openssl/crypto/ec/ecp_nistp521.c
Adam Langley 2dbfa8444b nistp521: add a comment to the P+P exceptional case in point_add.
This change adds a comment to the exceptional case in point_add that
handles the case of a doubling, which explains when this case may occur
during normal processing.

Thanks go to Antonio Sanso for noting this.

Reviewed-by: Emilia Käsper <emilia@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4424)
2017-10-02 11:30:30 -04:00

2159 lines
71 KiB
C

/*
* Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* Copyright 2011 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
*
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
*
* OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
* Otherwise based on Emilia's P224 work, which was inspired by my curve25519
* work which got its smarts from Daniel J. Bernstein's work on the same.
*/
#include <openssl/e_os2.h>
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
NON_EMPTY_TRANSLATION_UNIT
#else
# include <string.h>
# include <openssl/err.h>
# include "ec_lcl.h"
# if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
/* even with gcc, the typedef won't work for 32-bit platforms */
typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
* platforms */
# else
# error "Need GCC 3.1 or later to define type uint128_t"
# endif
typedef uint8_t u8;
typedef uint64_t u64;
typedef int64_t s64;
/*
* The underlying field. P521 operates over GF(2^521-1). We can serialise an
* element of this field into 66 bytes where the most significant byte
* contains only a single bit. We call this an felem_bytearray.
*/
typedef u8 felem_bytearray[66];
/*
* These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
* These values are big-endian.
*/
static const felem_bytearray nistp521_curve_params[5] = {
{0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff},
{0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfc},
{0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
0x3f, 0x00},
{0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
0xbd, 0x66},
{0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
0x66, 0x50}
};
/*-
* The representation of field elements.
* ------------------------------------
*
* We represent field elements with nine values. These values are either 64 or
* 128 bits and the field element represented is:
* v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p)
* Each of the nine values is called a 'limb'. Since the limbs are spaced only
* 58 bits apart, but are greater than 58 bits in length, the most significant
* bits of each limb overlap with the least significant bits of the next.
*
* A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
* 'largefelem' */
# define NLIMBS 9
typedef uint64_t limb;
typedef limb felem[NLIMBS];
typedef uint128_t largefelem[NLIMBS];
static const limb bottom57bits = 0x1ffffffffffffff;
static const limb bottom58bits = 0x3ffffffffffffff;
/*
* bin66_to_felem takes a little-endian byte array and converts it into felem
* form. This assumes that the CPU is little-endian.
*/
static void bin66_to_felem(felem out, const u8 in[66])
{
out[0] = (*((limb *) & in[0])) & bottom58bits;
out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
out[4] = (*((limb *) & in[29])) & bottom58bits;
out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
out[8] = (*((limb *) & in[58])) & bottom57bits;
}
/*
* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
* array. This assumes that the CPU is little-endian.
*/
static void felem_to_bin66(u8 out[66], const felem in)
{
memset(out, 0, 66);
(*((limb *) & out[0])) = in[0];
(*((limb *) & out[7])) |= in[1] << 2;
(*((limb *) & out[14])) |= in[2] << 4;
(*((limb *) & out[21])) |= in[3] << 6;
(*((limb *) & out[29])) = in[4];
(*((limb *) & out[36])) |= in[5] << 2;
(*((limb *) & out[43])) |= in[6] << 4;
(*((limb *) & out[50])) |= in[7] << 6;
(*((limb *) & out[58])) = in[8];
}
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
static void flip_endian(u8 *out, const u8 *in, unsigned len)
{
unsigned i;
for (i = 0; i < len; ++i)
out[i] = in[len - 1 - i];
}
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
static int BN_to_felem(felem out, const BIGNUM *bn)
{
felem_bytearray b_in;
felem_bytearray b_out;
unsigned num_bytes;
/* BN_bn2bin eats leading zeroes */
memset(b_out, 0, sizeof(b_out));
num_bytes = BN_num_bytes(bn);
if (num_bytes > sizeof b_out) {
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
if (BN_is_negative(bn)) {
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
num_bytes = BN_bn2bin(bn, b_in);
flip_endian(b_out, b_in, num_bytes);
bin66_to_felem(out, b_out);
return 1;
}
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
{
felem_bytearray b_in, b_out;
felem_to_bin66(b_in, in);
flip_endian(b_out, b_in, sizeof b_out);
return BN_bin2bn(b_out, sizeof b_out, out);
}
/*-
* Field operations
* ----------------
*/
static void felem_one(felem out)
{
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 0;
out[6] = 0;
out[7] = 0;
out[8] = 0;
}
static void felem_assign(felem out, const felem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
out[4] = in[4];
out[5] = in[5];
out[6] = in[6];
out[7] = in[7];
out[8] = in[8];
}
/* felem_sum64 sets out = out + in. */
static void felem_sum64(felem out, const felem in)
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
out[4] += in[4];
out[5] += in[5];
out[6] += in[6];
out[7] += in[7];
out[8] += in[8];
}
/* felem_scalar sets out = in * scalar */
static void felem_scalar(felem out, const felem in, limb scalar)
{
out[0] = in[0] * scalar;
out[1] = in[1] * scalar;
out[2] = in[2] * scalar;
out[3] = in[3] * scalar;
out[4] = in[4] * scalar;
out[5] = in[5] * scalar;
out[6] = in[6] * scalar;
out[7] = in[7] * scalar;
out[8] = in[8] * scalar;
}
/* felem_scalar64 sets out = out * scalar */
static void felem_scalar64(felem out, limb scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
out[4] *= scalar;
out[5] *= scalar;
out[6] *= scalar;
out[7] *= scalar;
out[8] *= scalar;
}
/* felem_scalar128 sets out = out * scalar */
static void felem_scalar128(largefelem out, limb scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
out[4] *= scalar;
out[5] *= scalar;
out[6] *= scalar;
out[7] *= scalar;
out[8] *= scalar;
}
/*-
* felem_neg sets |out| to |-in|
* On entry:
* in[i] < 2^59 + 2^14
* On exit:
* out[i] < 2^62
*/
static void felem_neg(felem out, const felem in)
{
/* In order to prevent underflow, we subtract from 0 mod p. */
static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
out[0] = two62m3 - in[0];
out[1] = two62m2 - in[1];
out[2] = two62m2 - in[2];
out[3] = two62m2 - in[3];
out[4] = two62m2 - in[4];
out[5] = two62m2 - in[5];
out[6] = two62m2 - in[6];
out[7] = two62m2 - in[7];
out[8] = two62m2 - in[8];
}
/*-
* felem_diff64 subtracts |in| from |out|
* On entry:
* in[i] < 2^59 + 2^14
* On exit:
* out[i] < out[i] + 2^62
*/
static void felem_diff64(felem out, const felem in)
{
/*
* In order to prevent underflow, we add 0 mod p before subtracting.
