openssl/crypto/aes/asm/aesni-sha1-x86_64.pl

2057 lines
51 KiB
Perl

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# June 2011
#
# This is AESNI-CBC+SHA1 "stitch" implementation. The idea, as spelled
# in http://download.intel.com/design/intarch/papers/323686.pdf, is
# that since AESNI-CBC encrypt exhibit *very* low instruction-level
# parallelism, interleaving it with another algorithm would allow to
# utilize processor resources better and achieve better performance.
# SHA1 instruction sequences(*) are taken from sha1-x86_64.pl and
# AESNI code is weaved into it. Below are performance numbers in
# cycles per processed byte, less is better, for standalone AESNI-CBC
# encrypt, sum of the latter and standalone SHA1, and "stitched"
# subroutine:
#
# AES-128-CBC +SHA1 stitch gain
# Westmere 3.77[+5.3] 9.07 6.55 +38%
# Sandy Bridge 5.05[+5.0(6.1)] 10.06(11.15) 5.98(7.05) +68%(+58%)
# Ivy Bridge 5.05[+4.6] 9.65 5.54 +74%
# Haswell 4.43[+3.6(4.2)] 8.00(8.58) 4.55(5.21) +75%(+65%)
# Bulldozer 5.77[+6.0] 11.72 6.37 +84%
#
# AES-192-CBC
# Westmere 4.51 9.81 6.80 +44%
# Sandy Bridge 6.05 11.06(12.15) 6.11(7.19) +81%(+69%)
# Ivy Bridge 6.05 10.65 6.07 +75%
# Haswell 5.29 8.86(9.44) 5.32(5.32) +67%(+77%)
# Bulldozer 6.89 12.84 6.96 +84%
#
# AES-256-CBC
# Westmere 5.25 10.55 7.21 +46%
# Sandy Bridge 7.05 12.06(13.15) 7.12(7.72) +69%(+70%)
# Ivy Bridge 7.05 11.65 7.12 +64%
# Haswell 6.19 9.76(10.34) 6.21(6.25) +57%(+65%)
# Bulldozer 8.00 13.95 8.25 +69%
#
# (*) There are two code paths: SSSE3 and AVX. See sha1-568.pl for
# background information. Above numbers in parentheses are SSSE3
# results collected on AVX-capable CPU, i.e. apply on OSes that
# don't support AVX.
#
# Needless to mention that it makes no sense to implement "stitched"
# *decrypt* subroutine. Because *both* AESNI-CBC decrypt and SHA1
# fully utilize parallelism, so stitching would not give any gain
# anyway. Well, there might be some, e.g. because of better cache
# locality... For reference, here are performance results for
# standalone AESNI-CBC decrypt:
#
# AES-128-CBC AES-192-CBC AES-256-CBC
# Westmere 1.25 1.50 1.75
# Sandy Bridge 0.74 0.91 1.09
# Ivy Bridge 0.74 0.90 1.11
# Haswell 0.63 0.76 0.88
# Bulldozer 0.70 0.85 0.99
# And indeed:
#
# AES-256-CBC +SHA1 stitch gain
# Westmere 1.75 7.20 6.68 +7.8%
# Sandy Bridge 1.09 6.09(7.22) 5.82(6.95) +4.6%(+3.9%)
# Ivy Bridge 1.11 5.70 5.45 +4.6%
# Haswell 0.88 4.45(5.00) 4.39(4.69) +1.4%(*)(+6.6%)
# Bulldozer 0.99 6.95 5.95 +17%(**)
#
# (*) Tiny improvement coefficient on Haswell is because we compare
# AVX1 stitch to sum with AVX2 SHA1.
# (**) Execution is fully dominated by integer code sequence and
# SIMD still hardly shows [in single-process benchmark;-]
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
$avx=1 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
$1>=2.19);
$avx=1 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
$1>=2.09);
$avx=1 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
`ml64 2>&1` =~ /Version ([0-9]+)\./ &&
$1>=10);
$avx=1 if (!$avx && `$ENV{CC} -v 2>&1` =~ /LLVM ([3-9]\.[0-9]+)/ && $1>=3.0);
$shaext=1; ### set to zero if compiling for 1.0.1
$stitched_decrypt=0;
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
# void aesni_cbc_sha1_enc(const void *inp,
# void *out,
# size_t length,
# const AES_KEY *key,
# unsigned char *iv,
# SHA_CTX *ctx,
# const void *in0);
$code.=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl aesni_cbc_sha1_enc
.type aesni_cbc_sha1_enc,\@abi-omnipotent
.align 32
aesni_cbc_sha1_enc:
# caller should check for SSSE3 and AES-NI bits
mov OPENSSL_ia32cap_P+0(%rip),%r10d
mov OPENSSL_ia32cap_P+4(%rip),%r11
___
$code.=<<___ if ($shaext);
bt \$61,%r11 # check SHA bit
jc aesni_cbc_sha1_enc_shaext
___
$code.=<<___ if ($avx);
and \$`1<<28`,%r11d # mask AVX bit
and \$`1<<30`,%r10d # mask "Intel CPU" bit
or %r11d,%r10d
cmp \$`1<<28|1<<30`,%r10d
je aesni_cbc_sha1_enc_avx
___
$code.=<<___;
jmp aesni_cbc_sha1_enc_ssse3
ret
.size aesni_cbc_sha1_enc,.-aesni_cbc_sha1_enc
___
my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10");
my $Xi=4;
my @X=map("%xmm$_",(4..7,0..3));
my @Tx=map("%xmm$_",(8..10));
my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization
my @T=("%esi","%edi");
my $j=0; my $jj=0; my $r=0; my $sn=0; my $rx=0;
my $K_XX_XX="%r11";
