openssl/crypto/ec/curve448/GENERATED/include/decaf/point_448.h
Matt Caswell 7324473f89 Import Curve 448 support
This imports selected files from the src directory of this repository:

https://sourceforge.net/p/ed448goldilocks/code/ci/v0.9.4/tree/

This is from the version tagged as "v0.9.4" with commit id 7527e9.

This code was originally writting by Mike Hamburg and the import is done by
kind permission of Rambus and Mike Hamburg under CLA. As this is under CLA
the files are being relicensed under the OpenSSL licence. Subsequent
commits will correct any licence notices in the individual files.

These files should provide complete self-contained support for X448 and
Ed448. They are imported "as is" from the source repository and this
commit does not attempt to integrate them into the OpenSSL build system,
or modify them in any way to fit OpenSSL style guidelines. That will be
done by subsequent commits.

Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
2018-02-20 12:59:29 +00:00

765 lines
24 KiB
C

/**
* @file decaf/point_448.h
* @author Mike Hamburg
*
* @copyright
* Copyright (c) 2015-2016 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
*
* @brief A group of prime order p, based on Ed448-Goldilocks.
*
* @warning This file was automatically generated in Python.
* Please do not edit it.
*/
#ifndef __DECAF_POINT_448_H__
#define __DECAF_POINT_448_H__ 1
#include <decaf/common.h>
#ifdef __cplusplus
extern "C" {
#endif
/** @cond internal */
#define DECAF_448_SCALAR_LIMBS ((446-1)/DECAF_WORD_BITS+1)
/** @endcond */
/** The number of bits in a scalar */
#define DECAF_448_SCALAR_BITS 446
/** @cond internal */
#ifndef __DECAF_448_GF_DEFINED__
#define __DECAF_448_GF_DEFINED__ 1
/** @brief Galois field element internal structure */
typedef struct gf_448_s {
decaf_word_t limb[512/DECAF_WORD_BITS];
} __attribute__((aligned(32))) gf_448_s, gf_448_t[1];
#endif /* __DECAF_448_GF_DEFINED__ */
/** @endcond */
/** Number of bytes in a serialized point. */
#define DECAF_448_SER_BYTES 56
/** Number of bytes in an elligated point. For now set the same as SER_BYTES
* but could be different for other curves.
*/
#define DECAF_448_HASH_BYTES 56
/** Number of bytes in a serialized scalar. */
#define DECAF_448_SCALAR_BYTES 56
/** Number of bits in the "which" field of an elligator inverse */
#define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3
/** The cofactor the curve would have, if we hadn't removed it */
#define DECAF_448_REMOVED_COFACTOR 4
/** X448 encoding ratio. */
#define DECAF_X448_ENCODE_RATIO 2
/** Number of bytes in an x448 public key */
#define DECAF_X448_PUBLIC_BYTES 56
/** Number of bytes in an x448 private key */
#define DECAF_X448_PRIVATE_BYTES 56
/** Twisted Edwards extended homogeneous coordinates */
typedef struct decaf_448_point_s {
/** @cond internal */
gf_448_t x,y,z,t;
/** @endcond */
} decaf_448_point_t[1];
/** Precomputed table based on a point. Can be trivial implementation. */
struct decaf_448_precomputed_s;
/** Precomputed table based on a point. Can be trivial implementation. */
typedef struct decaf_448_precomputed_s decaf_448_precomputed_s;
/** Size and alignment of precomputed point tables. */
extern const size_t decaf_448_sizeof_precomputed_s DECAF_API_VIS, decaf_448_alignof_precomputed_s DECAF_API_VIS;
/** Scalar is stored packed, because we don't need the speed. */
typedef struct decaf_448_scalar_s {
/** @cond internal */
decaf_word_t limb[DECAF_448_SCALAR_LIMBS];
/** @endcond */
} decaf_448_scalar_t[1];
/** A scalar equal to 1. */
extern const decaf_448_scalar_t decaf_448_scalar_one DECAF_API_VIS;
/** A scalar equal to 0. */
extern const decaf_448_scalar_t decaf_448_scalar_zero DECAF_API_VIS;
/** The identity point on the curve. */
extern const decaf_448_point_t decaf_448_point_identity DECAF_API_VIS;
/** An arbitrarily chosen base point on the curve. */
extern const decaf_448_point_t decaf_448_point_base DECAF_API_VIS;
/** Precomputed table for the base point on the curve. */
extern const struct decaf_448_precomputed_s *decaf_448_precomputed_base DECAF_API_VIS;
/**
* @brief Read a scalar from wire format or from bytes.
