b1322259d9
Reviewed-by: Richard Levitte <levitte@openssl.org>
374 lines
9.1 KiB
C
374 lines
9.1 KiB
C
/*
|
|
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/asn1t.h>
|
|
#include <openssl/x509.h>
|
|
#include "internal/asn1_int.h"
|
|
#include "internal/evp_int.h"
|
|
#include "internal/x509_int.h"
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/dsa.h>
|
|
|
|
struct X509_pubkey_st {
|
|
X509_ALGOR *algor;
|
|
ASN1_BIT_STRING *public_key;
|
|
EVP_PKEY *pkey;
|
|
};
|
|
|
|
static int x509_pubkey_decode(EVP_PKEY **pk, X509_PUBKEY *key);
|
|
|
|
/* Minor tweak to operation: free up EVP_PKEY */
|
|
static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
|
|
void *exarg)
|
|
{
|
|
if (operation == ASN1_OP_FREE_POST) {
|
|
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
|
|
EVP_PKEY_free(pubkey->pkey);
|
|
} else if (operation == ASN1_OP_D2I_POST) {
|
|
/* Attempt to decode public key and cache in pubkey structure. */
|
|
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
|
|
EVP_PKEY_free(pubkey->pkey);
|
|
/*
|
|
* Opportunistically decode the key but remove any non fatal errors
|
|
* from the queue. Subsequent explicit attempts to decode/use the key
|
|
* will return an appropriate error.
|
|
*/
|
|
ERR_set_mark();
|
|
if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1)
|
|
return 0;
|
|
ERR_pop_to_mark();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
|
|
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
|
|
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
|
|
} ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
|
|
|
|
int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
|
|
{
|
|
X509_PUBKEY *pk = NULL;
|
|
|
|
if (x == NULL)
|
|
return (0);
|
|
|
|
if ((pk = X509_PUBKEY_new()) == NULL)
|
|
goto error;
|
|
|
|
if (pkey->ameth) {
|
|
if (pkey->ameth->pub_encode) {
|
|
if (!pkey->ameth->pub_encode(pk, pkey)) {
|
|
X509err(X509_F_X509_PUBKEY_SET,
|
|
X509_R_PUBLIC_KEY_ENCODE_ERROR);
|
|
goto error;
|
|
}
|
|
} else {
|
|
X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED);
|
|
goto error;
|
|
}
|
|
} else {
|
|
X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM);
|
|
goto error;
|
|
}
|
|
|
|
X509_PUBKEY_free(*x);
|
|
*x = pk;
|
|
pk->pkey = pkey;
|
|
EVP_PKEY_up_ref(pkey);
|
|
return 1;
|
|
|
|
error:
|
|
X509_PUBKEY_free(pk);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Attempt to decode a public key.
|
|
* Returns 1 on success, 0 for a decode failure and -1 for a fatal
|
|
* error e.g. malloc failure.
|
|
*/
|
|
|
|
|
|
static int x509_pubkey_decode(EVP_PKEY **ppkey, X509_PUBKEY *key)
|
|
{
|
|
EVP_PKEY *pkey = EVP_PKEY_new();
|
|
|
|
if (pkey == NULL) {
|
|
X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE);
|
|
return -1;
|
|
}
|
|
|
|
if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) {
|
|
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM);
|
|
goto error;
|
|
}
|
|
|
|
if (pkey->ameth->pub_decode) {
|
|
/*
|
|
* Treat any failure of pub_decode as a decode error. In
|
|
* future we could have different return codes for decode
|
|
* errors and fatal errors such as malloc failure.
|
|
*/
|
|
if (!pkey->ameth->pub_decode(pkey, key)) {
|
|
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR);
|
|
goto error;
|
|
}
|
|
} else {
|
|
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED);
|
|
goto error;
|
|
}
|
|
|
|
*ppkey = pkey;
|
|
return 1;
|
|
|
|
error:
|
|
EVP_PKEY_free(pkey);
|
|
return 0;
|
|
}
|
|
|
|
EVP_PKEY *X509_PUBKEY_get0(X509_PUBKEY *key)
|
|
{
|
|
EVP_PKEY *ret = NULL;
|
|
|
|
if (key == NULL || key->public_key == NULL)
|
|
return NULL;
|
|
|
|
if (key->pkey != NULL)
|
|
return key->pkey;
|
|
|
|
/*
|
|
* When the key ASN.1 is initially parsed an attempt is made to
|
|
* decode the public key and cache the EVP_PKEY structure. If this
|
|
* operation fails the cached value will be NULL. Parsing continues
|
|
* to allow parsing of unknown key types or unsupported forms.
|
|
* We repeat the decode operation so the appropriate errors are left
|
|
* in the queue.
