316 lines
8.6 KiB
C
316 lines
8.6 KiB
C
/* ====================================================================
|
|
* Copyright (c) 2011 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*/
|
|
|
|
#include <openssl/crypto.h>
|
|
#include "modes_lcl.h"
|
|
#include <string.h>
|
|
|
|
#ifndef MODES_DEBUG
|
|
# ifndef NDEBUG
|
|
# define NDEBUG
|
|
# endif
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
typedef struct {
|
|
union { u64 u[2]; u8 c[16]; } nonce, cmac;
|
|
u64 blocks;
|
|
block128_f block;
|
|
void *key;
|
|
} CCM128_CONTEXT;
|
|
|
|
/* First you setup M and L parameters and pass the key schedule */
|
|
void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx,
|
|
unsigned int M,unsigned int L,void *key,block128_f block)
|
|
{
|
|
memset(ctx->nonce.c,0,sizeof(ctx->nonce.c));
|
|
ctx->nonce.c[0] = ((u8)(L-1)&7) | (u8)(((M-2)/2)&7)<<3;
|
|
ctx->blocks = 0;
|
|
ctx->block = block;
|
|
ctx->key = key;
|
|
}
|
|
|
|
/* !!! Following interfaces are to be called *once* per packet !!! */
|
|
|
|
/* Then you setup per-message nonce and pass the length of the message */
|
|
int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx,
|
|
const unsigned char *nonce,size_t nlen,size_t mlen)
|
|
{
|
|
unsigned int L = ctx->nonce.c[0]&7; /* the L parameter */
|
|
|
|
if (nlen<(14-L)) return -1; /* nonce is too short */
|
|
|
|
if (sizeof(mlen)==8 && L>=3) {
|
|
ctx->nonce.c[8] = (u8)(mlen>>(56%(sizeof(mlen)*8)));
|
|
ctx->nonce.c[9] = (u8)(mlen>>(48%(sizeof(mlen)*8)));
|
|
ctx->nonce.c[10] = (u8)(mlen>>(40%(sizeof(mlen)*8)));
|
|
ctx->nonce.c[11] = (u8)(mlen>>(32%(sizeof(mlen)*8)));
|
|
}
|
|
else
|
|
*(u32*)(&ctx->nonce.c[8]) = 0;
|
|
|
|
ctx->nonce.c[12] = (u8)(mlen>>24);
|
|
ctx->nonce.c[13] = (u8)(mlen>>16);
|
|
ctx->nonce.c[14] = (u8)(mlen>>8);
|
|
ctx->nonce.c[15] = (u8)mlen;
|
|
|
|
ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */
|
|
memcpy(&ctx->nonce.c[1],nonce,14-L);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Then you pass additional authentication data, this is optional */
|
|
void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx,
|
|
const unsigned char *aad,size_t alen)
|
|
{ unsigned int i;
|
|
block128_f block = ctx->block;
|
|
|
|
if (alen==0) return;
|
|
|
|
ctx->nonce.c[0] |= 0x40; /* set Adata flag */
|
|
(*block)(ctx->nonce.c,ctx->cmac.c,ctx->key),
|
|
ctx->blocks++;
|
|
|
|
if (alen<(0x10000-0x100)) {
|
|
ctx->cmac.c[0] ^= (u8)(alen>>8);
|
|
ctx->cmac.c[1] ^= (u8)alen;
|
|
i=2;
|
|
}
|
|
else if (sizeof(alen)==8 && alen>=(size_t)1<<32) {
|
|
ctx->cmac.c[0] ^= 0xFF;
|
|
ctx->cmac.c[1] ^= 0xFF;
|
|
ctx->cmac.c[2] ^= (u8)(alen>>(56%(sizeof(alen)*8)));
|
|
ctx->cmac.c[3] ^= (u8)(alen>>(48%(sizeof(alen)*8)));
|
|
ctx->cmac.c[4] ^= (u8)(alen>>(40%(sizeof(alen)*8)));
|
|
ctx->cmac.c[5] ^= (u8)(alen>>(32%(sizeof(alen)*8)));
|
|
ctx->cmac.c[6] ^= (u8)(alen>>24);
|
|
ctx->cmac.c[7] ^= (u8)(alen>>16);
|
|
ctx->cmac.c[8] ^= (u8)(alen>>8);
|
|
ctx->cmac.c[9] ^= (u8)alen;
|
|
i=10;
|
|
}
|
|
else {
|
|
ctx->cmac.c[0] ^= 0xFF;
|
|
ctx->cmac.c[1] ^= 0xFE;
|
|
ctx->cmac.c[2] ^= (u8)(alen>>24);
|
|
ctx->cmac.c[3] ^= (u8)(alen>>16);
|
|
ctx->cmac.c[4] ^= (u8)(alen>>8);
|
|
ctx->cmac.c[5] ^= (u8)alen;
|
|
i=6;
|
|
}
|
|
|
|
do {
|
|
for(;i<16 && alen;++i,++aad,--alen)
|
|
ctx->cmac.c[i] ^= *aad;
|
|
(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key),
|
|
ctx->blocks++;
|
|
i=0;
|
|
} while (alen);
|
|
}
|
|
|
|
/* Finally you encrypt or decrypt the message */
|
|
|
|
static void ctr128_inc(unsigned char *counter) {
|
|
unsigned int n=16;
|
|
u8 c;
|
|
|
|
do {
|
|
--n;
|
|
c = counter[n];
|
|
++c;
|
|
counter[n] = c;
|
|
if (c) return;
|
|
} while (n);
|
|
}
|
|
|
|
int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx,
|
|
const unsigned char *inp, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