my ($rndkey0,$iv,$in)=map("%xmm$_",(11..13)); # for enc
my @rndkey=("%xmm14","%xmm15"); # for enc
my ($inout0,$inout1,$inout2,$inout3)=map("%xmm$_",(12..15)); # for dec
if (1) { # reassign for Atom Silvermont
# The goal is to minimize amount of instructions with more than
# 3 prefix bytes. Or in more practical terms to keep AES-NI *and*
# SSSE3 instructions to upper half of the register bank.
@X=map("%xmm$_",(8..11,4..7));
@Tx=map("%xmm$_",(12,13,3));
($iv,$in,$rndkey0)=map("%xmm$_",(2,14,15));
@rndkey=("%xmm0","%xmm1");
}
sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
my $arg = pop;
$arg = "\$$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
}
my $_rol=sub { &rol(@_) };
my $_ror=sub { &ror(@_) };
$code.=<<___;
.type aesni_cbc_sha1_enc_ssse3,\@function,6
.align 32
aesni_cbc_sha1_enc_ssse3:
mov `($win64?56:8)`(%rsp),$inp # load 7th argument
#shr \$6,$len # debugging artefact
#jz .Lepilogue_ssse3 # debugging artefact
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
lea `-104-($win64?10*16:0)`(%rsp),%rsp
#mov $in0,$inp # debugging artefact
#lea 64(%rsp),$ctx # debugging artefact
___
$code.=<<___ if ($win64);
movaps %xmm6,96+0(%rsp)
movaps %xmm7,96+16(%rsp)
movaps %xmm8,96+32(%rsp)
movaps %xmm9,96+48(%rsp)
movaps %xmm10,96+64(%rsp)
movaps %xmm11,96+80(%rsp)
movaps %xmm12,96+96(%rsp)
movaps %xmm13,96+112(%rsp)
movaps %xmm14,96+128(%rsp)
movaps %xmm15,96+144(%rsp)
.Lprologue_ssse3:
___
$code.=<<___;
mov $in0,%r12 # reassign arguments
mov $out,%r13
mov $len,%r14
lea 112($key),%r15 # size optimization
movdqu ($ivp),$iv # load IV
mov $ivp,88(%rsp) # save $ivp
___
($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments
my $rounds="${ivp}d";
$code.=<<___;
shl \$6,$len
sub $in0,$out
mov 240-112($key),$rounds
add $inp,$len # end of input
lea K_XX_XX(%rip),$K_XX_XX
mov 0($ctx),$A # load context
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov $B,@T[0] # magic seed
mov 16($ctx),$E
mov $C,@T[1]
xor $D,@T[1]
and @T[1],@T[0]
movdqa 64($K_XX_XX),@Tx[2] # pbswap mask
movdqa 0($K_XX_XX),@Tx[1] # K_00_19
movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
movdqu 16($inp),@X[-3&7]
movdqu 32($inp),@X[-2&7]
movdqu 48($inp),@X[-1&7]
pshufb @Tx[2],@X[-4&7] # byte swap
pshufb @Tx[2],@X[-3&7]
pshufb @Tx[2],@X[-2&7]
add \$64,$inp
paddd @Tx[1],@X[-4&7] # add K_00_19
pshufb @Tx[2],@X[-1&7]
paddd @Tx[1],@X[-3&7]
paddd @Tx[1],@X[-2&7]
movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU
psubd @Tx[1],@X[-4&7] # restore X[]
movdqa @X[-3&7],16(%rsp)
psubd @Tx[1],@X[-3&7]
movdqa @X[-2&7],32(%rsp)
psubd @Tx[1],@X[-2&7]
movups -112($key),$rndkey0 # $key[0]
movups 16-112($key),$rndkey[0] # forward reference
jmp .Loop_ssse3
___
my $aesenc=sub {
use integer;
my ($n,$k)=($r/10,$r%10);
if ($k==0) {
$code.=<<___;
movups `16*$n`($in0),$in # load input
xorps $rndkey0,$in
___
$code.=<<___ if ($n);
movups $iv,`16*($n-1)`($out,$in0) # write output
___
$code.=<<___;
xorps $in,$iv
movups `32+16*$k-112`($key),$rndkey[1]
aesenc $rndkey[0],$iv
___
} elsif ($k==9) {
$sn++;
$code.=<<___;
cmp \$11,$rounds
jb .Laesenclast$sn
movups `32+16*($k+0)-112`($key),$rndkey[1]
aesenc $rndkey[0],$iv
movups `32+16*($k+1)-112`($key),$rndkey[0]
aesenc $rndkey[1],$iv
je .Laesenclast$sn
movups `32+16*($k+2)-112`($key),$rndkey[1]
aesenc $rndkey[0],$iv
movups `32+16*($k+3)-112`($key),$rndkey[0]
aesenc $rndkey[1],$iv
.Laesenclast$sn:
aesenclast $rndkey[0],$iv
movups 16-112($key),$rndkey[1] # forward reference
___
} else {
$code.=<<___;
movups `32+16*$k-112`($key),$rndkey[1]
aesenc $rndkey[0],$iv
___
}
$r++; unshift(@rndkey,pop(@rndkey));
};
sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns)); # ror
&pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
eval(shift(@insns));
&movdqa (@Tx[0],@X[-1&7]);
&paddd (@Tx[1],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
&psrldq (@Tx[0],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns)); # ror
&pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns)); # rol
&movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&movdqa (@Tx[2],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
&movdqa (@Tx[0],@X[0]);
eval(shift(@insns));
&pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword
&paddd (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@Tx[0],31);
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
&movdqa (@Tx[1],@Tx[2]);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@Tx[2],30);
eval(shift(@insns));
eval(shift(@insns)); # ror
&por (@X[0],@Tx[0]); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pslld (@Tx[1],2);
&pxor (@X[0],@Tx[2]);
eval(shift(@insns));
&movdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_XX
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2
&pshufd (@Tx[1],@X[-1&7],0xee) if ($Xi==7); # was &movdqa (@Tx[0],@X[-1&7]) in Xupdate_ssse3_32_79
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
push(@Tx,shift(@Tx));
}
sub Xupdate_ssse3_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns)) if ($Xi==8);
&pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns)) if ($Xi==8);
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns)) if (@insns[1] =~ /_ror/);
eval(shift(@insns)) if (@insns[0] =~ /_ror/);
&punpcklqdq(@Tx[0],@X[-1&7]); # compose "X[-6]", was &palignr(@Tx[0],@X[-2&7],8);
eval(shift(@insns));
eval(shift(@insns)); # rol
&pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
eval(shift(@insns));
eval(shift(@insns));
if ($Xi%5) {
&movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX...
} else { # ... or load next one
&movdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)");
}
eval(shift(@insns)); # ror
&paddd (@Tx[1],@X[-1&7]);
eval(shift(@insns));
&pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns)) if (@insns[0] =~ /_ror/);
&movdqa (@Tx[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
&movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns)); # ror
eval(shift(@insns));
eval(shift(@insns)); # body_20_39
&pslld (@X[0],2);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@Tx[0],30);
eval(shift(@insns)) if (@insns[0] =~ /_rol/);# rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
&por (@X[0],@Tx[0]); # "X[0]"<<<=2
eval(shift(@insns));
eval(shift(@insns)); # body_20_39
eval(shift(@insns)) if (@insns[1] =~ /_rol/);
eval(shift(@insns)) if (@insns[0] =~ /_rol/);
&pshufd(@Tx[1],@X[-1&7],0xee) if ($Xi<19); # was &movdqa (@Tx[1],@X[0])
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions
$Xi++; push(@X,shift(@X)); # "rotate" X[]
push(@Tx,shift(@Tx));
}
sub Xuplast_ssse3_80()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&paddd (@Tx[1],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU
foreach (@insns) { eval; } # remaining instructions
&cmp ($inp,$len);
&je (shift);
unshift(@Tx,pop(@Tx));
&movdqa (@Tx[2],"64($K_XX_XX)"); # pbswap mask
&movdqa (@Tx[1],"0($K_XX_XX)"); # K_00_19
&movdqu (@X[-4&7],"0($inp)"); # load input
&movdqu (@X[-3&7],"16($inp)");
&movdqu (@X[-2&7],"32($inp)");
&movdqu (@X[-1&7],"48($inp)");
&pshufb (@X[-4&7],@Tx[2]); # byte swap
&add ($inp,64);
$Xi=0;
}
sub Xloop_ssse3()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pshufb (@X[($Xi-3)&7],@Tx[2]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[($Xi-4)&7],@Tx[1]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&psubd (@X[($Xi-4)&7],@Tx[1]);
foreach (@insns) { eval; }
$Xi++;
}
sub Xtail_ssse3()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
my @body_00_19 = (
'($a,$b,$c,$d,$e)=@V;'.