*/
static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
out[0] += two62m3 - in[0];
out[1] += two62m2 - in[1];
out[2] += two62m2 - in[2];
out[3] += two62m2 - in[3];
out[4] += two62m2 - in[4];
out[5] += two62m2 - in[5];
out[6] += two62m2 - in[6];
out[7] += two62m2 - in[7];
out[8] += two62m2 - in[8];
}
/*-
* felem_diff_128_64 subtracts |in| from |out|
* On entry:
* in[i] < 2^62 + 2^17
* On exit:
* out[i] < out[i] + 2^63
*/
static void felem_diff_128_64(largefelem out, const felem in)
{
/*
* In order to prevent underflow, we add 0 mod p before subtracting.
*/
static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
out[0] += two63m6 - in[0];
out[1] += two63m5 - in[1];
out[2] += two63m5 - in[2];
out[3] += two63m5 - in[3];
out[4] += two63m5 - in[4];
out[5] += two63m5 - in[5];
out[6] += two63m5 - in[6];
out[7] += two63m5 - in[7];
out[8] += two63m5 - in[8];
}
/*-
* felem_diff_128_64 subtracts |in| from |out|
* On entry:
* in[i] < 2^126
* On exit:
* out[i] < out[i] + 2^127 - 2^69
*/
static void felem_diff128(largefelem out, const largefelem in)
{
/*
* In order to prevent underflow, we add 0 mod p before subtracting.
*/
static const uint128_t two127m70 =
(((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
static const uint128_t two127m69 =
(((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
out[0] += (two127m70 - in[0]);
out[1] += (two127m69 - in[1]);
out[2] += (two127m69 - in[2]);
out[3] += (two127m69 - in[3]);
out[4] += (two127m69 - in[4]);
out[5] += (two127m69 - in[5]);
out[6] += (two127m69 - in[6]);
out[7] += (two127m69 - in[7]);
out[8] += (two127m69 - in[8]);
}
/*-
* felem_square sets |out| = |in|^2
* On entry:
* in[i] < 2^62
* On exit:
* out[i] < 17 * max(in[i]) * max(in[i])
*/
static void felem_square(largefelem out, const felem in)
{
felem inx2, inx4;
felem_scalar(inx2, in, 2);
felem_scalar(inx4, in, 4);
/*-
* We have many cases were we want to do
* in[x] * in[y] +
* in[y] * in[x]
* This is obviously just
* 2 * in[x] * in[y]
* However, rather than do the doubling on the 128 bit result, we
* double one of the inputs to the multiplication by reading from
* |inx2|
*/
out[0] = ((uint128_t) in[0]) * in[0];
out[1] = ((uint128_t) in[0]) * inx2[1];
out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
out[4] = ((uint128_t) in[0]) * inx2[4] +
((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
out[5] = ((uint128_t) in[0]) * inx2[5] +
((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
out[6] = ((uint128_t) in[0]) * inx2[6] +
((uint128_t) in[1]) * inx2[5] +
((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
out[7] = ((uint128_t) in[0]) * inx2[7] +
((uint128_t) in[1]) * inx2[6] +
((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
out[8] = ((uint128_t) in[0]) * inx2[8] +
((uint128_t) in[1]) * inx2[7] +
((uint128_t) in[2]) * inx2[6] +
((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
/*
* The remaining limbs fall above 2^521, with the first falling at 2^522.
* They correspond to locations one bit up from the limbs produced above
* so we would have to multiply by two to align them. Again, rather than
* operate on the 128-bit result, we double one of the inputs to the
* multiplication. If we want to double for both this reason, and the
* reason above, then we end up multiplying by four.
*/
/* 9 */
out[0] += ((uint128_t) in[1]) * inx4[8] +
((uint128_t) in[2]) * inx4[7] +
((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
/* 10 */
out[1] += ((uint128_t) in[2]) * inx4[8] +
((uint128_t) in[3]) * inx4[7] +
((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
/* 11 */
out[2] += ((uint128_t) in[3]) * inx4[8] +
((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
/* 12 */
out[3] += ((uint128_t) in[4]) * inx4[8] +
((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
/* 13 */
out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
/* 14 */
out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
/* 15 */
out[6] += ((uint128_t) in[7]) * inx4[8];
/* 16 */
out[7] += ((uint128_t) in[8]) * inx2[8];
}
/*-
* felem_mul sets |out| = |in1| * |in2|
* On entry:
* in1[i] < 2^64
* in2[i] < 2^63
* On exit:
* out[i] < 17 * max(in1[i]) * max(in2[i])
*/
static void felem_mul(largefelem out, const felem in1, const felem in2)
{
felem in2x2;
felem_scalar(in2x2, in2, 2);
out[0] = ((uint128_t) in1[0]) * in2[0];
out[1] = ((uint128_t) in1[0]) * in2[1] +
((uint128_t) in1[1]) * in2[0];
out[2] = ((uint128_t) in1[0]) * in2[2] +
((uint128_t) in1[1]) * in2[1] +
((uint128_t) in1[2]) * in2[0];
out[3] = ((uint128_t) in1[0]) * in2[3] +
((uint128_t) in1[1]) * in2[2] +
((uint128_t) in1[2]) * in2[1] +
((uint128_t) in1[3]) * in2[0];
out[4] = ((uint128_t) in1[0]) * in2[4] +
((uint128_t) in1[1]) * in2[3] +
((uint128_t) in1[2]) * in2[2] +
((uint128_t) in1[3]) * in2[1] +
((uint128_t) in1[4]) * in2[0];
out[5] = ((uint128_t) in1[0]) * in2[5] +
((uint128_t) in1[1]) * in2[4] +
((uint128_t) in1[2]) * in2[3] +
((uint128_t) in1[3]) * in2[2] +
((uint128_t) in1[4]) * in2[1] +
((uint128_t) in1[5]) * in2[0];
out[6] = ((uint128_t) in1[0]) * in2[6] +
((uint128_t) in1[1]) * in2[5] +
((uint128_t) in1[2]) * in2[4] +
((uint128_t) in1[3]) * in2[3] +
((uint128_t) in1[4]) * in2[2] +
((uint128_t) in1[5]) * in2[1] +
((uint128_t) in1[6]) * in2[0];
out[7] = ((uint128_t) in1[0]) * in2[7] +
((uint128_t) in1[1]) * in2[6] +
((uint128_t) in1[2]) * in2[5] +
((uint128_t) in1[3]) * in2[4] +
((uint128_t) in1[4]) * in2[3] +
((uint128_t) in1[5]) * in2[2] +
((uint128_t) in1[6]) * in2[1] +
((uint128_t) in1[7]) * in2[0];
out[8] = ((uint128_t) in1[0]) * in2[8] +
((uint128_t) in1[1]) * in2[7] +
((uint128_t) in1[2]) * in2[6] +
((uint128_t) in1[3]) * in2[5] +
((uint128_t) in1[4]) * in2[4] +
((uint128_t) in1[5]) * in2[3] +
((uint128_t) in1[6]) * in2[2] +
((uint128_t) in1[7]) * in2[1] +
((uint128_t) in1[8]) * in2[0];
/* See comment in felem_square about the use of in2x2 here */
out[0] += ((uint128_t) in1[1]) * in2x2[8] +
((uint128_t) in1[2]) * in2x2[7] +
((uint128_t) in1[3]) * in2x2[6] +
((uint128_t) in1[4]) * in2x2[5] +
((uint128_t) in1[5]) * in2x2[4] +
((uint128_t) in1[6]) * in2x2[3] +
