
return 0;
p = strchr(tmpval, ':');
if (p != NULL)
*p++ = 0;
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
if (p != NULL && rv <= 0 && rv != -2) {
/* If p has an OID assume disabled algorithm */
if (OBJ_sn2nid(p) != NID_undef || OBJ_ln2nid(p) != NID_undef) {
t->skip = 1;
rv = 1;
}
}
OPENSSL_free(tmpval);
return rv > 0;
}
static int pkey_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct pkey_data *kdata = t->data;
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &kdata->input, &kdata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pkey_test_run(struct evp_test *t)
{
struct pkey_data *kdata = t->data;
unsigned char *out = NULL;
size_t out_len;
const char *err = "KEYOP_LENGTH_ERROR";
if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input,
kdata->input_len) <= 0)
goto err;
out = OPENSSL_malloc(out_len);
if (!out) {
fprintf(stderr, "Error allocating output buffer!\n");
exit(1);
}
err = "KEYOP_ERROR";
if (kdata->keyop
(kdata->ctx, out, &out_len, kdata->input, kdata->input_len) <= 0)
goto err;
err = "KEYOP_LENGTH_MISMATCH";
if (out_len != kdata->output_len)
goto err;
err = "KEYOP_MISMATCH";
if (check_output(t, kdata->output, out, out_len))
goto err;
err = NULL;
err:
OPENSSL_free(out);
t->err = err;
return 1;
}
static int sign_test_init(struct evp_test *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
}
static const struct evp_test_method psign_test_method = {
"Sign",
sign_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_recover_test_init(struct evp_test *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover);
}
static const struct evp_test_method pverify_recover_test_method = {
"VerifyRecover",
verify_recover_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int decrypt_test_init(struct evp_test *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt);
}
static const struct evp_test_method pdecrypt_test_method = {
"Decrypt",
decrypt_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_test_init(struct evp_test *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
}
static int verify_test_run(struct evp_test *t)
{
struct pkey_data *kdata = t->data;
if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
kdata->input, kdata->input_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const struct evp_test_method pverify_test_method = {
"Verify",
verify_test_init,
pkey_test_cleanup,
pkey_test_parse,
verify_test_run
};
static int pderive_test_init(struct evp_test *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
}
static int pderive_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct pkey_data *kdata = t->data;
if (strcmp(keyword, "PeerKey") == 0) {
EVP_PKEY *peer;
if (find_key(&peer, value, t->public) == 0)
return 0;
if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
return 0;
return 1;
}
if (strcmp(keyword, "SharedSecret") == 0)
return test_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pderive_test_run(struct evp_test *t)
{
struct pkey_data *kdata = t->data;
unsigned char *out = NULL;
size_t out_len;
const char *err = "INTERNAL_ERROR";
out_len = kdata->output_len;
out = OPENSSL_malloc(out_len);
if (!out) {
fprintf(stderr, "Error allocating output buffer!\n");
exit(1);
}
err = "DERIVE_ERROR";
if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
goto err;
err = "SHARED_SECRET_LENGTH_MISMATCH";
if (out_len != kdata->output_len)
goto err;
err = "SHARED_SECRET_MISMATCH";
if (check_output(t, kdata->output, out, out_len))
goto err;
err = NULL;
err:
OPENSSL_free(out);
t->err = err;
return 1;
}
static const struct evp_test_method pderive_test_method = {
"Derive",
pderive_test_init,
pkey_test_cleanup,
pderive_test_parse,
pderive_test_run
};
/* PBE tests */
#define PBE_TYPE_SCRYPT 1
#define PBE_TYPE_PBKDF2 2
#define PBE_TYPE_PKCS12 3
struct pbe_data {
int pbe_type;
/* scrypt parameters */
uint64_t N, r, p, maxmem;
/* PKCS#12 parameters */
int id, iter;
const EVP_MD *md;
/* password */
unsigned char *pass;
size_t pass_len;
/* salt */
unsigned char *salt;
size_t salt_len;
/* Expected output */
unsigned char *key;
size_t key_len;
};
#ifndef OPENSSL_NO_SCRYPT
static int scrypt_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct pbe_data *pdata = t->data;
if (strcmp(keyword, "N") == 0)