'&$_ror ($b,$j?7:2);', # $b>>>2
'&xor (@T[0],$d);',
'&mov (@T[1],$a);', # $b for next round
'&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer
'&xor ($b,$c);', # $c^$d for next round
'&$_rol ($a,5);',
'&add ($e,@T[0]);',
'&and (@T[1],$b);', # ($b&($c^$d)) for next round
'&xor ($b,$c);', # restore $b
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
sub body_00_19 () { # ((c^d)&b)^d
# on start @T[0]=(c^d)&b
return &body_20_39() if ($rx==19); $rx++;
use integer;
my ($k,$n);
my @r=@body_00_19;
$n = scalar(@r);
$k = (($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds
@r[$k%$n].='&$aesenc();' if ($jj==$k/$n);
$jj++;
return @r;
}
my @body_20_39 = (
'($a,$b,$c,$d,$e)=@V;'.
'&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer
'&xor (@T[0],$d) if($j==19);'.
'&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c)
'&mov (@T[1],$a);', # $b for next round
'&$_rol ($a,5);',
'&add ($e,@T[0]);',
'&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round
'&$_ror ($b,7);', # $b>>>2
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
sub body_20_39 () { # b^d^c
# on entry @T[0]=b^d
return &body_40_59() if ($rx==39); $rx++;
use integer;
my ($k,$n);
my @r=@body_20_39;
$n = scalar(@r);
$k = (($jj+1)*8/20)*20*$n/8; # 8 aesencs per these 20 rounds
@r[$k%$n].='&$aesenc();' if ($jj==$k/$n && $rx!=20);
$jj++;
return @r;
}
my @body_40_59 = (
'($a,$b,$c,$d,$e)=@V;'.
'&add ($e,eval(4*($j&15))."(%rsp)");',# X[]+K xfer
'&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d)
'&xor ($c,$d) if ($j>=40);', # restore $c
'&$_ror ($b,7);', # $b>>>2
'&mov (@T[1],$a);', # $b for next round
'&xor (@T[0],$c);',
'&$_rol ($a,5);',
'&add ($e,@T[0]);',
'&xor (@T[1],$c) if ($j==59);'.
'&xor (@T[1],$b) if ($j< 59);', # b^c for next round
'&xor ($b,$c) if ($j< 59);', # c^d for next round
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
sub body_40_59 () { # ((b^c)&(c^d))^c
# on entry @T[0]=(b^c), (c^=d)
$rx++;
use integer;
my ($k,$n);
my @r=@body_40_59;
$n = scalar(@r);
$k=(($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds
@r[$k%$n].='&$aesenc();' if ($jj==$k/$n && $rx!=40);
$jj++;
return @r;
}
$code.=<<___;
.align 32
.Loop_ssse3:
___
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_32_79(\&body_00_19);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xuplast_ssse3_80(\&body_20_39,".Ldone_ssse3"); # can jump to "done"
$saved_j=$j; @saved_V=@V;
$saved_r=$r; @saved_rndkey=@rndkey;
&Xloop_ssse3(\&body_20_39);
&Xloop_ssse3(\&body_20_39);
&Xloop_ssse3(\&body_20_39);
$code.=<<___;
movups $iv,48($out,$in0) # write output
lea 64($in0),$in0
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
add 12($ctx),$D
mov $A,0($ctx)
add 16($ctx),$E
mov @T[0],4($ctx)
mov @T[0],$B # magic seed
mov $C,8($ctx)
mov $C,@T[1]
mov $D,12($ctx)
xor $D,@T[1]
mov $E,16($ctx)
and @T[1],@T[0]
jmp .Loop_ssse3
.Ldone_ssse3:
___
$jj=$j=$saved_j; @V=@saved_V;
$r=$saved_r; @rndkey=@saved_rndkey;
&Xtail_ssse3(\&body_20_39);
&Xtail_ssse3(\&body_20_39);
&Xtail_ssse3(\&body_20_39);
$code.=<<___;
movups $iv,48($out,$in0) # write output
mov 88(%rsp),$ivp # restore $ivp
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
mov $A,0($ctx)
add 12($ctx),$D
mov @T[0],4($ctx)
add 16($ctx),$E
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
movups $iv,($ivp) # write IV
___
$code.=<<___ if ($win64);
movaps 96+0(%rsp),%xmm6
movaps 96+16(%rsp),%xmm7
movaps 96+32(%rsp),%xmm8
movaps 96+48(%rsp),%xmm9
movaps 96+64(%rsp),%xmm10
movaps 96+80(%rsp),%xmm11
movaps 96+96(%rsp),%xmm12
movaps 96+112(%rsp),%xmm13
movaps 96+128(%rsp),%xmm14
movaps 96+144(%rsp),%xmm15
___
$code.=<<___;
lea `104+($win64?10*16:0)`(%rsp),%rsi
mov 0(%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_ssse3:
ret
.size aesni_cbc_sha1_enc_ssse3,.-aesni_cbc_sha1_enc_ssse3
___
if ($stitched_decrypt) {{{
# reset
($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10");
$j=$jj=$r=$rx=0;
$Xi=4;
# reassign for Atom Silvermont (see above)
($inout0,$inout1,$inout2,$inout3,$rndkey0)=map("%xmm$_",(0..4));
@X=map("%xmm$_",(8..13,6,7));
@Tx=map("%xmm$_",(14,15,5));
my @aes256_dec = (
'&movdqu($inout0,"0x00($in0)");',
'&movdqu($inout1,"0x10($in0)"); &pxor ($inout0,$rndkey0);',
'&movdqu($inout2,"0x20($in0)"); &pxor ($inout1,$rndkey0);',
'&movdqu($inout3,"0x30($in0)"); &pxor ($inout2,$rndkey0);',
'&pxor ($inout3,$rndkey0); &movups ($rndkey0,"16-112($key)");',
'&movaps("64(%rsp)",@X[2]);', # save IV, originally @X[3]
undef,undef
);
for ($i=0;$i<13;$i++) {
push (@aes256_dec,(
'&aesdec ($inout0,$rndkey0);',
'&aesdec ($inout1,$rndkey0);',
'&aesdec ($inout2,$rndkey0);',
'&aesdec ($inout3,$rndkey0); &movups($rndkey0,"'.(16*($i+2)-112).'($key)");'
));
push (@aes256_dec,(undef,undef)) if (($i>=3 && $i<=5) || $i>=11);
push (@aes256_dec,(undef,undef)) if ($i==5);
}
push(@aes256_dec,(
'&aesdeclast ($inout0,$rndkey0); &movups (@X[0],"0x00($in0)");',
'&aesdeclast ($inout1,$rndkey0); &movups (@X[1],"0x10($in0)");',
'&aesdeclast ($inout2,$rndkey0); &movups (@X[2],"0x20($in0)");',