*
* @param [in] ser Serialized form of a scalar.
* @param [out] out Deserialized form.
*
* @retval DECAF_SUCCESS The scalar was correctly encoded.
* @retval DECAF_FAILURE The scalar was greater than the modulus,
* and has been reduced modulo that modulus.
*/
decaf_error_t decaf_448_scalar_decode (
decaf_448_scalar_t out,
const unsigned char ser[DECAF_448_SCALAR_BYTES]
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Read a scalar from wire format or from bytes. Reduces mod
* scalar prime.
*
* @param [in] ser Serialized form of a scalar.
* @param [in] ser_len Length of serialized form.
* @param [out] out Deserialized form.
*/
void decaf_448_scalar_decode_long (
decaf_448_scalar_t out,
const unsigned char *ser,
size_t ser_len
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Serialize a scalar to wire format.
*
* @param [out] ser Serialized form of a scalar.
* @param [in] s Deserialized scalar.
*/
void decaf_448_scalar_encode (
unsigned char ser[DECAF_448_SCALAR_BYTES],
const decaf_448_scalar_t s
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_NOINLINE;
/**
* @brief Add two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a+b.
*/
void decaf_448_scalar_add (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Compare two scalars.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @retval DECAF_TRUE The scalars are equal.
* @retval DECAF_FALSE The scalars are not equal.
*/
decaf_bool_t decaf_448_scalar_eq (
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Subtract two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a-b.
*/
void decaf_448_scalar_sub (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a*b.
*/
void decaf_448_scalar_mul (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Halve a scalar. The scalars may use the same memory.
* @param [in] a A scalar.
* @param [out] out a/2.
*/
void decaf_448_scalar_halve (
decaf_448_scalar_t out,
const decaf_448_scalar_t a
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Invert a scalar. When passed zero, return 0. The input and output may alias.
* @param [in] a A scalar.
* @param [out] out 1/a.
* @return DECAF_SUCCESS The input is nonzero.
*/
decaf_error_t decaf_448_scalar_invert (
decaf_448_scalar_t out,
const decaf_448_scalar_t a
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Copy a scalar. The scalars may use the same memory, in which
* case this function does nothing.
* @param [in] a A scalar.
* @param [out] out Will become a copy of a.
*/
static inline void DECAF_NONNULL decaf_448_scalar_copy (
decaf_448_scalar_t out,
const decaf_448_scalar_t a
) {
*out = *a;
}
/**
* @brief Set a scalar to an unsigned 64-bit integer.
* @param [in] a An integer.
* @param [out] out Will become equal to a.
*/
void decaf_448_scalar_set_unsigned (
decaf_448_scalar_t out,
uint64_t a
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Encode a point as a sequence of bytes.
*
* @param [out] ser The byte representation of the point.
* @param [in] pt The point to encode.
*/
void decaf_448_point_encode (
uint8_t ser[DECAF_448_SER_BYTES],
const decaf_448_point_t pt
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Decode a point from a sequence of bytes.
*
* Every point has a unique encoding, so not every
* sequence of bytes is a valid encoding. If an invalid
* encoding is given, the output is undefined.
*
* @param [out] pt The decoded point.
* @param [in] ser The serialized version of the point.
* @param [in] allow_identity DECAF_TRUE if the identity is a legal input.
* @retval DECAF_SUCCESS The decoding succeeded.
* @retval DECAF_FAILURE The decoding didn't succeed, because
* ser does not represent a point.
*/
decaf_error_t decaf_448_point_decode (
decaf_448_point_t pt,
const uint8_t ser[DECAF_448_SER_BYTES],
decaf_bool_t allow_identity
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Copy a point. The input and output may alias,
* in which case this function does nothing.
*
* @param [out] a A copy of the point.
* @param [in] b Any point.
*/
static inline void DECAF_NONNULL decaf_448_point_copy (
decaf_448_point_t a,
const decaf_448_point_t b
) {
*a=*b;
}
/**
* @brief Test whether two points are equal. If yes, return
* DECAF_TRUE, else return DECAF_FALSE.
*
* @param [in] a A point.
* @param [in] b Another point.