size_t n;
|
|
unsigned int i,L;
|
|
unsigned char flags0 = ctx->nonce.c[0];
|
|
block128_f block = ctx->block;
|
|
union { u64 u[2]; u8 c[16]; } scratch;
|
|
|
|
if (!(flags0&0x40))
|
|
(*block)(ctx->nonce.c,ctx->cmac.c,ctx->key),
|
|
ctx->blocks++;
|
|
|
|
ctx->nonce.c[0] = L = flags0&7;
|
|
for (n=0,i=15-L;i<15;++i) {
|
|
n |= ctx->nonce.c[i];
|
|
ctx->nonce.c[i]=0;
|
|
n <<= 8;
|
|
}
|
|
n |= ctx->nonce.c[15]; /* reconstructed length */
|
|
ctx->nonce.c[15]=1;
|
|
|
|
if (n!=len) return -1; /* length mismatch */
|
|
|
|
ctx->blocks += ((len+15)>>3)|1;
|
|
if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */
|
|
|
|
while (len>=16) {
|
|
#if defined(STRICT_ALIGNMENT)
|
|
union { u64 u[2]; u8 c[16]; } temp;
|
|
|
|
memcpy (temp.c,inp,16);
|
|
ctx->cmac.u[0] ^= temp.u[0];
|
|
ctx->cmac.u[1] ^= temp.u[1];
|
|
#else
|
|
ctx->cmac.u[0] ^= ((u64*)inp)[0];
|
|
ctx->cmac.u[1] ^= ((u64*)inp)[1];
|
|
#endif
|
|
(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key);
|
|
(*block)(ctx->nonce.c,scratch.c,ctx->key);
|
|
ctr128_inc(ctx->nonce.c);
|
|
#if defined(STRICT_ALIGNMENT)
|
|
temp.u[0] ^= scratch.u[0];
|
|
temp.u[1] ^= scratch.u[1];
|
|
memcpy(out,temp.c,16);
|
|
#else
|
|
((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0];
|
|
((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1];
|
|
#endif
|
|
inp += 16;
|
|
out += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len) {
|
|
for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
|
|
(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key);
|
|
(*block)(ctx->nonce.c,scratch.c,ctx->key);
|
|
for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
|
|
}
|
|
|
|
for (i=15-L;i<16;++i)
|
|
ctx->nonce.c[i]=0;
|
|
|
|
(*block)(ctx->nonce.c,scratch.c,ctx->key);
|
|
ctx->cmac.u[0] ^= scratch.u[0];
|
|
ctx->cmac.u[1] ^= scratch.u[1];
|
|
|
|
ctx->nonce.c[0] = flags0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx,
|
|
const unsigned char *inp, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
size_t n;
|
|
unsigned int i,L;
|
|
unsigned char flags0 = ctx->nonce.c[0];
|
|
block128_f block;
|
|
union { u64 u[2]; u8 c[16]; } scratch;
|
|
|
|
if (!(flags0&0x40))
|
|
(*block)(ctx->nonce.c,ctx->cmac.c,ctx->key);
|
|
|
|
ctx->nonce.c[0] = L = flags0&7;
|
|
for (n=0,i=15-L;i<15;++i) {
|
|
n |= ctx->nonce.c[i];
|
|
ctx->nonce.c[i]=0;
|
|
n <<= 8;
|
|
}
|
|
n |= ctx->nonce.c[15]; /* reconstructed length */
|
|
ctx->nonce.c[15]=1;
|
|
|
|
if (n!=len) return -1;
|
|
|
|
while (len>=16) {
|
|
(*block)(ctx->nonce.c,scratch.c,ctx->key);
|
|
ctr128_inc(ctx->nonce.c);
|
|
#if defined(STRICT_ALIGNMENT)
|
|
memcpy (ctx->inp.c,inp,16);
|
|
for (i=0; i<16/sizeof(size_t); ++i)
|
|
ctx->cmac.s[i] ^= (scratch.s[i] ^= ctx->inp.s[i]);
|
|
memcpy (out,scratch,16);
|
|
#else
|
|
ctx->cmac.u[0] ^= (((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]);
|
|
ctx->cmac.u[1] ^= (((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]);
|
|
#endif
|
|
(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key);
|
|
|
|
inp += 16;
|
|
out += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len) {
|
|
(*block)(ctx->nonce.c,scratch.c,ctx->key);
|
|
for (i=0; i<len; ++len)
|
|
ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
|
|
(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key);
|
|
}
|
|
|
|
for (i=15-L;i<16;++i)
|
|
ctx->nonce.c[i]=0;
|
|
|
|
(*block)(ctx->nonce.c,scratch.c,ctx->key);
|
|
ctx->cmac.u[0] ^= scratch.u[0];
|
|
ctx->cmac.u[1] ^= scratch.u[1];
|
|
|
|
ctx->nonce.c[0] = flags0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx,unsigned char *tag,size_t len)
|
|
{ unsigned int M = (ctx->nonce.c[0]>>3)&7; /* the M parameter */
|
|
|
|
M *= 2; M += 2;
|
|
if (len<M) return 0;
|
|
memcpy(tag,ctx->cmac.c,M);
|
|
return M;
|
|
}
|