'&aesdeclast ($inout3,$rndkey0); &movups (@X[3],"0x30($in0)");',
'&xorps ($inout0,"64(%rsp)"); &movdqu ($rndkey0,"-112($key)");',
'&xorps ($inout1,@X[0]); &movups ("0x00($out,$in0)",$inout0);',
'&xorps ($inout2,@X[1]); &movups ("0x10($out,$in0)",$inout1);',
'&xorps ($inout3,@X[2]); &movups ("0x20($out,$in0)",$inout2);',
'&movups ("0x30($out,$in0)",$inout3);'
));
sub body_00_19_dec () { # ((c^d)&b)^d
# on start @T[0]=(c^d)&b
return &body_20_39_dec() if ($rx==19);
my @r=@body_00_19;
unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]);
$rx++;
return @r;
}
sub body_20_39_dec () { # b^d^c
# on entry @T[0]=b^d
return &body_40_59_dec() if ($rx==39);
my @r=@body_20_39;
unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]);
$rx++;
return @r;
}
sub body_40_59_dec () { # ((b^c)&(c^d))^c
# on entry @T[0]=(b^c), (c^=d)
my @r=@body_40_59;
unshift (@r,@aes256_dec[$rx]) if (@aes256_dec[$rx]);
$rx++;
return @r;
}
$code.=<<___;
.globl aesni256_cbc_sha1_dec
.type aesni256_cbc_sha1_dec,\@abi-omnipotent
.align 32
aesni256_cbc_sha1_dec:
# caller should check for SSSE3 and AES-NI bits
mov OPENSSL_ia32cap_P+0(%rip),%r10d
mov OPENSSL_ia32cap_P+4(%rip),%r11d
___
$code.=<<___ if ($avx);
and \$`1<<28`,%r11d # mask AVX bit
and \$`1<<30`,%r10d # mask "Intel CPU" bit
or %r11d,%r10d
cmp \$`1<<28|1<<30`,%r10d
je aesni256_cbc_sha1_dec_avx
___
$code.=<<___;
jmp aesni256_cbc_sha1_dec_ssse3
ret
.size aesni256_cbc_sha1_dec,.-aesni256_cbc_sha1_dec
.type aesni256_cbc_sha1_dec_ssse3,\@function,6
.align 32
aesni256_cbc_sha1_dec_ssse3:
mov `($win64?56:8)`(%rsp),$inp # load 7th argument
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
lea `-104-($win64?10*16:0)`(%rsp),%rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,96+0(%rsp)
movaps %xmm7,96+16(%rsp)
movaps %xmm8,96+32(%rsp)
movaps %xmm9,96+48(%rsp)
movaps %xmm10,96+64(%rsp)
movaps %xmm11,96+80(%rsp)
movaps %xmm12,96+96(%rsp)
movaps %xmm13,96+112(%rsp)
movaps %xmm14,96+128(%rsp)
movaps %xmm15,96+144(%rsp)
.Lprologue_dec_ssse3:
___
$code.=<<___;
mov $in0,%r12 # reassign arguments
mov $out,%r13
mov $len,%r14
lea 112($key),%r15 # size optimization
movdqu ($ivp),@X[3] # load IV
#mov $ivp,88(%rsp) # save $ivp
___
($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments
$code.=<<___;
shl \$6,$len
sub $in0,$out
add $inp,$len # end of input
lea K_XX_XX(%rip),$K_XX_XX
mov 0($ctx),$A # load context
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov $B,@T[0] # magic seed
mov 16($ctx),$E
mov $C,@T[1]
xor $D,@T[1]
and @T[1],@T[0]
movdqa 64($K_XX_XX),@Tx[2] # pbswap mask
movdqa 0($K_XX_XX),@Tx[1] # K_00_19
movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
movdqu 16($inp),@X[-3&7]
movdqu 32($inp),@X[-2&7]
movdqu 48($inp),@X[-1&7]
pshufb @Tx[2],@X[-4&7] # byte swap
add \$64,$inp
pshufb @Tx[2],@X[-3&7]
pshufb @Tx[2],@X[-2&7]
pshufb @Tx[2],@X[-1&7]
paddd @Tx[1],@X[-4&7] # add K_00_19
paddd @Tx[1],@X[-3&7]
paddd @Tx[1],@X[-2&7]
movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU
psubd @Tx[1],@X[-4&7] # restore X[]
movdqa @X[-3&7],16(%rsp)
psubd @Tx[1],@X[-3&7]
movdqa @X[-2&7],32(%rsp)
psubd @Tx[1],@X[-2&7]
movdqu -112($key),$rndkey0 # $key[0]
jmp .Loop_dec_ssse3
.align 32
.Loop_dec_ssse3:
___
&Xupdate_ssse3_16_31(\&body_00_19_dec);
&Xupdate_ssse3_16_31(\&body_00_19_dec);
&Xupdate_ssse3_16_31(\&body_00_19_dec);
&Xupdate_ssse3_16_31(\&body_00_19_dec);
&Xupdate_ssse3_32_79(\&body_00_19_dec);
&Xupdate_ssse3_32_79(\&body_20_39_dec);
&Xupdate_ssse3_32_79(\&body_20_39_dec);
&Xupdate_ssse3_32_79(\&body_20_39_dec);
&Xupdate_ssse3_32_79(\&body_20_39_dec);
&Xupdate_ssse3_32_79(\&body_20_39_dec);
&Xupdate_ssse3_32_79(\&body_40_59_dec);
&Xupdate_ssse3_32_79(\&body_40_59_dec);
&Xupdate_ssse3_32_79(\&body_40_59_dec);
&Xupdate_ssse3_32_79(\&body_40_59_dec);
&Xupdate_ssse3_32_79(\&body_40_59_dec);
&Xupdate_ssse3_32_79(\&body_20_39_dec);
&Xuplast_ssse3_80(\&body_20_39_dec,".Ldone_dec_ssse3"); # can jump to "done"
$saved_j=$j; @saved_V=@V;
$saved_rx=$rx;
&Xloop_ssse3(\&body_20_39_dec);
&Xloop_ssse3(\&body_20_39_dec);
&Xloop_ssse3(\&body_20_39_dec);
eval(@aes256_dec[-1]); # last store
$code.=<<___;
lea 64($in0),$in0
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
add 12($ctx),$D
mov $A,0($ctx)
add 16($ctx),$E
mov @T[0],4($ctx)
mov @T[0],$B # magic seed
mov $C,8($ctx)
mov $C,@T[1]
mov $D,12($ctx)
xor $D,@T[1]
mov $E,16($ctx)
and @T[1],@T[0]
jmp .Loop_dec_ssse3
.Ldone_dec_ssse3:
___
$jj=$j=$saved_j; @V=@saved_V;
$rx=$saved_rx;
&Xtail_ssse3(\&body_20_39_dec);
&Xtail_ssse3(\&body_20_39_dec);
&Xtail_ssse3(\&body_20_39_dec);
eval(@aes256_dec[-1]); # last store
$code.=<<___;
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
mov $A,0($ctx)
add 12($ctx),$D
mov @T[0],4($ctx)
add 16($ctx),$E
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
movups @X[3],($ivp) # write IV
___
$code.=<<___ if ($win64);
movaps 96+0(%rsp),%xmm6
movaps 96+16(%rsp),%xmm7
movaps 96+32(%rsp),%xmm8
movaps 96+48(%rsp),%xmm9
movaps 96+64(%rsp),%xmm10