((uint128_t) in1[7]) * in2x2[2] +
((uint128_t) in1[8]) * in2x2[1];
out[1] += ((uint128_t) in1[2]) * in2x2[8] +
((uint128_t) in1[3]) * in2x2[7] +
((uint128_t) in1[4]) * in2x2[6] +
((uint128_t) in1[5]) * in2x2[5] +
((uint128_t) in1[6]) * in2x2[4] +
((uint128_t) in1[7]) * in2x2[3] +
((uint128_t) in1[8]) * in2x2[2];
out[2] += ((uint128_t) in1[3]) * in2x2[8] +
((uint128_t) in1[4]) * in2x2[7] +
((uint128_t) in1[5]) * in2x2[6] +
((uint128_t) in1[6]) * in2x2[5] +
((uint128_t) in1[7]) * in2x2[4] +
((uint128_t) in1[8]) * in2x2[3];
out[3] += ((uint128_t) in1[4]) * in2x2[8] +
((uint128_t) in1[5]) * in2x2[7] +
((uint128_t) in1[6]) * in2x2[6] +
((uint128_t) in1[7]) * in2x2[5] +
((uint128_t) in1[8]) * in2x2[4];
out[4] += ((uint128_t) in1[5]) * in2x2[8] +
((uint128_t) in1[6]) * in2x2[7] +
((uint128_t) in1[7]) * in2x2[6] +
((uint128_t) in1[8]) * in2x2[5];
out[5] += ((uint128_t) in1[6]) * in2x2[8] +
((uint128_t) in1[7]) * in2x2[7] +
((uint128_t) in1[8]) * in2x2[6];
out[6] += ((uint128_t) in1[7]) * in2x2[8] +
((uint128_t) in1[8]) * in2x2[7];
out[7] += ((uint128_t) in1[8]) * in2x2[8];
}
static const limb bottom52bits = 0xfffffffffffff;
/*-
* felem_reduce converts a largefelem to an felem.
* On entry:
* in[i] < 2^128
* On exit:
* out[i] < 2^59 + 2^14
*/
static void felem_reduce(felem out, const largefelem in)
{
u64 overflow1, overflow2;
out[0] = ((limb) in[0]) & bottom58bits;
out[1] = ((limb) in[1]) & bottom58bits;
out[2] = ((limb) in[2]) & bottom58bits;
out[3] = ((limb) in[3]) & bottom58bits;
out[4] = ((limb) in[4]) & bottom58bits;
out[5] = ((limb) in[5]) & bottom58bits;
out[6] = ((limb) in[6]) & bottom58bits;
out[7] = ((limb) in[7]) & bottom58bits;
out[8] = ((limb) in[8]) & bottom58bits;
/* out[i] < 2^58 */
out[1] += ((limb) in[0]) >> 58;
out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
/*-
* out[1] < 2^58 + 2^6 + 2^58
* = 2^59 + 2^6
*/
out[2] += ((limb) (in[0] >> 64)) >> 52;
out[2] += ((limb) in[1]) >> 58;
out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
out[3] += ((limb) (in[1] >> 64)) >> 52;
out[3] += ((limb) in[2]) >> 58;
out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
out[4] += ((limb) (in[2] >> 64)) >> 52;
out[4] += ((limb) in[3]) >> 58;
out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
out[5] += ((limb) (in[3] >> 64)) >> 52;
out[5] += ((limb) in[4]) >> 58;
out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
out[6] += ((limb) (in[4] >> 64)) >> 52;
out[6] += ((limb) in[5]) >> 58;
out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
out[7] += ((limb) (in[5] >> 64)) >> 52;
out[7] += ((limb) in[6]) >> 58;
out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
out[8] += ((limb) (in[6] >> 64)) >> 52;
out[8] += ((limb) in[7]) >> 58;
out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
/*-
* out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
* < 2^59 + 2^13
*/
overflow1 = ((limb) (in[7] >> 64)) >> 52;
overflow1 += ((limb) in[8]) >> 58;
overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
overflow2 = ((limb) (in[8] >> 64)) >> 52;
overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
overflow2 <<= 1; /* overflow2 < 2^13 */
out[0] += overflow1; /* out[0] < 2^60 */
out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
out[1] += out[0] >> 58;
out[0] &= bottom58bits;
/*-
* out[0] < 2^58
* out[1] < 2^59 + 2^6 + 2^13 + 2^2
* < 2^59 + 2^14
*/
}
static void felem_square_reduce(felem out, const felem in)
{
largefelem tmp;
felem_square(tmp, in);
felem_reduce(out, tmp);
}
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
{
largefelem tmp;
felem_mul(tmp, in1, in2);
felem_reduce(out, tmp);
}
/*-
* felem_inv calculates |out| = |in|^{-1}
*
* Based on Fermat's Little Theorem:
* a^p = a (mod p)
* a^{p-1} = 1 (mod p)
* a^{p-2} = a^{-1} (mod p)
*/
static void felem_inv(felem out, const felem in)
{
felem ftmp, ftmp2, ftmp3, ftmp4;
largefelem tmp;
unsigned i;
felem_square(tmp, in);
felem_reduce(ftmp, tmp); /* 2^1 */
felem_mul(tmp, in, ftmp);
felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
felem_assign(ftmp2, ftmp);
felem_square(tmp, ftmp);
felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
felem_mul(tmp, in, ftmp);
felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
felem_square(tmp, ftmp);
felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
felem_square(tmp, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
felem_assign(ftmp2, ftmp3);
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
felem_assign(ftmp4, ftmp3);
felem_mul(tmp, ftmp3, ftmp);
felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
felem_square(tmp, ftmp4);
felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
felem_assign(ftmp2, ftmp3);
for (i = 0; i < 8; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
}
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
felem_assign(ftmp2, ftmp3);
for (i = 0; i < 16; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
}
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
felem_assign(ftmp2, ftmp3);
for (i = 0; i < 32; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
}
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
felem_assign(ftmp2, ftmp3);
for (i = 0; i < 64; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
}
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
felem_assign(ftmp2, ftmp3);
for (i = 0; i < 128; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
}
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
felem_assign(ftmp2, ftmp3);
for (i = 0; i < 256; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
}
felem_mul(tmp, ftmp3, ftmp2);
felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
for (i = 0; i < 9; i++) {
felem_square(tmp, ftmp3);
felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
}
felem_mul(tmp, ftmp3, ftmp4);
felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */
felem_mul(tmp, ftmp3, in);
felem_reduce(out, tmp); /* 2^512 - 3 */
}
/* This is 2^521-1, expressed as an felem */
static const felem kPrime = {
0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
};
/*-
* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
* otherwise.