* @retval DECAF_TRUE The points are equal.
* @retval DECAF_FALSE The points are not equal.
*/
decaf_bool_t decaf_448_point_eq (
const decaf_448_point_t a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Add two points to produce a third point. The
* input points and output point can be pointers to the same
* memory.
*
* @param [out] sum The sum a+b.
* @param [in] a An addend.
* @param [in] b An addend.
*/
void decaf_448_point_add (
decaf_448_point_t sum,
const decaf_448_point_t a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Double a point. Equivalent to
* decaf_448_point_add(two_a,a,a), but potentially faster.
*
* @param [out] two_a The sum a+a.
* @param [in] a A point.
*/
void decaf_448_point_double (
decaf_448_point_t two_a,
const decaf_448_point_t a
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Subtract two points to produce a third point. The
* input points and output point can be pointers to the same
* memory.
*
* @param [out] diff The difference a-b.
* @param [in] a The minuend.
* @param [in] b The subtrahend.
*/
void decaf_448_point_sub (
decaf_448_point_t diff,
const decaf_448_point_t a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Negate a point to produce another point. The input
* and output points can use the same memory.
*
* @param [out] nega The negated input point
* @param [in] a The input point.
*/
void decaf_448_point_negate (
decaf_448_point_t nega,
const decaf_448_point_t a
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Multiply a base point by a scalar: scaled = scalar*base.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*/
void decaf_448_point_scalarmul (
decaf_448_point_t scaled,
const decaf_448_point_t base,
const decaf_448_scalar_t scalar
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply a base point by a scalar: scaled = scalar*base.
* This function operates directly on serialized forms.
*
* @warning This function is experimental. It may not be supported
* long-term.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
* @param [in] allow_identity Allow the input to be the identity.
* @param [in] short_circuit Allow a fast return if the input is illegal.
*
* @retval DECAF_SUCCESS The scalarmul succeeded.
* @retval DECAF_FAILURE The scalarmul didn't succeed, because
* base does not represent a point.
*/
decaf_error_t decaf_448_direct_scalarmul (
uint8_t scaled[DECAF_448_SER_BYTES],
const uint8_t base[DECAF_448_SER_BYTES],
const decaf_448_scalar_t scalar,
decaf_bool_t allow_identity,
decaf_bool_t short_circuit
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;
/**
* @brief RFC 7748 Diffie-Hellman scalarmul. This function uses a different
* (non-Decaf) encoding.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*
* @retval DECAF_SUCCESS The scalarmul succeeded.
* @retval DECAF_FAILURE The scalarmul didn't succeed, because the base
* point is in a small subgroup.
*/
decaf_error_t decaf_x448 (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t base[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;
/**
* @brief Multiply a point by DECAF_X448_ENCODE_RATIO,
* then encode it like RFC 7748.
*
* This function is mainly used internally, but is exported in case
* it will be useful.
*
* The ratio is necessary because the internal representation doesn't
* track the cofactor information, so on output we must clear the cofactor.
* This would multiply by the cofactor, but in fact internally libdecaf's
* points are always even, so it multiplies by half the cofactor instead.
*
* As it happens, this aligns with the base point definitions; that is,
* if you pass the Decaf/Ristretto base point to this function, the result
* will be DECAF_X448_ENCODE_RATIO times the X448
* base point.
*
* @param [out] out The scaled and encoded point.
* @param [in] p The point to be scaled and encoded.
*/
void decaf_448_point_mul_by_ratio_and_encode_like_x448 (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const decaf_448_point_t p
) DECAF_API_VIS DECAF_NONNULL;
/** The base point for X448 Diffie-Hellman */
extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] DECAF_API_VIS;
/**
* @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses
* a different (non-Decaf) encoding.
*
* @deprecated Renamed to decaf_x448_derive_public_key.
* I have no particular timeline for removing this name.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] scalar The scalar to multiply by.
*/
void decaf_x448_generate_key (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_DEPRECATED("Renamed to decaf_x448_derive_public_key");
/**
* @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses
* a different (non-Decaf) encoding.
*
* Does exactly the same thing as decaf_x448_generate_key,
* but has a better name.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] scalar The scalar to multiply by.
*/
void decaf_x448_derive_public_key (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/* FUTURE: uint8_t decaf_448_encode_like_curve448) */
/**
* @brief Precompute a table for fast scalar multiplication.