movaps 96+80(%rsp),%xmm11
movaps 96+96(%rsp),%xmm12
movaps 96+112(%rsp),%xmm13
movaps 96+128(%rsp),%xmm14
movaps 96+144(%rsp),%xmm15
___
$code.=<<___;
lea `104+($win64?10*16:0)`(%rsp),%rsi
mov 0(%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_dec_ssse3:
ret
.size aesni256_cbc_sha1_dec_ssse3,.-aesni256_cbc_sha1_dec_ssse3
___
}}}
$j=$jj=$r=$rx=0;
if ($avx) {
my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10");
my $Xi=4;
my @X=map("%xmm$_",(4..7,0..3));
my @Tx=map("%xmm$_",(8..10));
my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization
my @T=("%esi","%edi");
my ($rndkey0,$iv,$in)=map("%xmm$_",(11..13));
my @rndkey=("%xmm14","%xmm15");
my ($inout0,$inout1,$inout2,$inout3)=map("%xmm$_",(12..15)); # for dec
my $Kx=@Tx[2];
my $_rol=sub { &shld(@_[0],@_) };
my $_ror=sub { &shrd(@_[0],@_) };
$code.=<<___;
.type aesni_cbc_sha1_enc_avx,\@function,6
.align 32
aesni_cbc_sha1_enc_avx:
mov `($win64?56:8)`(%rsp),$inp # load 7th argument
#shr \$6,$len # debugging artefact
#jz .Lepilogue_avx # debugging artefact
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
lea `-104-($win64?10*16:0)`(%rsp),%rsp
#mov $in0,$inp # debugging artefact
#lea 64(%rsp),$ctx # debugging artefact
___
$code.=<<___ if ($win64);
movaps %xmm6,96+0(%rsp)
movaps %xmm7,96+16(%rsp)
movaps %xmm8,96+32(%rsp)
movaps %xmm9,96+48(%rsp)
movaps %xmm10,96+64(%rsp)
movaps %xmm11,96+80(%rsp)
movaps %xmm12,96+96(%rsp)
movaps %xmm13,96+112(%rsp)
movaps %xmm14,96+128(%rsp)
movaps %xmm15,96+144(%rsp)
.Lprologue_avx:
___
$code.=<<___;
vzeroall
mov $in0,%r12 # reassign arguments
mov $out,%r13
mov $len,%r14
lea 112($key),%r15 # size optimization
vmovdqu ($ivp),$iv # load IV
mov $ivp,88(%rsp) # save $ivp
___
($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments
my $rounds="${ivp}d";
$code.=<<___;
shl \$6,$len
sub $in0,$out
mov 240-112($key),$rounds
add $inp,$len # end of input
lea K_XX_XX(%rip),$K_XX_XX
mov 0($ctx),$A # load context
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov $B,@T[0] # magic seed
mov 16($ctx),$E
mov $C,@T[1]
xor $D,@T[1]
and @T[1],@T[0]
vmovdqa 64($K_XX_XX),@X[2] # pbswap mask
vmovdqa 0($K_XX_XX),$Kx # K_00_19
vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
vmovdqu 16($inp),@X[-3&7]
vmovdqu 32($inp),@X[-2&7]
vmovdqu 48($inp),@X[-1&7]
vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap
add \$64,$inp
vpshufb @X[2],@X[-3&7],@X[-3&7]
vpshufb @X[2],@X[-2&7],@X[-2&7]
vpshufb @X[2],@X[-1&7],@X[-1&7]
vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19
vpaddd $Kx,@X[-3&7],@X[1]
vpaddd $Kx,@X[-2&7],@X[2]
vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU
vmovdqa @X[1],16(%rsp)
vmovdqa @X[2],32(%rsp)
vmovups -112($key),$rndkey[1] # $key[0]
vmovups 16-112($key),$rndkey[0] # forward reference
jmp .Loop_avx
___
my $aesenc=sub {
use integer;
my ($n,$k)=($r/10,$r%10);
if ($k==0) {
$code.=<<___;
vmovdqu `16*$n`($in0),$in # load input
vpxor $rndkey[1],$in,$in
___
$code.=<<___ if ($n);
vmovups $iv,`16*($n-1)`($out,$in0) # write output
___
$code.=<<___;
vpxor $in,$iv,$iv
vaesenc $rndkey[0],$iv,$iv
vmovups `32+16*$k-112`($key),$rndkey[1]
___
} elsif ($k==9) {
$sn++;
$code.=<<___;
cmp \$11,$rounds
jb .Lvaesenclast$sn
vaesenc $rndkey[0],$iv,$iv
vmovups `32+16*($k+0)-112`($key),$rndkey[1]
vaesenc $rndkey[1],$iv,$iv
vmovups `32+16*($k+1)-112`($key),$rndkey[0]
je .Lvaesenclast$sn
vaesenc $rndkey[0],$iv,$iv
vmovups `32+16*($k+2)-112`($key),$rndkey[1]
vaesenc $rndkey[1],$iv,$iv
vmovups `32+16*($k+3)-112`($key),$rndkey[0]
.Lvaesenclast$sn:
vaesenclast $rndkey[0],$iv,$iv
vmovups -112($key),$rndkey[0]
vmovups 16-112($key),$rndkey[1] # forward reference
___
} else {
$code.=<<___;
vaesenc $rndkey[0],$iv,$iv
vmovups `32+16*$k-112`($key),$rndkey[1]
___
}
$r++; unshift(@rndkey,pop(@rndkey));
};
sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@Tx[1],$Kx,@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@Tx[0],@X[0],31);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslldq(@Tx[1],@X[0],12); # "X[0]"<<96, extract one dword
&vpaddd (@X[0],@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1
&vpsrld (@Tx[0],@Tx[1],30);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslld (@Tx[1],@Tx[1],2);
&vpxor (@X[0],@X[0],@Tx[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa ($Kx,eval(16*(($Xi)/5))."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_avx_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
my ($a,$b,$c,$d,$e);
&vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
eval(shift(@insns));
eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/);
&vpaddd (@Tx[1],$Kx,@X[-1&7]);
&vmovdqa ($Kx,eval(16*($Xi/5))."($K_XX_XX)") if ($Xi%5==0);
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&vpsrld (@Tx[0],@X[0],30);
&vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpslld (@X[0],@X[0],2);
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xuplast_avx_80()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