* On entry:
* in[i] < 2^59 + 2^14
*/
static limb felem_is_zero(const felem in)
{
felem ftmp;
limb is_zero, is_p;
felem_assign(ftmp, in);
ftmp[0] += ftmp[8] >> 57;
ftmp[8] &= bottom57bits;
/* ftmp[8] < 2^57 */
ftmp[1] += ftmp[0] >> 58;
ftmp[0] &= bottom58bits;
ftmp[2] += ftmp[1] >> 58;
ftmp[1] &= bottom58bits;
ftmp[3] += ftmp[2] >> 58;
ftmp[2] &= bottom58bits;
ftmp[4] += ftmp[3] >> 58;
ftmp[3] &= bottom58bits;
ftmp[5] += ftmp[4] >> 58;
ftmp[4] &= bottom58bits;
ftmp[6] += ftmp[5] >> 58;
ftmp[5] &= bottom58bits;
ftmp[7] += ftmp[6] >> 58;
ftmp[6] &= bottom58bits;
ftmp[8] += ftmp[7] >> 58;
ftmp[7] &= bottom58bits;
/* ftmp[8] < 2^57 + 4 */
/*
* The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
* than our bound for ftmp[8]. Therefore we only have to check if the
* zero is zero or 2^521-1.
*/
is_zero = 0;
is_zero |= ftmp[0];
is_zero |= ftmp[1];
is_zero |= ftmp[2];
is_zero |= ftmp[3];
is_zero |= ftmp[4];
is_zero |= ftmp[5];
is_zero |= ftmp[6];
is_zero |= ftmp[7];
is_zero |= ftmp[8];
is_zero--;
/*
* We know that ftmp[i] < 2^63, therefore the only way that the top bit
* can be set is if is_zero was 0 before the decrement.
*/
is_zero = ((s64) is_zero) >> 63;
is_p = ftmp[0] ^ kPrime[0];
is_p |= ftmp[1] ^ kPrime[1];
is_p |= ftmp[2] ^ kPrime[2];
is_p |= ftmp[3] ^ kPrime[3];
is_p |= ftmp[4] ^ kPrime[4];
is_p |= ftmp[5] ^ kPrime[5];
is_p |= ftmp[6] ^ kPrime[6];
is_p |= ftmp[7] ^ kPrime[7];
is_p |= ftmp[8] ^ kPrime[8];
is_p--;
is_p = ((s64) is_p) >> 63;
is_zero |= is_p;
return is_zero;
}
static int felem_is_zero_int(const void *in)
{
return (int)(felem_is_zero(in) & ((limb) 1));
}
/*-
* felem_contract converts |in| to its unique, minimal representation.
* On entry:
* in[i] < 2^59 + 2^14
*/
static void felem_contract(felem out, const felem in)
{
limb is_p, is_greater, sign;
static const limb two58 = ((limb) 1) << 58;
felem_assign(out, in);
out[0] += out[8] >> 57;
out[8] &= bottom57bits;
/* out[8] < 2^57 */
out[1] += out[0] >> 58;
out[0] &= bottom58bits;
out[2] += out[1] >> 58;
out[1] &= bottom58bits;
out[3] += out[2] >> 58;
out[2] &= bottom58bits;
out[4] += out[3] >> 58;
out[3] &= bottom58bits;
out[5] += out[4] >> 58;
out[4] &= bottom58bits;
out[6] += out[5] >> 58;
out[5] &= bottom58bits;
out[7] += out[6] >> 58;
out[6] &= bottom58bits;
out[8] += out[7] >> 58;
out[7] &= bottom58bits;
/* out[8] < 2^57 + 4 */
/*
* If the value is greater than 2^521-1 then we have to subtract 2^521-1
* out. See the comments in felem_is_zero regarding why we don't test for
* other multiples of the prime.
*/
/*
* First, if |out| is equal to 2^521-1, we subtract it out to get zero.
*/
is_p = out[0] ^ kPrime[0];
is_p |= out[1] ^ kPrime[1];
is_p |= out[2] ^ kPrime[2];
is_p |= out[3] ^ kPrime[3];
is_p |= out[4] ^ kPrime[4];
is_p |= out[5] ^ kPrime[5];
is_p |= out[6] ^ kPrime[6];
is_p |= out[7] ^ kPrime[7];
is_p |= out[8] ^ kPrime[8];
is_p--;
is_p &= is_p << 32;
is_p &= is_p << 16;
is_p &= is_p << 8;
is_p &= is_p << 4;
is_p &= is_p << 2;
is_p &= is_p << 1;
is_p = ((s64) is_p) >> 63;
is_p = ~is_p;
/* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
out[0] &= is_p;
out[1] &= is_p;
out[2] &= is_p;
out[3] &= is_p;
out[4] &= is_p;
out[5] &= is_p;
out[6] &= is_p;
out[7] &= is_p;
out[8] &= is_p;
/*
* In order to test that |out| >= 2^521-1 we need only test if out[8] >>
* 57 is greater than zero as (2^521-1) + x >= 2^522
*/
is_greater = out[8] >> 57;
is_greater |= is_greater << 32;
is_greater |= is_greater << 16;
is_greater |= is_greater << 8;
is_greater |= is_greater << 4;
is_greater |= is_greater << 2;
is_greater |= is_greater << 1;
is_greater = ((s64) is_greater) >> 63;
out[0] -= kPrime[0] & is_greater;
out[1] -= kPrime[1] & is_greater;
out[2] -= kPrime[2] & is_greater;
out[3] -= kPrime[3] & is_greater;
out[4] -= kPrime[4] & is_greater;
out[5] -= kPrime[5] & is_greater;
out[6] -= kPrime[6] & is_greater;
out[7] -= kPrime[7] & is_greater;
out[8] -= kPrime[8] & is_greater;
/* Eliminate negative coefficients */
sign = -(out[0] >> 63);
out[0] += (two58 & sign);
out[1] -= (1 & sign);
sign = -(out[1] >> 63);
out[1] += (two58 & sign);
out[2] -= (1 & sign);
sign = -(out[2] >> 63);
out[2] += (two58 & sign);
out[3] -= (1 & sign);
sign = -(out[3] >> 63);
out[3] += (two58 & sign);
out[4] -= (1 & sign);
sign = -(out[4] >> 63);
out[4] += (two58 & sign);
out[5] -= (1 & sign);
sign = -(out[0] >> 63);
out[5] += (two58 & sign);
out[6] -= (1 & sign);
sign = -(out[6] >> 63);
out[6] += (two58 & sign);
out[7] -= (1 & sign);
sign = -(out[7] >> 63);
out[7] += (two58 & sign);
out[8] -= (1 & sign);
sign = -(out[5] >> 63);
out[5] += (two58 & sign);
out[6] -= (1 & sign);
sign = -(out[6] >> 63);
out[6] += (two58 & sign);
out[7] -= (1 & sign);
sign = -(out[7] >> 63);
out[7] += (two58 & sign);
out[8] -= (1 & sign);
}
/*-
* Group operations
* ----------------
*
* Building on top of the field operations we have the operations on the
* elliptic curve group itself. Points on the curve are represented in Jacobian
* coordinates */
/*-
* point_double calculates 2*(x_in, y_in, z_in)
*
* The method is taken from:
* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
*
* Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
* while x_out == y_in is not (maybe this works, but it's not tested). */