* Some implementations do not include precomputed points; for
* those implementations, this implementation simply copies the
* point.
*
* @param [out] a A precomputed table of multiples of the point.
* @param [in] b Any point.
*/
void decaf_448_precompute (
decaf_448_precomputed_s *a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply a precomputed base point by a scalar:
* scaled = scalar*base.
* Some implementations do not include precomputed points; for
* those implementations, this function is the same as
* decaf_448_point_scalarmul
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*/
void decaf_448_precomputed_scalarmul (
decaf_448_point_t scaled,
const decaf_448_precomputed_s *base,
const decaf_448_scalar_t scalar
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply two base points by two scalars:
* scaled = scalar1*base1 + scalar2*base2.
*
* Equivalent to two calls to decaf_448_point_scalarmul, but may be
* faster.
*
* @param [out] combo The linear combination scalar1*base1 + scalar2*base2.
* @param [in] base1 A first point to be scaled.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] base2 A second point to be scaled.
* @param [in] scalar2 A second scalar to multiply by.
*/
void decaf_448_point_double_scalarmul (
decaf_448_point_t combo,
const decaf_448_point_t base1,
const decaf_448_scalar_t scalar1,
const decaf_448_point_t base2,
const decaf_448_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* Multiply one base point by two scalars:
*
* a1 = scalar1 * base
* a2 = scalar2 * base
*
* Equivalent to two calls to decaf_448_point_scalarmul, but may be
* faster.
*
* @param [out] a1 The first multiple. It may be the same as the input point.
* @param [out] a2 The second multiple. It may be the same as the input point.
* @param [in] base1 A point to be scaled.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] scalar2 A second scalar to multiply by.
*/
void decaf_448_point_dual_scalarmul (
decaf_448_point_t a1,
decaf_448_point_t a2,
const decaf_448_point_t base1,
const decaf_448_scalar_t scalar1,
const decaf_448_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply two base points by two scalars:
* scaled = scalar1*decaf_448_point_base + scalar2*base2.
*
* Otherwise equivalent to decaf_448_point_double_scalarmul, but may be
* faster at the expense of being variable time.
*
* @param [out] combo The linear combination scalar1*base + scalar2*base2.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] base2 A second point to be scaled.
* @param [in] scalar2 A second scalar to multiply by.
*
* @warning: This function takes variable time, and may leak the scalars
* used. It is designed for signature verification.
*/
void decaf_448_base_double_scalarmul_non_secret (
decaf_448_point_t combo,
const decaf_448_scalar_t scalar1,
const decaf_448_point_t base2,
const decaf_448_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Constant-time decision between two points. If pick_b
* is zero, out = a; else out = b.
*
* @param [out] out The output. It may be the same as either input.
* @param [in] a Any point.
* @param [in] b Any point.
* @param [in] pick_b If nonzero, choose point b.
*/
void decaf_448_point_cond_sel (
decaf_448_point_t out,
const decaf_448_point_t a,
const decaf_448_point_t b,
decaf_word_t pick_b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Constant-time decision between two scalars. If pick_b
* is zero, out = a; else out = b.
*
* @param [out] out The output. It may be the same as either input.
* @param [in] a Any scalar.
* @param [in] b Any scalar.
* @param [in] pick_b If nonzero, choose scalar b.
*/
void decaf_448_scalar_cond_sel (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b,
decaf_word_t pick_b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Test that a point is valid, for debugging purposes.
*
* @param [in] to_test The point to test.
* @retval DECAF_TRUE The point is valid.
* @retval DECAF_FALSE The point is invalid.
*/
decaf_bool_t decaf_448_point_valid (
const decaf_448_point_t to_test
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Torque a point, for debugging purposes. The output
* will be equal to the input.
*
* @param [out] q The point to torque.
* @param [in] p The point to torque.
*/
void decaf_448_point_debugging_torque (
decaf_448_point_t q,
const decaf_448_point_t p
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Projectively scale a point, for debugging purposes.
* The output will be equal to the input, and will be valid
* even if the factor is zero.
*
* @param [out] q The point to scale.
* @param [in] p The point to scale.
* @param [in] factor Serialized GF factor to scale.
*/
void decaf_448_point_debugging_pscale (
decaf_448_point_t q,
const decaf_448_point_t p,
const unsigned char factor[DECAF_448_SER_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Almost-Elligator-like hash to curve.