&vpaddd (@Tx[1],$Kx,@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU
foreach (@insns) { eval; } # remaining instructions
&cmp ($inp,$len);
&je (shift);
&vmovdqa(@Tx[1],"64($K_XX_XX)"); # pbswap mask
&vmovdqa($Kx,"0($K_XX_XX)"); # K_00_19
&vmovdqu(@X[-4&7],"0($inp)"); # load input
&vmovdqu(@X[-3&7],"16($inp)");
&vmovdqu(@X[-2&7],"32($inp)");
&vmovdqu(@X[-1&7],"48($inp)");
&vpshufb(@X[-4&7],@X[-4&7],@Tx[1]); # byte swap
&add ($inp,64);
$Xi=0;
}
sub Xloop_avx()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@Tx[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@Tx[0],@X[($Xi-4)&7],$Kx);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa(eval(16*$Xi)."(%rsp)",@Tx[0]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; }
$Xi++;
}
sub Xtail_avx()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
$code.=<<___;
.align 32
.Loop_avx:
___
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_32_79(\&body_00_19);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_20_39);
&Xuplast_avx_80(\&body_20_39,".Ldone_avx"); # can jump to "done"
$saved_j=$j; @saved_V=@V;
$saved_r=$r; @saved_rndkey=@rndkey;
&Xloop_avx(\&body_20_39);
&Xloop_avx(\&body_20_39);
&Xloop_avx(\&body_20_39);
$code.=<<___;
vmovups $iv,48($out,$in0) # write output
lea 64($in0),$in0
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
add 12($ctx),$D
mov $A,0($ctx)
add 16($ctx),$E
mov @T[0],4($ctx)
mov @T[0],$B # magic seed
mov $C,8($ctx)
mov $C,@T[1]
mov $D,12($ctx)
xor $D,@T[1]
mov $E,16($ctx)
and @T[1],@T[0]
jmp .Loop_avx
.Ldone_avx:
___
$jj=$j=$saved_j; @V=@saved_V;
$r=$saved_r; @rndkey=@saved_rndkey;
&Xtail_avx(\&body_20_39);
&Xtail_avx(\&body_20_39);
&Xtail_avx(\&body_20_39);
$code.=<<___;
vmovups $iv,48($out,$in0) # write output
mov 88(%rsp),$ivp # restore $ivp
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
mov $A,0($ctx)
add 12($ctx),$D
mov @T[0],4($ctx)
add 16($ctx),$E
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
vmovups $iv,($ivp) # write IV
vzeroall
___
$code.=<<___ if ($win64);
movaps 96+0(%rsp),%xmm6
movaps 96+16(%rsp),%xmm7
movaps 96+32(%rsp),%xmm8
movaps 96+48(%rsp),%xmm9
movaps 96+64(%rsp),%xmm10
movaps 96+80(%rsp),%xmm11
movaps 96+96(%rsp),%xmm12
movaps 96+112(%rsp),%xmm13
movaps 96+128(%rsp),%xmm14
movaps 96+144(%rsp),%xmm15
___
$code.=<<___;
lea `104+($win64?10*16:0)`(%rsp),%rsi
mov 0(%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_avx:
ret
.size aesni_cbc_sha1_enc_avx,.-aesni_cbc_sha1_enc_avx
___
if ($stitched_decrypt) {{{
# reset
($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10");
$j=$jj=$r=$rx=0;
$Xi=4;
@aes256_dec = (
'&vpxor ($inout0,$rndkey0,"0x00($in0)");',
'&vpxor ($inout1,$rndkey0,"0x10($in0)");',
'&vpxor ($inout2,$rndkey0,"0x20($in0)");',
'&vpxor ($inout3,$rndkey0,"0x30($in0)");',
'&vmovups($rndkey0,"16-112($key)");',
'&vmovups("64(%rsp)",@X[2]);', # save IV, originally @X[3]
undef,undef
);
for ($i=0;$i<13;$i++) {
push (@aes256_dec,(
'&vaesdec ($inout0,$inout0,$rndkey0);',
'&vaesdec ($inout1,$inout1,$rndkey0);',
'&vaesdec ($inout2,$inout2,$rndkey0);',
'&vaesdec ($inout3,$inout3,$rndkey0); &vmovups($rndkey0,"'.(16*($i+2)-112).'($key)");'
));
push (@aes256_dec,(undef,undef)) if (($i>=3 && $i<=5) || $i>=11);
push (@aes256_dec,(undef,undef)) if ($i==5);
}
push(@aes256_dec,(
'&vaesdeclast ($inout0,$inout0,$rndkey0); &vmovups(@X[0],"0x00($in0)");',
'&vaesdeclast ($inout1,$inout1,$rndkey0); &vmovups(@X[1],"0x10($in0)");',
'&vaesdeclast ($inout2,$inout2,$rndkey0); &vmovups(@X[2],"0x20($in0)");',
'&vaesdeclast ($inout3,$inout3,$rndkey0); &vmovups(@X[3],"0x30($in0)");',
'&vxorps ($inout0,$inout0,"64(%rsp)"); &vmovdqu($rndkey0,"-112($key)");',
'&vxorps ($inout1,$inout1,@X[0]); &vmovups("0x00($out,$in0)",$inout0);',
'&vxorps ($inout2,$inout2,@X[1]); &vmovups("0x10($out,$in0)",$inout1);',
'&vxorps ($inout3,$inout3,@X[2]); &vmovups("0x20($out,$in0)",$inout2);',
'&vmovups ("0x30($out,$in0)",$inout3);'
));
$code.=<<___;
.type aesni256_cbc_sha1_dec_avx,\@function,6
.align 32
aesni256_cbc_sha1_dec_avx:
mov `($win64?56:8)`(%rsp),$inp # load 7th argument
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
lea `-104-($win64?10*16:0)`(%rsp),%rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,96+0(%rsp)
movaps %xmm7,96+16(%rsp)
movaps %xmm8,96+32(%rsp)
movaps %xmm9,96+48(%rsp)
movaps %xmm10,96+64(%rsp)
movaps %xmm11,96+80(%rsp)
movaps %xmm12,96+96(%rsp)
movaps %xmm13,96+112(%rsp)
movaps %xmm14,96+128(%rsp)
movaps %xmm15,96+144(%rsp)
.Lprologue_dec_avx:
___
$code.=<<___;
vzeroall
mov $in0,%r12 # reassign arguments
mov $out,%r13
mov $len,%r14
lea 112($key),%r15 # size optimization
vmovdqu ($ivp),@X[3] # load IV
___
($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments
$code.=<<___;
shl \$6,$len
sub $in0,$out
add $inp,$len # end of input
lea K_XX_XX(%rip),$K_XX_XX
mov 0($ctx),$A # load context
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov $B,@T[0] # magic seed
mov 16($ctx),$E
mov $C,@T[1]
xor $D,@T[1]
and @T[1],@T[0]
vmovdqa 64($K_XX_XX),@X[2] # pbswap mask