static void
point_double(felem x_out, felem y_out, felem z_out,
const felem x_in, const felem y_in, const felem z_in)
{
largefelem tmp, tmp2;
felem delta, gamma, beta, alpha, ftmp, ftmp2;
felem_assign(ftmp, x_in);
felem_assign(ftmp2, x_in);
/* delta = z^2 */
felem_square(tmp, z_in);
felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
/* gamma = y^2 */
felem_square(tmp, y_in);
felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
/* beta = x*gamma */
felem_mul(tmp, x_in, gamma);
felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
/* alpha = 3*(x-delta)*(x+delta) */
felem_diff64(ftmp, delta);
/* ftmp[i] < 2^61 */
felem_sum64(ftmp2, delta);
/* ftmp2[i] < 2^60 + 2^15 */
felem_scalar64(ftmp2, 3);
/* ftmp2[i] < 3*2^60 + 3*2^15 */
felem_mul(tmp, ftmp, ftmp2);
/*-
* tmp[i] < 17(3*2^121 + 3*2^76)
* = 61*2^121 + 61*2^76
* < 64*2^121 + 64*2^76
* = 2^127 + 2^82
* < 2^128
*/
felem_reduce(alpha, tmp);
/* x' = alpha^2 - 8*beta */
felem_square(tmp, alpha);
/*
* tmp[i] < 17*2^120 < 2^125
*/
felem_assign(ftmp, beta);
felem_scalar64(ftmp, 8);
/* ftmp[i] < 2^62 + 2^17 */
felem_diff_128_64(tmp, ftmp);
/* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
felem_reduce(x_out, tmp);
/* z' = (y + z)^2 - gamma - delta */
felem_sum64(delta, gamma);
/* delta[i] < 2^60 + 2^15 */
felem_assign(ftmp, y_in);
felem_sum64(ftmp, z_in);
/* ftmp[i] < 2^60 + 2^15 */
felem_square(tmp, ftmp);
/*
* tmp[i] < 17(2^122) < 2^127
*/
felem_diff_128_64(tmp, delta);
/* tmp[i] < 2^127 + 2^63 */
felem_reduce(z_out, tmp);
/* y' = alpha*(4*beta - x') - 8*gamma^2 */
felem_scalar64(beta, 4);
/* beta[i] < 2^61 + 2^16 */
felem_diff64(beta, x_out);
/* beta[i] < 2^61 + 2^60 + 2^16 */
felem_mul(tmp, alpha, beta);
/*-
* tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
* = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
* = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
* < 2^128
*/
felem_square(tmp2, gamma);
/*-
* tmp2[i] < 17*(2^59 + 2^14)^2
* = 17*(2^118 + 2^74 + 2^28)
*/
felem_scalar128(tmp2, 8);
/*-
* tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
* = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
* < 2^126
*/
felem_diff128(tmp, tmp2);
/*-
* tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
* = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
* 2^74 + 2^69 + 2^34 + 2^30
* < 2^128
*/
felem_reduce(y_out, tmp);
}
/* copy_conditional copies in to out iff mask is all ones. */
static void copy_conditional(felem out, const felem in, limb mask)
{
unsigned i;
for (i = 0; i < NLIMBS; ++i) {
const limb tmp = mask & (in[i] ^ out[i]);
out[i] ^= tmp;
}
}
/*-
* point_add calculates (x1, y1, z1) + (x2, y2, z2)
*
* The method is taken from
* http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
* adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
*
* This function includes a branch for checking whether the two input points
* are equal (while not equal to the point at infinity). See comment below
* on constant-time.
*/
static void point_add(felem x3, felem y3, felem z3,
const felem x1, const felem y1, const felem z1,
const int mixed, const felem x2, const felem y2,
const felem z2)
{
felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
largefelem tmp, tmp2;
limb x_equal, y_equal, z1_is_zero, z2_is_zero;
z1_is_zero = felem_is_zero(z1);
z2_is_zero = felem_is_zero(z2);
/* ftmp = z1z1 = z1**2 */
felem_square(tmp, z1);
felem_reduce(ftmp, tmp);
if (!mixed) {
/* ftmp2 = z2z2 = z2**2 */
felem_square(tmp, z2);
felem_reduce(ftmp2, tmp);
/* u1 = ftmp3 = x1*z2z2 */
felem_mul(tmp, x1, ftmp2);
felem_reduce(ftmp3, tmp);
/* ftmp5 = z1 + z2 */
felem_assign(ftmp5, z1);
felem_sum64(ftmp5, z2);
/* ftmp5[i] < 2^61 */
/* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
felem_square(tmp, ftmp5);
/* tmp[i] < 17*2^122 */
felem_diff_128_64(tmp, ftmp);
/* tmp[i] < 17*2^122 + 2^63 */
felem_diff_128_64(tmp, ftmp2);
/* tmp[i] < 17*2^122 + 2^64 */
felem_reduce(ftmp5, tmp);
/* ftmp2 = z2 * z2z2 */
felem_mul(tmp, ftmp2, z2);
felem_reduce(ftmp2, tmp);
/* s1 = ftmp6 = y1 * z2**3 */
felem_mul(tmp, y1, ftmp2);
felem_reduce(ftmp6, tmp);
} else {
/*
* We'll assume z2 = 1 (special case z2 = 0 is handled later)
*/
/* u1 = ftmp3 = x1*z2z2 */
felem_assign(ftmp3, x1);
/* ftmp5 = 2*z1z2 */
felem_scalar(ftmp5, z1, 2);
/* s1 = ftmp6 = y1 * z2**3 */
felem_assign(ftmp6, y1);
}
/* u2 = x2*z1z1 */
felem_mul(tmp, x2, ftmp);
/* tmp[i] < 17*2^120 */
/* h = ftmp4 = u2 - u1 */
felem_diff_128_64(tmp, ftmp3);
/* tmp[i] < 17*2^120 + 2^63 */
felem_reduce(ftmp4, tmp);
x_equal = felem_is_zero(ftmp4);
/* z_out = ftmp5 * h */
felem_mul(tmp, ftmp5, ftmp4);
felem_reduce(z_out, tmp);
/* ftmp = z1 * z1z1 */
felem_mul(tmp, ftmp, z1);
felem_reduce(ftmp, tmp);
/* s2 = tmp = y2 * z1**3 */
felem_mul(tmp, y2, ftmp);
/* tmp[i] < 17*2^120 */
/* r = ftmp5 = (s2 - s1)*2 */
felem_diff_128_64(tmp, ftmp6);
/* tmp[i] < 17*2^120 + 2^63 */
felem_reduce(ftmp5, tmp);
y_equal = felem_is_zero(ftmp5);
felem_scalar64(ftmp5, 2);
/* ftmp5[i] < 2^61 */
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
/*
* This is obviously not constant-time but it will almost-never happen
* for ECDH / ECDSA. The case where it can happen is during scalar-mult
* where the intermediate value gets very close to the group order.
* Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
* the scalar, it's possible for the intermediate value to be a small
* negative multiple of the base point, and for the final signed digit
* to be the same value. We believe that this only occurs for the scalar
* 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
* ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
* 71e913863f7, in that case the penultimate intermediate is -9G and
* the final digit is also -9G. Since this only happens for a single
* scalar, the timing leak is irrelevent. (Any attacker who wanted to
* check whether a secret scalar was that exact value, can already do
* so.)
*/
point_double(x3, y3, z3, x1, y1, z1);
return;
}
/* I = ftmp = (2h)**2 */
felem_assign(ftmp, ftmp4);
felem_scalar64(ftmp, 2);
/* ftmp[i] < 2^61 */
felem_square(tmp, ftmp);
/* tmp[i] < 17*2^122 */
felem_reduce(ftmp, tmp);
/* J = ftmp2 = h * I */
felem_mul(tmp, ftmp4, ftmp);
felem_reduce(ftmp2, tmp);
/* V = ftmp4 = U1 * I */
felem_mul(tmp, ftmp3, ftmp);
felem_reduce(ftmp4, tmp);
/* x_out = r**2 - J - 2V */
felem_square(tmp, ftmp5);
/* tmp[i] < 17*2^122 */
felem_diff_128_64(tmp, ftmp2);
/* tmp[i] < 17*2^122 + 2^63 */
felem_assign(ftmp3, ftmp4);
felem_scalar64(ftmp4, 2);
/* ftmp4[i] < 2^61 */
felem_diff_128_64(tmp, ftmp4);
/* tmp[i] < 17*2^122 + 2^64 */
felem_reduce(x_out, tmp);
/* y_out = r(V-x_out) - 2 * s1 * J */
felem_diff64(ftmp3, x_out);
/*
* ftmp3[i] < 2^60 + 2^60 = 2^61
*/
felem_mul(tmp, ftmp5, ftmp3);
/* tmp[i] < 17*2^122 */
felem_mul(tmp2, ftmp6, ftmp2);
/* tmp2[i] < 17*2^120 */
felem_scalar128(tmp2, 2);
/* tmp2[i] < 17*2^121 */
felem_diff128(tmp, tmp2);
/*-
* tmp[i] < 2^127 - 2^69 + 17*2^122
* = 2^126 - 2^122 - 2^6 - 2^2 - 1
* < 2^127
*/
felem_reduce(y_out, tmp);
copy_conditional(x_out, x2, z1_is_zero);
copy_conditional(x_out, x1, z2_is_zero);
copy_conditional(y_out, y2, z1_is_zero);
copy_conditional(y_out, y1, z2_is_zero);
copy_conditional(z_out, z2, z1_is_zero);
copy_conditional(z_out, z1, z2_is_zero);
felem_assign(x3, x_out);
felem_assign(y3, y_out);
felem_assign(z3, z_out);
}
/*-
* Base point pre computation
* --------------------------
*
* Two different sorts of precomputed tables are used in the following code.
* Each contain various points on the curve, where each point is three field
* elements (x, y, z).
*
* For the base point table, z is usually 1 (0 for the point at infinity).
* This table has 16 elements:
* index | bits | point
* ------+---------+------------------------------
* 0 | 0 0 0 0 | 0G
* 1 | 0 0 0 1 | 1G
* 2 | 0 0 1 0 | 2^130G
* 3 | 0 0 1 1 | (2^130 + 1)G
* 4 | 0 1 0 0 | 2^260G
* 5 | 0 1 0 1 | (2^260 + 1)G
* 6 | 0 1 1 0 | (2^260 + 2^130)G
* 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
* 8 | 1 0 0 0 | 2^390G
* 9 | 1 0 0 1 | (2^390 + 1)G
* 10 | 1 0 1 0 | (2^390 + 2^130)G
* 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
* 12 | 1 1 0 0 | (2^390 + 2^260)G
* 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
* 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
* 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
*
* The reason for this is so that we can clock bits into four different
* locations when doing simple scalar multiplies against the base point.
*
* Tables for other points have table[i] = iG for i in 0 .. 16. */
/* gmul is the table of precomputed base points */
static const felem gmul[16][3] = {
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
{0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
{0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
{0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
{0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
{0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
{0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
{0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
{0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
{0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
{0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
{0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
{0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
{0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
{0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
{1, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
{0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
{1, 0, 0, 0, 0, 0, 0, 0, 0}}
};
/*
* select_point selects the |idx|th point from a precomputation table and
* copies it to out.
*/
/* pre_comp below is of the size provided in |size| */
static void select_point(const limb idx, unsigned int size,
const felem pre_comp[][3], felem out[3])
{
unsigned i, j;
limb *outlimbs = &out[0][0];
memset(out, 0, sizeof(*out) * 3);
for (i = 0; i < size; i++) {
const limb *inlimbs = &pre_comp[i][0][0];
limb mask = i ^ idx;
mask |= mask >> 4;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < NLIMBS * 3; j++)
outlimbs[j] |= inlimbs[j] & mask;
}
}
/* get_bit returns the |i|th bit in |in| */
static char get_bit(const felem_bytearray in, int i)
{
if (i < 0)
return 0;
return (in[i >> 3] >> (i & 7)) & 1;
}
/*
* Interleaved point multiplication using precomputed point multiples: The
* small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
* in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
* generator, using certain (large) precomputed multiples in g_pre_comp.
* Output point (X, Y, Z) is stored in x_out, y_out, z_out
*/
static void batch_mul(felem x_out, felem y_out, felem z_out,
const felem_bytearray scalars[],
const unsigned num_points, const u8 *g_scalar,
const int mixed, const felem pre_comp[][17][3],
const felem g_pre_comp[16][3])
{
int i, skip;
unsigned num, gen_mul = (g_scalar != NULL);
felem nq[3], tmp[4];
limb bits;
u8 sign, digit;
/* set nq to the point at infinity */
memset(nq, 0, sizeof(nq));
/*
* Loop over all scalars msb-to-lsb, interleaving additions of multiples
* of the generator (last quarter of rounds) and additions of other
* points multiples (every 5th round).