return test_uint64(value, &pdata->N);
if (strcmp(keyword, "p") == 0)
return test_uint64(value, &pdata->p);
if (strcmp(keyword, "r") == 0)
return test_uint64(value, &pdata->r);
if (strcmp(keyword, "maxmem") == 0)
return test_uint64(value, &pdata->maxmem);
return 0;
}
#endif
static int pbkdf2_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct pbe_data *pdata = t->data;
if (strcmp(keyword, "iter") == 0) {
pdata->iter = atoi(value);
if (pdata->iter <= 0)
return 0;
return 1;
}
if (strcmp(keyword, "MD") == 0) {
pdata->md = EVP_get_digestbyname(value);
if (pdata->md == NULL)
return 0;
return 1;
}
return 0;
}
static int pkcs12_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct pbe_data *pdata = t->data;
if (strcmp(keyword, "id") == 0) {
pdata->id = atoi(value);
if (pdata->id <= 0)
return 0;
return 1;
}
return pbkdf2_test_parse(t, keyword, value);
}
static int pbe_test_init(struct evp_test *t, const char *alg)
{
struct pbe_data *pdat;
int pbe_type = 0;
if (strcmp(alg, "scrypt") == 0) {
#ifndef OPENSSL_NO_SCRYPT
pbe_type = PBE_TYPE_SCRYPT;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "pbkdf2") == 0) {
pbe_type = PBE_TYPE_PBKDF2;
} else if (strcmp(alg, "pkcs12") == 0) {
pbe_type = PBE_TYPE_PKCS12;
} else {
fprintf(stderr, "Unknown pbe algorithm %s\n", alg);
}
pdat = OPENSSL_malloc(sizeof(*pdat));
pdat->pbe_type = pbe_type;
pdat->pass = NULL;
pdat->salt = NULL;
pdat->N = 0;
pdat->r = 0;
pdat->p = 0;
pdat->maxmem = 0;
pdat->id = 0;
pdat->iter = 0;
pdat->md = NULL;
t->data = pdat;
return 1;
}
static void pbe_test_cleanup(struct evp_test *t)
{
struct pbe_data *pdat = t->data;
test_free(pdat->pass);
test_free(pdat->salt);
test_free(pdat->key);
}
static int pbe_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct pbe_data *pdata = t->data;
if (strcmp(keyword, "Password") == 0)
return test_bin(value, &pdata->pass, &pdata->pass_len);
if (strcmp(keyword, "Salt") == 0)
return test_bin(value, &pdata->salt, &pdata->salt_len);
if (strcmp(keyword, "Key") == 0)
return test_bin(value, &pdata->key, &pdata->key_len);
if (pdata->pbe_type == PBE_TYPE_PBKDF2)
return pbkdf2_test_parse(t, keyword, value);
else if (pdata->pbe_type == PBE_TYPE_PKCS12)
return pkcs12_test_parse(t, keyword, value);
#ifndef OPENSSL_NO_SCRYPT
else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
return scrypt_test_parse(t, keyword, value);
#endif
return 0;
}
static int pbe_test_run(struct evp_test *t)
{
struct pbe_data *pdata = t->data;
const char *err = "INTERNAL_ERROR";
unsigned char *key;
key = OPENSSL_malloc(pdata->key_len);
if (!key)
goto err;
if (pdata->pbe_type == PBE_TYPE_PBKDF2) {
err = "PBKDF2_ERROR";
if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len,
pdata->salt, pdata->salt_len,
pdata->iter, pdata->md,
pdata->key_len, key) == 0)
goto err;
#ifndef OPENSSL_NO_SCRYPT
} else if (pdata->pbe_type == PBE_TYPE_SCRYPT) {
err = "SCRYPT_ERROR";
if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len,
pdata->salt, pdata->salt_len,
pdata->N, pdata->r, pdata->p, pdata->maxmem,
key, pdata->key_len) == 0)
goto err;
#endif
} else if (pdata->pbe_type == PBE_TYPE_PKCS12) {
err = "PKCS12_ERROR";
if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len,
pdata->salt, pdata->salt_len,
pdata->id, pdata->iter, pdata->key_len,
key, pdata->md) == 0)
goto err;
}
err = "KEY_MISMATCH";
if (check_output(t, pdata->key, key, pdata->key_len))
goto err;
err = NULL;
err:
OPENSSL_free(key);
t->err = err;
return 1;
}
static const struct evp_test_method pbe_test_method = {
"PBE",
pbe_test_init,
pbe_test_cleanup,
pbe_test_parse,
pbe_test_run
};
/* Base64 tests */
typedef enum {
BASE64_CANONICAL_ENCODING = 0,
BASE64_VALID_ENCODING = 1,
BASE64_INVALID_ENCODING = 2
} base64_encoding_type;
struct encode_data {
/* Input to encoding */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
base64_encoding_type encoding;
};
static int encode_test_init(struct evp_test *t, const char *encoding)
{
struct encode_data *edata = OPENSSL_zalloc(sizeof(*edata));
if (strcmp(encoding, "canonical") == 0) {
edata->encoding = BASE64_CANONICAL_ENCODING;
} else if (strcmp(encoding, "valid") == 0) {
edata->encoding = BASE64_VALID_ENCODING;
} else if (strcmp(encoding, "invalid") == 0) {