vmovdqa 0($K_XX_XX),$Kx # K_00_19
vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
vmovdqu 16($inp),@X[-3&7]
vmovdqu 32($inp),@X[-2&7]
vmovdqu 48($inp),@X[-1&7]
vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap
add \$64,$inp
vpshufb @X[2],@X[-3&7],@X[-3&7]
vpshufb @X[2],@X[-2&7],@X[-2&7]
vpshufb @X[2],@X[-1&7],@X[-1&7]
vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19
vpaddd $Kx,@X[-3&7],@X[1]
vpaddd $Kx,@X[-2&7],@X[2]
vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU
vmovdqa @X[1],16(%rsp)
vmovdqa @X[2],32(%rsp)
vmovups -112($key),$rndkey0 # $key[0]
jmp .Loop_dec_avx
.align 32
.Loop_dec_avx:
___
&Xupdate_avx_16_31(\&body_00_19_dec);
&Xupdate_avx_16_31(\&body_00_19_dec);
&Xupdate_avx_16_31(\&body_00_19_dec);
&Xupdate_avx_16_31(\&body_00_19_dec);
&Xupdate_avx_32_79(\&body_00_19_dec);
&Xupdate_avx_32_79(\&body_20_39_dec);
&Xupdate_avx_32_79(\&body_20_39_dec);
&Xupdate_avx_32_79(\&body_20_39_dec);
&Xupdate_avx_32_79(\&body_20_39_dec);
&Xupdate_avx_32_79(\&body_20_39_dec);
&Xupdate_avx_32_79(\&body_40_59_dec);
&Xupdate_avx_32_79(\&body_40_59_dec);
&Xupdate_avx_32_79(\&body_40_59_dec);
&Xupdate_avx_32_79(\&body_40_59_dec);
&Xupdate_avx_32_79(\&body_40_59_dec);
&Xupdate_avx_32_79(\&body_20_39_dec);
&Xuplast_avx_80(\&body_20_39_dec,".Ldone_dec_avx"); # can jump to "done"
$saved_j=$j; @saved_V=@V;
$saved_rx=$rx;
&Xloop_avx(\&body_20_39_dec);
&Xloop_avx(\&body_20_39_dec);
&Xloop_avx(\&body_20_39_dec);
eval(@aes256_dec[-1]); # last store
$code.=<<___;
lea 64($in0),$in0
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
add 12($ctx),$D
mov $A,0($ctx)
add 16($ctx),$E
mov @T[0],4($ctx)
mov @T[0],$B # magic seed
mov $C,8($ctx)
mov $C,@T[1]
mov $D,12($ctx)
xor $D,@T[1]
mov $E,16($ctx)
and @T[1],@T[0]
jmp .Loop_dec_avx
.Ldone_dec_avx:
___
$jj=$j=$saved_j; @V=@saved_V;
$rx=$saved_rx;
&Xtail_avx(\&body_20_39_dec);
&Xtail_avx(\&body_20_39_dec);
&Xtail_avx(\&body_20_39_dec);
eval(@aes256_dec[-1]); # last store
$code.=<<___;
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
mov $A,0($ctx)
add 12($ctx),$D
mov @T[0],4($ctx)
add 16($ctx),$E
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
vmovups @X[3],($ivp) # write IV
vzeroall
___
$code.=<<___ if ($win64);
movaps 96+0(%rsp),%xmm6
movaps 96+16(%rsp),%xmm7
movaps 96+32(%rsp),%xmm8
movaps 96+48(%rsp),%xmm9
movaps 96+64(%rsp),%xmm10
movaps 96+80(%rsp),%xmm11
movaps 96+96(%rsp),%xmm12
movaps 96+112(%rsp),%xmm13
movaps 96+128(%rsp),%xmm14
movaps 96+144(%rsp),%xmm15
___
$code.=<<___;
lea `104+($win64?10*16:0)`(%rsp),%rsi
mov 0(%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_dec_avx:
ret
.size aesni256_cbc_sha1_dec_avx,.-aesni256_cbc_sha1_dec_avx
___
}}}
}
$code.=<<___;
.align 64
K_XX_XX:
.long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19
.long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39
.long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59
.long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79
.long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask
.byte 0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0
.asciz "AESNI-CBC+SHA1 stitch for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
___
if ($shaext) {{{
($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9","%r10");
$rounds="%r11d";
($iv,$in,$rndkey0)=map("%xmm$_",(2,14,15));
@rndkey=("%xmm0","%xmm1");
$r=0;
my ($BSWAP,$ABCD,$E,$E_,$ABCD_SAVE,$E_SAVE)=map("%xmm$_",(7..12));
my @MSG=map("%xmm$_",(3..6));
$code.=<<___;
.type aesni_cbc_sha1_enc_shaext,\@function,6
.align 32
aesni_cbc_sha1_enc_shaext:
mov `($win64?56:8)`(%rsp),$inp # load 7th argument
___
$code.=<<___ if ($win64);
lea `-8-10*16`(%rsp),%rsp
movaps %xmm6,-8-10*16(%rax)
movaps %xmm7,-8-9*16(%rax)
movaps %xmm8,-8-8*16(%rax)
movaps %xmm9,-8-7*16(%rax)
movaps %xmm10,-8-6*16(%rax)
movaps %xmm11,-8-5*16(%rax)
movaps %xmm12,-8-4*16(%rax)
movaps %xmm13,-8-3*16(%rax)
movaps %xmm14,-8-2*16(%rax)
movaps %xmm15,-8-1*16(%rax)
.Lprologue_shaext:
___
$code.=<<___;
movdqu ($ctx),$ABCD
movd 16($ctx),$E
movdqa K_XX_XX+0x50(%rip),$BSWAP # byte-n-word swap
mov 240($key),$rounds
sub $in0,$out
movups ($key),$rndkey0 # $key[0]
movups 16($key),$rndkey[0] # forward reference
lea 112($key),$key # size optimization
pshufd \$0b00011011,$ABCD,$ABCD # flip word order
pshufd \$0b00011011,$E,$E # flip word order
jmp .Loop_shaext
.align 16
.Loop_shaext:
___
&$aesenc();
$code.=<<___;
movdqu ($inp),@MSG[0]
movdqa $E,$E_SAVE # offload $E
pshufb $BSWAP,@MSG[0]
movdqu 0x10($inp),@MSG[1]
movdqa $ABCD,$ABCD_SAVE # offload $ABCD
___
&$aesenc();
$code.=<<___;
pshufb $BSWAP,@MSG[1]
paddd @MSG[0],$E
movdqu 0x20($inp),@MSG[2]
lea 0x40($inp),$inp
pxor $E_SAVE,@MSG[0] # black magic
___
&$aesenc();
$code.=<<___;
pxor $E_SAVE,@MSG[0] # black magic
movdqa $ABCD,$E_
pshufb $BSWAP,@MSG[2]
sha1rnds4 \$0,$E,$ABCD # 0-3
sha1nexte @MSG[1],$E_
___
&$aesenc();
$code.=<<___;
sha1msg1 @MSG[1],@MSG[0]
movdqu -0x10($inp),@MSG[3]
movdqa $ABCD,$E
pshufb $BSWAP,@MSG[3]
___
&$aesenc();