*/
skip = 1; /* save two point operations in the first
* round */
for (i = (num_points ? 520 : 130); i >= 0; --i) {
/* double */
if (!skip)
point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
/* add multiples of the generator */
if (gen_mul && (i <= 130)) {
bits = get_bit(g_scalar, i + 390) << 3;
if (i < 130) {
bits |= get_bit(g_scalar, i + 260) << 2;
bits |= get_bit(g_scalar, i + 130) << 1;
bits |= get_bit(g_scalar, i);
}
/* select the point to add, in constant time */
select_point(bits, 16, g_pre_comp, tmp);
if (!skip) {
/* The 1 argument below is for "mixed" */
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
} else {
memcpy(nq, tmp, 3 * sizeof(felem));
skip = 0;
}
}
/* do other additions every 5 doublings */
if (num_points && (i % 5 == 0)) {
/* loop over all scalars */
for (num = 0; num < num_points; ++num) {
bits = get_bit(scalars[num], i + 4) << 5;
bits |= get_bit(scalars[num], i + 3) << 4;
bits |= get_bit(scalars[num], i + 2) << 3;
bits |= get_bit(scalars[num], i + 1) << 2;
bits |= get_bit(scalars[num], i) << 1;
bits |= get_bit(scalars[num], i - 1);
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
/*
* select the point to add or subtract, in constant time
*/
select_point(digit, 17, pre_comp[num], tmp);
felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
* point */
copy_conditional(tmp[1], tmp[3], (-(limb) sign));
if (!skip) {
point_add(nq[0], nq[1], nq[2],
nq[0], nq[1], nq[2],
mixed, tmp[0], tmp[1], tmp[2]);
} else {
memcpy(nq, tmp, 3 * sizeof(felem));
skip = 0;
}
}
}
}
felem_assign(x_out, nq[0]);
felem_assign(y_out, nq[1]);
felem_assign(z_out, nq[2]);
}
/* Precomputation for the group generator. */
struct nistp521_pre_comp_st {
felem g_pre_comp[16][3];
CRYPTO_REF_COUNT references;
CRYPTO_RWLOCK *lock;
};
const EC_METHOD *EC_GFp_nistp521_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_nistp521_group_init,
ec_GFp_simple_group_finish,
ec_GFp_simple_group_clear_finish,
ec_GFp_nist_group_copy,
ec_GFp_nistp521_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_group_simple_order_bits,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_nistp521_point_get_affine_coordinates,
0 /* point_set_compressed_coordinates */ ,
0 /* point2oct */ ,
0 /* oct2point */ ,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
ec_GFp_nistp521_points_mul,
ec_GFp_nistp521_precompute_mult,
ec_GFp_nistp521_have_precompute_mult,
ec_GFp_nist_field_mul,
ec_GFp_nist_field_sqr,
0 /* field_div */ ,
0 /* field_encode */ ,
0 /* field_decode */ ,
0, /* field_set_to_one */
ec_key_simple_priv2oct,
ec_key_simple_oct2priv,
0, /* set private */
ec_key_simple_generate_key,
ec_key_simple_check_key,
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key
};
return &ret;
}
/******************************************************************************/
/*
* FUNCTIONS TO MANAGE PRECOMPUTATION
*/
static NISTP521_PRE_COMP *nistp521_pre_comp_new()
{
NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL) {
ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
return ret;
}
ret->references = 1;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
OPENSSL_free(ret);
return NULL;
}
return ret;
}
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
{
int i;
if (p != NULL)
CRYPTO_UP_REF(&p->references, &i, p->lock);
return p;
}
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
{
int i;
if (p == NULL)
return;
CRYPTO_DOWN_REF(&p->references, &i, p->lock);
REF_PRINT_COUNT("EC_nistp521", x);
if (i > 0)
return;
REF_ASSERT_ISNT(i < 0);
CRYPTO_THREAD_lock_free(p->lock);
OPENSSL_free(p);
}
/******************************************************************************/
/*
* OPENSSL EC_METHOD FUNCTIONS
*/
int ec_GFp_nistp521_group_init(EC_GROUP *group)
{
int ret;
ret = ec_GFp_simple_group_init(group);
group->a_is_minus3 = 1;
return ret;
}
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *curve_p, *curve_a, *curve_b;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
return 0;
BN_CTX_start(ctx);
curve_p = BN_CTX_get(ctx);
curve_a = BN_CTX_get(ctx);
curve_b = BN_CTX_get(ctx);
if (curve_b == NULL)
goto err;
BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
EC_R_WRONG_CURVE_PARAMETERS);
goto err;
}
group->field_mod_func = BN_nist_mod_521;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/*
* Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
* (X/Z^2, Y/Z^3)
*/
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BN_CTX *ctx)
{
felem z1, z2, x_in, y_in, x_out, y_out;
largefelem tmp;
if (EC_POINT_is_at_infinity(group, point)) {
ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
EC_R_POINT_AT_INFINITY);
return 0;
}
if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
(!BN_to_felem(z1, point->Z)))
return 0;
felem_inv(z2, z1);
felem_square(tmp, z2);
felem_reduce(z1, tmp);
felem_mul(tmp, x_in, z1);
felem_reduce(x_in, tmp);
felem_contract(x_out, x_in);
if (x != NULL) {
if (!felem_to_BN(x, x_out)) {
ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
return 0;
}
}
felem_mul(tmp, z1, z2);
felem_reduce(z1, tmp);
felem_mul(tmp, y_in, z1);
felem_reduce(y_in, tmp);
felem_contract(y_out, y_in);
if (y != NULL) {
if (!felem_to_BN(y, y_out)) {
ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
return 0;
}
}
return 1;
}
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
static void make_points_affine(size_t num, felem points[][3],
felem tmp_felems[])
{
/*
* Runs in constant time, unless an input is the point at infinity (which
* normally shouldn't happen).
*/
ec_GFp_nistp_points_make_affine_internal(num,
points,
sizeof(felem),
tmp_felems,
(void (*)(void *))felem_one,
felem_is_zero_int,
(void (*)(void *, const void *))
felem_assign,
(void (*)(void *, const void *))
felem_square_reduce, (void (*)
(void *,
const void
*,
const void
*))
felem_mul_reduce,
(void (*)(void *, const void *))
felem_inv,
(void (*)(void *, const void *))
felem_contract);
}
/*
* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
* values Result is stored in r (r can equal one of the inputs).