*
* Call this function with the output of a hash to make a hash to the curve.
*
* This function runs Elligator2 on the decaf_448 Jacobi quartic model. It then
* uses the isogeny to put the result in twisted Edwards form. As a result,
* it is safe (cannot produce points of order 4), and would be compatible with
* hypothetical other implementations of Decaf using a Montgomery or untwisted
* Edwards model.
*
* Unlike Elligator, this function may be up to 4:1 on [0,(p-1)/2]:
* A factor of 2 due to the isogeny.
* A factor of 2 because we quotient out the 2-torsion.
*
* This makes it about 8:1 overall, or 16:1 overall on curves with cofactor 8.
*
* Negating the input (mod q) results in the same point. Inverting the input
* (mod q) results in the negative point. This is the same as Elligator.
*
* This function isn't quite indifferentiable from a random oracle.
* However, it is suitable for many protocols, including SPEKE and SPAKE2 EE.
* Furthermore, calling it twice with independent seeds and adding the results
* is indifferentiable from a random oracle.
*
* @param [in] hashed_data Output of some hash function.
* @param [out] pt The data hashed to the curve.
*/
void
decaf_448_point_from_hash_nonuniform (
decaf_448_point_t pt,
const unsigned char hashed_data[DECAF_448_HASH_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Indifferentiable hash function encoding to curve.
*
* Equivalent to calling decaf_448_point_from_hash_nonuniform twice and adding.
*
* @param [in] hashed_data Output of some hash function.
* @param [out] pt The data hashed to the curve.
*/
void decaf_448_point_from_hash_uniform (
decaf_448_point_t pt,
const unsigned char hashed_data[2*DECAF_448_HASH_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Inverse of elligator-like hash to curve.
*
* This function writes to the buffer, to make it so that
* decaf_448_point_from_hash_nonuniform(buffer) = pt if
* possible. Since there may be multiple preimages, the
* "which" parameter chooses between them. To ensure uniform
* inverse sampling, this function succeeds or fails
* independently for different "which" values.
*
* This function isn't guaranteed to find every possible
* preimage, but it finds all except a small finite number.
* In particular, when the number of bits in the modulus isn't
* a multiple of 8 (i.e. for curve25519), it sets the high bits
* independently, which enables the generated data to be uniform.
* But it doesn't add p, so you'll never get exactly p from this
* function. This might change in the future, especially if
* we ever support eg Brainpool curves, where this could cause
* real nonuniformity.
*
* @param [out] recovered_hash Encoded data.
* @param [in] pt The point to encode.
* @param [in] which A value determining which inverse point
* to return.
*
* @retval DECAF_SUCCESS The inverse succeeded.
* @retval DECAF_FAILURE The inverse failed.
*/
decaf_error_t
decaf_448_invert_elligator_nonuniform (
unsigned char recovered_hash[DECAF_448_HASH_BYTES],
const decaf_448_point_t pt,
uint32_t which
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED;
/**
* @brief Inverse of elligator-like hash to curve.
*
* This function writes to the buffer, to make it so that
* decaf_448_point_from_hash_uniform(buffer) = pt if
* possible. Since there may be multiple preimages, the
* "which" parameter chooses between them. To ensure uniform
* inverse sampling, this function succeeds or fails
* independently for different "which" values.
*
* @param [out] recovered_hash Encoded data.
* @param [in] pt The point to encode.
* @param [in] which A value determining which inverse point
* to return.
*
* @retval DECAF_SUCCESS The inverse succeeded.
* @retval DECAF_FAILURE The inverse failed.
*/
decaf_error_t
decaf_448_invert_elligator_uniform (
unsigned char recovered_hash[2*DECAF_448_HASH_BYTES],
const decaf_448_point_t pt,
uint32_t which
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED;
/**
* @brief Overwrite scalar with zeros.
*/
void decaf_448_scalar_destroy (
decaf_448_scalar_t scalar
) DECAF_NONNULL DECAF_API_VIS;
/**
* @brief Overwrite point with zeros.
*/
void decaf_448_point_destroy (
decaf_448_point_t point
) DECAF_NONNULL DECAF_API_VIS;
/**
* @brief Overwrite precomputed table with zeros.
*/
void decaf_448_precomputed_destroy (
decaf_448_precomputed_s *pre
) DECAF_NONNULL DECAF_API_VIS;
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* __DECAF_POINT_448_H__ */