$code.=<<___;
sha1rnds4 \$0,$E_,$ABCD # 4-7
sha1nexte @MSG[2],$E
pxor @MSG[2],@MSG[0]
sha1msg1 @MSG[2],@MSG[1]
___
&$aesenc();
for($i=2;$i<20-4;$i++) {
$code.=<<___;
movdqa $ABCD,$E_
sha1rnds4 \$`int($i/5)`,$E,$ABCD # 8-11
sha1nexte @MSG[3],$E_
___
&$aesenc();
$code.=<<___;
sha1msg2 @MSG[3],@MSG[0]
pxor @MSG[3],@MSG[1]
sha1msg1 @MSG[3],@MSG[2]
___
($E,$E_)=($E_,$E);
push(@MSG,shift(@MSG));
&$aesenc();
}
$code.=<<___;
movdqa $ABCD,$E_
sha1rnds4 \$3,$E,$ABCD # 64-67
sha1nexte @MSG[3],$E_
sha1msg2 @MSG[3],@MSG[0]
pxor @MSG[3],@MSG[1]
___
&$aesenc();
$code.=<<___;
movdqa $ABCD,$E
sha1rnds4 \$3,$E_,$ABCD # 68-71
sha1nexte @MSG[0],$E
sha1msg2 @MSG[0],@MSG[1]
___
&$aesenc();
$code.=<<___;
movdqa $E_SAVE,@MSG[0]
movdqa $ABCD,$E_
sha1rnds4 \$3,$E,$ABCD # 72-75
sha1nexte @MSG[1],$E_
___
&$aesenc();
$code.=<<___;
movdqa $ABCD,$E
sha1rnds4 \$3,$E_,$ABCD # 76-79
sha1nexte $MSG[0],$E
___
while($r<40) { &$aesenc(); } # remaining aesenc's
$code.=<<___;
dec $len
paddd $ABCD_SAVE,$ABCD
movups $iv,48($out,$in0) # write output
lea 64($in0),$in0
jnz .Loop_shaext
pshufd \$0b00011011,$ABCD,$ABCD
pshufd \$0b00011011,$E,$E
movups $iv,($ivp) # write IV
movdqu $ABCD,($ctx)
movd $E,16($ctx)
___
$code.=<<___ if ($win64);
movaps -8-10*16(%rax),%xmm6
movaps -8-9*16(%rax),%xmm7
movaps -8-8*16(%rax),%xmm8
movaps -8-7*16(%rax),%xmm9
movaps -8-6*16(%rax),%xmm10
movaps -8-5*16(%rax),%xmm11
movaps -8-4*16(%rax),%xmm12
movaps -8-3*16(%rax),%xmm13
movaps -8-2*16(%rax),%xmm14
movaps -8-1*16(%rax),%xmm15
mov %rax,%rsp
.Lepilogue_shaext:
___
$code.=<<___;
ret
.size aesni_cbc_sha1_enc_shaext,.-aesni_cbc_sha1_enc_shaext
___
}}}
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type ssse3_handler,\@abi-omnipotent
.align 16
ssse3_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
___
$code.=<<___ if ($shaext);
lea aesni_cbc_sha1_enc_shaext(%rip),%r10
cmp %r10,%rbx
jb .Lseh_no_shaext
lea (%rax),%rsi
lea 512($context),%rdi # &context.Xmm6
mov \$20,%ecx
.long 0xa548f3fc # cld; rep movsq
lea 168(%rax),%rax # adjust stack pointer
jmp .Lcommon_seh_tail
.Lseh_no_shaext:
___
$code.=<<___;
lea 96(%rax),%rsi
lea 512($context),%rdi # &context.Xmm6
mov \$20,%ecx
.long 0xa548f3fc # cld; rep movsq
lea `104+10*16`(%rax),%rax # adjust stack pointer
mov 0(%rax),%r15
mov 8(%rax),%r14
mov 16(%rax),%r13
mov 24(%rax),%r12
mov 32(%rax),%rbp
mov 40(%rax),%rbx
lea 48(%rax),%rax
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size ssse3_handler,.-ssse3_handler
.section .pdata
.align 4
.rva .LSEH_begin_aesni_cbc_sha1_enc_ssse3
.rva .LSEH_end_aesni_cbc_sha1_enc_ssse3
.rva .LSEH_info_aesni_cbc_sha1_enc_ssse3
___
$code.=<<___ if ($avx);
.rva .LSEH_begin_aesni_cbc_sha1_enc_avx
.rva .LSEH_end_aesni_cbc_sha1_enc_avx
.rva .LSEH_info_aesni_cbc_sha1_enc_avx
___
$code.=<<___ if ($shaext);
.rva .LSEH_begin_aesni_cbc_sha1_enc_shaext
.rva .LSEH_end_aesni_cbc_sha1_enc_shaext
.rva .LSEH_info_aesni_cbc_sha1_enc_shaext
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_aesni_cbc_sha1_enc_ssse3:
.byte 9,0,0,0
.rva ssse3_handler
.rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[]
___
$code.=<<___ if ($avx);
.LSEH_info_aesni_cbc_sha1_enc_avx:
.byte 9,0,0,0
.rva ssse3_handler
.rva .Lprologue_avx,.Lepilogue_avx # HandlerData[]
___
$code.=<<___ if ($shaext);
.LSEH_info_aesni_cbc_sha1_enc_shaext:
.byte 9,0,0,0
.rva ssse3_handler
.rva .Lprologue_shaext,.Lepilogue_shaext # HandlerData[]
___
}
####################################################################
sub rex {
local *opcode=shift;
my ($dst,$src)=@_;
my $rex=0;
$rex|=0x04 if($dst>=8);
$rex|=0x01 if($src>=8);
unshift @opcode,$rex|0x40 if($rex);
}
sub sha1rnds4 {
if (@_[0] =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
my @opcode=(0x0f,0x3a,0xcc);
rex(\@opcode,$3,$2);
push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
my $c=$1;
push @opcode,$c=~/^0/?oct($c):$c;
return ".byte\t".join(',',@opcode);
} else {
return "sha1rnds4\t".@_[0];
}
}
sub sha1op38 {
my $instr = shift;
my %opcodelet = (
"sha1nexte" => 0xc8,
"sha1msg1" => 0xc9,
"sha1msg2" => 0xca );
if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
my @opcode=(0x0f,0x38);
rex(\@opcode,$2,$1);
push @opcode,$opcodelet{$instr};
push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
return ".byte\t".join(',',@opcode);
} else {
return $instr."\t".@_[0];
}
}
sub aesni {
my $line=shift;
my @opcode=(0x0f,0x38);
if ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) {
my %opcodelet = (
"aesenc" => 0xdc, "aesenclast" => 0xdd,
"aesdec" => 0xde, "aesdeclast" => 0xdf
);
return undef if (!defined($opcodelet{$1}));
rex(\@opcode,$3,$2);
push @opcode,$opcodelet{$1},0xc0|($2&7)|(($3&7)<<3); # ModR/M
unshift @opcode,0x66;
return ".byte\t".join(',',@opcode);
}
return $line;
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/geo;
s/\b(sha1rnds4)\s+(.*)/sha1rnds4($2)/geo or
s/\b(sha1[^\s]*)\s+(.*)/sha1op38($1,$2)/geo or
s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/geo;
print $_,"\n";
}
close STDOUT;