|
|
*/
|
|
x509_pubkey_decode(&ret, key);
|
|
/* If decode doesn't fail something bad happened */
|
|
if (ret != NULL) {
|
|
X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR);
|
|
EVP_PKEY_free(ret);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key)
|
|
{
|
|
EVP_PKEY *ret = X509_PUBKEY_get0(key);
|
|
if (ret != NULL)
|
|
EVP_PKEY_up_ref(ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or
|
|
* decode as X509_PUBKEY
|
|
*/
|
|
|
|
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
|
|
{
|
|
X509_PUBKEY *xpk;
|
|
EVP_PKEY *pktmp;
|
|
const unsigned char *q;
|
|
q = *pp;
|
|
xpk = d2i_X509_PUBKEY(NULL, &q, length);
|
|
if (!xpk)
|
|
return NULL;
|
|
pktmp = X509_PUBKEY_get(xpk);
|
|
X509_PUBKEY_free(xpk);
|
|
if (!pktmp)
|
|
return NULL;
|
|
*pp = q;
|
|
if (a) {
|
|
EVP_PKEY_free(*a);
|
|
*a = pktmp;
|
|
}
|
|
return pktmp;
|
|
}
|
|
|
|
int i2d_PUBKEY(EVP_PKEY *a, unsigned char **pp)
|
|
{
|
|
X509_PUBKEY *xpk = NULL;
|
|
int ret;
|
|
if (!a)
|
|
return 0;
|
|
if (!X509_PUBKEY_set(&xpk, a))
|
|
return 0;
|
|
ret = i2d_X509_PUBKEY(xpk, pp);
|
|
X509_PUBKEY_free(xpk);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The following are equivalents but which return RSA and DSA keys
|
|
*/
|
|
#ifndef OPENSSL_NO_RSA
|
|
RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
|
|
{
|
|
EVP_PKEY *pkey;
|
|
RSA *key;
|
|
const unsigned char *q;
|
|
q = *pp;
|
|
pkey = d2i_PUBKEY(NULL, &q, length);
|
|
if (!pkey)
|
|
return NULL;
|
|
key = EVP_PKEY_get1_RSA(pkey);
|
|
EVP_PKEY_free(pkey);
|
|
if (!key)
|
|
return NULL;
|
|
*pp = q;
|
|
if (a) {
|
|
RSA_free(*a);
|
|
*a = key;
|
|
}
|
|
return key;
|
|
}
|
|
|
|
int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp)
|
|
{
|
|
EVP_PKEY *pktmp;
|
|
int ret;
|
|
if (!a)
|
|
return 0;
|
|
pktmp = EVP_PKEY_new();
|
|
if (pktmp == NULL) {
|
|
ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
EVP_PKEY_set1_RSA(pktmp, a);
|
|
ret = i2d_PUBKEY(pktmp, pp);
|
|
EVP_PKEY_free(pktmp);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
|
|
{
|
|
EVP_PKEY *pkey;
|
|
DSA *key;
|
|
const unsigned char *q;
|
|
q = *pp;
|
|
pkey = d2i_PUBKEY(NULL, &q, length);
|
|
if (!pkey)
|
|
return NULL;
|
|
key = EVP_PKEY_get1_DSA(pkey);
|
|
EVP_PKEY_free(pkey);
|
|
if (!key)
|
|
return NULL;
|
|
*pp = q;
|
|
if (a) {
|
|
DSA_free(*a);
|
|
*a = key;
|
|
}
|
|
return key;
|
|
}
|
|
|
|
int i2d_DSA_PUBKEY(DSA *a, unsigned char **pp)
|
|
{
|
|
EVP_PKEY *pktmp;
|
|
int ret;
|
|
if (!a)
|
|
return 0;
|
|
pktmp = EVP_PKEY_new();
|
|
if (pktmp == NULL) {
|
|
ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
EVP_PKEY_set1_DSA(pktmp, a);
|
|
ret = i2d_PUBKEY(pktmp, pp);
|
|
EVP_PKEY_free(pktmp);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
|
|
{
|
|
EVP_PKEY *pkey;
|
|
EC_KEY *key;
|
|
const unsigned char *q;
|
|
q = *pp;
|
|
pkey = d2i_PUBKEY(NULL, &q, length);
|
|
if (!pkey)
|
|
return (NULL);
|
|
key = EVP_PKEY_get1_EC_KEY(pkey);
|
|
EVP_PKEY_free(pkey);
|
|
if (!key)
|
|
return (NULL);
|
|
*pp = q;
|
|
if (a) {
|
|
EC_KEY_free(*a);
|
|
*a = key;
|
|
}
|
|
return (key);
|
|
}
|
|
|
|
int i2d_EC_PUBKEY(EC_KEY *a, unsigned char **pp)
|
|
{
|
|
EVP_PKEY *pktmp;
|
|
int ret;
|
|
if (!a)
|
|
return (0);
|
|
if ((pktmp = EVP_PKEY_new()) == NULL) {
|
|
ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE);
|
|
return (0);
|
|
}
|
|
EVP_PKEY_set1_EC_KEY(pktmp, a);
|
|
ret = i2d_PUBKEY(pktmp, pp);
|
|
EVP_PKEY_free(pktmp);
|
|
return (ret);
|
|
}
|
|
#endif
|
|
|
|
int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj,
|
|
int ptype, void *pval,
|
|
unsigned char *penc, int penclen)
|
|
{
|
|
if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
|
|
return 0;
|
|
if (penc) {
|
|
OPENSSL_free(pub->public_key->data);
|
|
pub->public_key->data = penc;
|
|
pub->public_key->length = penclen;
|
|
/* Set number of unused bits to zero */
|
|
pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
|
|
pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
|
|
const unsigned char **pk, int *ppklen,
|
|
X509_ALGOR **pa, X509_PUBKEY *pub)
|
|
{
|
|
if (ppkalg)
|
|
*ppkalg = pub->algor->algorithm;
|
|
if (pk) {
|
|
*pk = pub->public_key->data;
|
|
*ppklen = pub->public_key->length;
|
|
}
|
|
if (pa)
|
|
*pa = pub->algor;
|
|
return 1;
|
|
}
|
|
|
|
ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x)
|
|
{
|
|
if (x == NULL)
|
|
return NULL;
|
|
return x->cert_info.key->public_key;
|
|
}
|