edata->encoding = BASE64_INVALID_ENCODING;
t->expected_err = OPENSSL_strdup("DECODE_ERROR");
if (t->expected_err == NULL)
return 0;
} else {
fprintf(stderr, "Bad encoding: %s. Should be one of "
"{canonical, valid, invalid}\n", encoding);
return 0;
}
t->data = edata;
return 1;
}
static void encode_test_cleanup(struct evp_test *t)
{
struct encode_data *edata = t->data;
test_free(edata->input);
test_free(edata->output);
memset(edata, 0, sizeof(*edata));
}
static int encode_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct encode_data *edata = t->data;
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &edata->input, &edata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &edata->output, &edata->output_len);
return 0;
}
static int encode_test_run(struct evp_test *t)
{
struct encode_data *edata = t->data;
unsigned char *encode_out = NULL, *decode_out = NULL;
int output_len, chunk_len;
const char *err = "INTERNAL_ERROR";
EVP_ENCODE_CTX *decode_ctx = EVP_ENCODE_CTX_new();
if (decode_ctx == NULL)
goto err;
if (edata->encoding == BASE64_CANONICAL_ENCODING) {
EVP_ENCODE_CTX *encode_ctx = EVP_ENCODE_CTX_new();
if (encode_ctx == NULL)
goto err;
encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len));
if (encode_out == NULL)
goto err;
EVP_EncodeInit(encode_ctx);
EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
edata->input, edata->input_len);
output_len = chunk_len;
EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
output_len += chunk_len;
EVP_ENCODE_CTX_free(encode_ctx);
if (check_var_length_output(t, edata->output, edata->output_len,
encode_out, output_len)) {
err = "BAD_ENCODING";
goto err;
}
}
decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len));
if (decode_out == NULL)
goto err;
EVP_DecodeInit(decode_ctx);
if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output,
edata->output_len) < 0) {
err = "DECODE_ERROR";
goto err;
}
output_len = chunk_len;
if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
err = "DECODE_ERROR";
goto err;
}
output_len += chunk_len;
if (edata->encoding != BASE64_INVALID_ENCODING &&
check_var_length_output(t, edata->input, edata->input_len,
decode_out, output_len)) {
err = "BAD_DECODING";
goto err;
}
err = NULL;
err:
t->err = err;
OPENSSL_free(encode_out);
OPENSSL_free(decode_out);
EVP_ENCODE_CTX_free(decode_ctx);
return 1;
}
static const struct evp_test_method encode_test_method = {
"Encoding",
encode_test_init,
encode_test_cleanup,
encode_test_parse,
encode_test_run,
};
/* KDF operations */
struct kdf_data {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Expected output */
unsigned char *output;
size_t output_len;
};
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int kdf_test_init(struct evp_test *t, const char *name)
{
struct kdf_data *kdata;
kdata = OPENSSL_malloc(sizeof(*kdata));
if (kdata == NULL)
return 0;
kdata->ctx = NULL;
kdata->output = NULL;
t->data = kdata;
kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL);
if (kdata->ctx == NULL)
return 0;
if (EVP_PKEY_derive_init(kdata->ctx) <= 0)
return 0;
return 1;
}
static void kdf_test_cleanup(struct evp_test *t)
{
struct kdf_data *kdata = t->data;
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int kdf_test_parse(struct evp_test *t,
const char *keyword, const char *value)
{
struct kdf_data *kdata = t->data;
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &kdata->output, &kdata->output_len);
if (strncmp(keyword, "Ctrl", 4) == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int kdf_test_run(struct evp_test *t)
{
struct kdf_data *kdata = t->data;
unsigned char *out = NULL;
size_t out_len = kdata->output_len;
const char *err = "INTERNAL_ERROR";
out = OPENSSL_malloc(out_len);
if (!out) {
fprintf(stderr, "Error allocating output buffer!\n");
exit(1);
}
err = "KDF_DERIVE_ERROR";
if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
goto err;
err = "KDF_LENGTH_MISMATCH";
if (out_len != kdata->output_len)
goto err;
err = "KDF_MISMATCH";
if (check_output(t, kdata->output, out, out_len))
goto err;
err = NULL;
err:
OPENSSL_free(out);
t->err = err;
return 1;
}
static const struct evp_test_method kdf_test_method = {
"KDF",
kdf_test_init,
kdf_test_cleanup,
kdf_test_parse,
kdf_test_run
};