*/
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar, size_t num,
const EC_POINT *points[],
const BIGNUM *scalars[], BN_CTX *ctx)
{
int ret = 0;
int j;
int mixed = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y, *z, *tmp_scalar;
felem_bytearray g_secret;
felem_bytearray *secrets = NULL;
felem (*pre_comp)[17][3] = NULL;
felem *tmp_felems = NULL;
felem_bytearray tmp;
unsigned i, num_bytes;
int have_pre_comp = 0;
size_t num_points = num;
felem x_in, y_in, z_in, x_out, y_out, z_out;
NISTP521_PRE_COMP *pre = NULL;
felem(*g_pre_comp)[3] = NULL;
EC_POINT *generator = NULL;
const EC_POINT *p = NULL;
const BIGNUM *p_scalar = NULL;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
return 0;
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
z = BN_CTX_get(ctx);
tmp_scalar = BN_CTX_get(ctx);
if (tmp_scalar == NULL)
goto err;
if (scalar != NULL) {
pre = group->pre_comp.nistp521;
if (pre)
/* we have precomputation, try to use it */
g_pre_comp = &pre->g_pre_comp[0];
else
/* try to use the standard precomputation */
g_pre_comp = (felem(*)[3]) gmul;
generator = EC_POINT_new(group);
if (generator == NULL)
goto err;
/* get the generator from precomputation */
if (!felem_to_BN(x, g_pre_comp[1][0]) ||
!felem_to_BN(y, g_pre_comp[1][1]) ||
!felem_to_BN(z, g_pre_comp[1][2])) {
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
generator, x, y, z,
ctx))
goto err;
if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
/* precomputation matches generator */
have_pre_comp = 1;
else
/*
* we don't have valid precomputation: treat the generator as a
* random point
*/
num_points++;
}
if (num_points > 0) {
if (num_points >= 2) {
/*
* unless we precompute multiples for just one point, converting
* those into affine form is time well spent
*/
mixed = 1;
}
secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
if (mixed)
tmp_felems =
OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
if ((secrets == NULL) || (pre_comp == NULL)
|| (mixed && (tmp_felems == NULL))) {
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
goto err;
}
/*
* we treat NULL scalars as 0, and NULL points as points at infinity,
* i.e., they contribute nothing to the linear combination
*/
for (i = 0; i < num_points; ++i) {
if (i == num)
/*
* we didn't have a valid precomputation, so we pick the
* generator
*/
{
p = EC_GROUP_get0_generator(group);
p_scalar = scalar;
} else
/* the i^th point */
{
p = points[i];
p_scalar = scalars[i];
}
if ((p_scalar != NULL) && (p != NULL)) {
/* reduce scalar to 0 <= scalar < 2^521 */
if ((BN_num_bits(p_scalar) > 521)
|| (BN_is_negative(p_scalar))) {
/*
* this is an unusual input, and we don't guarantee
* constant-timeness
*/
if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
num_bytes = BN_bn2bin(tmp_scalar, tmp);
} else
num_bytes = BN_bn2bin(p_scalar, tmp);
flip_endian(secrets[i], tmp, num_bytes);
/* precompute multiples */
if ((!BN_to_felem(x_out, p->X)) ||
(!BN_to_felem(y_out, p->Y)) ||
(!BN_to_felem(z_out, p->Z)))
goto err;
memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
for (j = 2; j <= 16; ++j) {
if (j & 1) {
point_add(pre_comp[i][j][0], pre_comp[i][j][1],
pre_comp[i][j][2], pre_comp[i][1][0],
pre_comp[i][1][1], pre_comp[i][1][2], 0,
pre_comp[i][j - 1][0],
pre_comp[i][j - 1][1],
pre_comp[i][j - 1][2]);
} else {
point_double(pre_comp[i][j][0], pre_comp[i][j][1],
pre_comp[i][j][2], pre_comp[i][j / 2][0],
pre_comp[i][j / 2][1],
pre_comp[i][j / 2][2]);
}
}
}
}
if (mixed)
make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
}
/* the scalar for the generator */
if ((scalar != NULL) && (have_pre_comp)) {
memset(g_secret, 0, sizeof(g_secret));
/* reduce scalar to 0 <= scalar < 2^521 */
if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
/*
* this is an unusual input, and we don't guarantee
* constant-timeness
*/
if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
num_bytes = BN_bn2bin(tmp_scalar, tmp);
} else
num_bytes = BN_bn2bin(scalar, tmp);
flip_endian(g_secret, tmp, num_bytes);
/* do the multiplication with generator precomputation */
batch_mul(x_out, y_out, z_out,
(const felem_bytearray(*))secrets, num_points,
g_secret,
mixed, (const felem(*)[17][3])pre_comp,
(const felem(*)[3])g_pre_comp);
} else
/* do the multiplication without generator precomputation */
batch_mul(x_out, y_out, z_out,
(const felem_bytearray(*))secrets, num_points,
NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
/* reduce the output to its unique minimal representation */
felem_contract(x_in, x_out);
felem_contract(y_in, y_out);
felem_contract(z_in, z_out);
if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
(!felem_to_BN(z, z_in))) {
ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
goto err;
}
ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
err:
BN_CTX_end(ctx);
EC_POINT_free(generator);
BN_CTX_free(new_ctx);
OPENSSL_free(secrets);
OPENSSL_free(pre_comp);
OPENSSL_free(tmp_felems);
return ret;
}
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
int ret = 0;
NISTP521_PRE_COMP *pre = NULL;
int i, j;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
EC_POINT *generator = NULL;
felem tmp_felems[16];
/* throw away old precomputation */
EC_pre_comp_free(group);
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
return 0;
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto err;
/* get the generator */
if (group->generator == NULL)
goto err;
generator = EC_POINT_new(group);
if (generator == NULL)
goto err;
BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
goto err;
if ((pre = nistp521_pre_comp_new()) == NULL)
goto err;
/*
* if the generator is the standard one, use built-in precomputation
*/
if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
goto done;
}
if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
(!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
(!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
goto err;
/* compute 2^130*G, 2^260*G, 2^390*G */
for (i = 1; i <= 4; i <<= 1) {
point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
for (j = 0; j < 129; ++j) {
point_double(pre->g_pre_comp[2 * i][0],
pre->g_pre_comp[2 * i][1],
pre->g_pre_comp[2 * i][2],
pre->g_pre_comp[2 * i][0],
pre->g_pre_comp[2 * i][1],
pre->g_pre_comp[2 * i][2]);
}
}
/* g_pre_comp[0] is the point at infinity */
memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
/* the remaining multiples */
/* 2^130*G + 2^260*G */
point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
pre->g_pre_comp[2][2]);
/* 2^130*G + 2^390*G */
point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
pre->g_pre_comp[2][2]);
/* 2^260*G + 2^390*G */
point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
pre->g_pre_comp[4][2]);
/* 2^130*G + 2^260*G + 2^390*G */
point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
pre->g_pre_comp[2][2]);
for (i = 1; i < 8; ++i) {
/* odd multiples: add G */
point_add(pre->g_pre_comp[2 * i + 1][0],
pre->g_pre_comp[2 * i + 1][1],
pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
pre->g_pre_comp[1][2]);
}
make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
done:
SETPRECOMP(group, nistp521, pre);
ret = 1;
pre = NULL;
err:
BN_CTX_end(ctx);
EC_POINT_free(generator);
BN_CTX_free(new_ctx);
EC_nistp521_pre_comp_free(pre);
return ret;
}
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
{
return HAVEPRECOMP(group, nistp521);
}
#endif