openssl/crypto/perlasm
Andy Polyakov 5e44c144e6 SPARC T4 assembly pack: treat zero input length in CBC.
The problem is that OpenSSH calls EVP_Cipher, which is not as
protective as EVP_CipherUpdate. Formally speaking we ought to
do more checks in *_cipher methods, including rejecting
lengths not divisible by block size (unless ciphertext stealing
is in place). But for now I implement check for zero length in
low-level based on precedent.

PR: 3087, 2775
2014-03-07 10:30:37 +01:00
..
cbc.pl perlasm: fix symptom-less bugs, missing semicolons and 'my' declarations. 2012-04-28 10:36:58 +00:00
ppc-xlate.pl PPC assembly pack: improve AIX support (enable vpaes-ppc). 2013-12-18 21:19:08 +01:00
readme misspellings fixes by https://github.com/vlajos/misspell_fixer 2013-09-05 21:39:42 +01:00
sparcv9_modes.pl SPARC T4 assembly pack: treat zero input length in CBC. 2014-03-07 10:30:37 +01:00
x86_64-xlate.pl x86[_64]cpuid.pl: add low-level RDSEED. 2014-02-14 17:24:12 +01:00
x86asm.pl perlasm/x86asm.pl: recognize elf-1 denoting old ELF platforms. 2014-02-27 14:26:12 +01:00
x86gas.pl perlasm/x86gas.pl: limit special OPENSSL_ia32cap_P treatment to ELF. 2014-02-27 14:22:13 +01:00
x86masm.pl Extend OPENSSL_ia32cap_P with extra word to accomodate AVX2 capability. 2012-11-17 19:04:15 +00:00
x86nasm.pl Extend OPENSSL_ia32cap_P with extra word to accomodate AVX2 capability. 2012-11-17 19:04:15 +00:00

The perl scripts in this directory are my 'hack' to generate
multiple different assembler formats via the one original script.

The way to use this library is to start with adding the path to this directory
and then include it.

push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";

The first thing we do is setup the file and type of assember

&asm_init($ARGV[0],$0);

The first argument is the 'type'.  Currently
'cpp', 'sol', 'a.out', 'elf' or 'win32'.
Argument 2 is the file name.

The reciprocal function is
&asm_finish() which should be called at the end.

There are 2 main 'packages'. x86ms.pl, which is the microsoft assembler,
and x86unix.pl which is the unix (gas) version.

Functions of interest are:
&external_label("des_SPtrans");	declare and external variable
&LB(reg);			Low byte for a register
&HB(reg);			High byte for a register
&BP(off,base,index,scale)	Byte pointer addressing
&DWP(off,base,index,scale)	Word pointer addressing
&stack_push(num)		Basically a 'sub esp, num*4' with extra
&stack_pop(num)			inverse of stack_push
&function_begin(name,extra)	Start a function with pushing of
				edi, esi, ebx and ebp.  extra is extra win32
				external info that may be required.
&function_begin_B(name,extra)	Same as norma function_begin but no pushing.
&function_end(name)		Call at end of function.
&function_end_A(name)		Standard pop and ret, for use inside functions
&function_end_B(name)		Call at end but with poping or 'ret'.
&swtmp(num)			Address on stack temp word.
&wparam(num)			Parameter number num, that was push
				in C convention.  This all works over pushes
				and pops.
&comment("hello there")		Put in a comment.
&label("loop")			Refer to a label, normally a jmp target.
&set_label("loop")		Set a label at this point.
&data_word(word)		Put in a word of data.

So how does this all hold together?  Given

int calc(int len, int *data)
	{
	int i,j=0;

	for (i=0; i<len; i++)
		{
		j+=other(data[i]);
		}
	}

So a very simple version of this function could be coded as

	push(@INC,"perlasm","../../perlasm");
	require "x86asm.pl";
	
	&asm_init($ARGV[0],"cacl.pl");

	&external_label("other");

	$tmp1=	"eax";
	$j=	"edi";
	$data=	"esi";
	$i=	"ebp";

	&comment("a simple function");
	&function_begin("calc");
	&mov(	$data,		&wparam(1)); # data
	&xor(	$j,		$j);
	&xor(	$i,		$i);

	&set_label("loop");
	&cmp(	$i,		&wparam(0));
	&jge(	&label("end"));

	&mov(	$tmp1,		&DWP(0,$data,$i,4));
	&push(	$tmp1);
	&call(	"other");
	&add(	$j,		"eax");
	&pop(	$tmp1);
	&inc(	$i);
	&jmp(	&label("loop"));

	&set_label("end");
	&mov(	"eax",		$j);

	&function_end("calc");

	&asm_finish();

The above example is very very unoptimised but gives an idea of how
things work.

There is also a cbc mode function generator in cbc.pl

&cbc(	$name,
	$encrypt_function_name,
	$decrypt_function_name,
	$true_if_byte_swap_needed,
	$parameter_number_for_iv,
	$parameter_number_for_encrypt_flag,
	$first_parameter_to_pass,
	$second_parameter_to_pass,
	$third_parameter_to_pass);

So for example, given
void BF_encrypt(BF_LONG *data,BF_KEY *key);
void BF_decrypt(BF_LONG *data,BF_KEY *key);
void BF_cbc_encrypt(unsigned char *in, unsigned char *out, long length,
        BF_KEY *ks, unsigned char *iv, int enc);

&cbc("BF_cbc_encrypt","BF_encrypt","BF_encrypt",1,4,5,3,-1,-1);

&cbc("des_ncbc_encrypt","des_encrypt","des_encrypt",0,4,5,3,5,-1);
&cbc("des_ede3_cbc_encrypt","des_encrypt3","des_decrypt3",0,6,7,3,4,5);