945 lines
25 KiB
C
945 lines
25 KiB
C
/* ====================================================================
|
|
* Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*/
|
|
|
|
#include <openssl/opensslconf.h>
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
|
|
|
|
#include <openssl/evp.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/rand.h>
|
|
#include "modes_lcl.h"
|
|
|
|
#ifndef EVP_CIPH_FLAG_AEAD_CIPHER
|
|
#define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
|
|
#define EVP_CTRL_AEAD_TLS1_AAD 0x16
|
|
#define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
|
|
#endif
|
|
|
|
#if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
|
|
#define EVP_CIPH_FLAG_DEFAULT_ASN1 0
|
|
#endif
|
|
|
|
#if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
|
|
#define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
|
|
#endif
|
|
|
|
#define TLS1_1_VERSION 0x0302
|
|
|
|
typedef struct
|
|
{
|
|
AES_KEY ks;
|
|
SHA_CTX head,tail,md;
|
|
size_t payload_length; /* AAD length in decrypt case */
|
|
union {
|
|
unsigned int tls_ver;
|
|
unsigned char tls_aad[16]; /* 13 used */
|
|
} aux;
|
|
} EVP_AES_HMAC_SHA1;
|
|
|
|
#define NO_PAYLOAD_LENGTH ((size_t)-1)
|
|
|
|
#if defined(AES_ASM) && ( \
|
|
defined(__x86_64) || defined(__x86_64__) || \
|
|
defined(_M_AMD64) || defined(_M_X64) || \
|
|
defined(__INTEL__) )
|
|
|
|
extern unsigned int OPENSSL_ia32cap_P[3];
|
|
#define AESNI_CAPABLE (1<<(57-32))
|
|
|
|
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
|
|
AES_KEY *key);
|
|
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
|
|
AES_KEY *key);
|
|
|
|
void aesni_cbc_encrypt(const unsigned char *in,
|
|
unsigned char *out,
|
|
size_t length,
|
|
const AES_KEY *key,
|
|
unsigned char *ivec, int enc);
|
|
|
|
void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
|
|
const AES_KEY *key, unsigned char iv[16],
|
|
SHA_CTX *ctx,const void *in0);
|
|
|
|
void aesni256_cbc_sha1_dec (const void *inp, void *out, size_t blocks,
|
|
const AES_KEY *key, unsigned char iv[16],
|
|
SHA_CTX *ctx,const void *in0);
|
|
|
|
#define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
|
|
|
|
static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
|
|
const unsigned char *inkey,
|
|
const unsigned char *iv, int enc)
|
|
{
|
|
EVP_AES_HMAC_SHA1 *key = data(ctx);
|
|
int ret;
|
|
|
|
if (enc)
|
|
ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
|
|
else
|
|
ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);
|
|
|
|
SHA1_Init(&key->head); /* handy when benchmarking */
|
|
key->tail = key->head;
|
|
key->md = key->head;
|
|
|
|
key->payload_length = NO_PAYLOAD_LENGTH;
|
|
|
|
return ret<0?0:1;
|
|
}
|
|
|
|
#define STITCHED_CALL
|
|
#undef STITCHED_DECRYPT_CALL
|
|
|
|
#if !defined(STITCHED_CALL)
|
|
#define aes_off 0
|
|
#endif
|
|
|
|
void sha1_block_data_order (void *c,const void *p,size_t len);
|
|
|
|
static void sha1_update(SHA_CTX *c,const void *data,size_t len)
|
|
{ const unsigned char *ptr = data;
|
|
size_t res;
|
|
|
|
if ((res = c->num)) {
|
|
res = SHA_CBLOCK-res;
|
|
if (len<res) res=len;
|
|
SHA1_Update (c,ptr,res);
|
|
ptr += res;
|
|
len -= res;
|
|
}
|
|
|
|
res = len % SHA_CBLOCK;
|
|
len -= res;
|
|
|
|
if (len) {
|
|
sha1_block_data_order(c,ptr,len/SHA_CBLOCK);
|
|
|
|
ptr += len;
|
|
c->Nh += len>>29;
|
|
c->Nl += len<<=3;
|
|
if (c->Nl<(unsigned int)len) c->Nh++;
|
|
}
|
|
|
|
if (res)
|
|
SHA1_Update(c,ptr,res);
|
|
}
|
|
|
|
#ifdef SHA1_Update
|
|
#undef SHA1_Update
|
|
#endif
|
|
#define SHA1_Update sha1_update
|
|
|
|
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
|
|
|
|
typedef struct { unsigned int A[8],B[8],C[8],D[8],E[8]; } SHA1_MB_CTX;
|
|
typedef struct { const unsigned char *ptr; int blocks; } HASH_DESC;
|
|
|
|
void sha1_multi_block(SHA1_MB_CTX *,const HASH_DESC *,int);
|
|
|
|
typedef struct { const unsigned char *inp; unsigned char *out;
|
|
int blocks; u64 iv[2]; } CIPH_DESC;
|
|
|
|
void aesni_multi_cbc_encrypt(CIPH_DESC *,void *,int);
|
|
|
|
static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
|
|
unsigned char *out, const unsigned char *inp, size_t inp_len,
|
|
int n4x) /* n4x is 1 or 2 */
|
|
{
|
|
HASH_DESC hash_d[8], edges[8];
|
|
CIPH_DESC ciph_d[8];
|
|
unsigned char storage[sizeof(SHA1_MB_CTX)+32];
|
|
union { u64 q[16];
|
|
u32 d[32];
|
|
u8 c[128]; } blocks[8];
|
|
SHA1_MB_CTX *ctx;
|
|
unsigned int frag, last, packlen, i, x4=4*n4x, minblocks, processed=0;
|
|
size_t ret = 0;
|
|
u8 *IVs;
|
|
#if defined(BSWAP8)
|
|
u64 seqnum;
|
|
#endif
|
|
|
|
if (RAND_bytes((IVs=blocks[0].c),16*x4)<=0) /* ask for IVs in bulk */
|
|
return 0;
|
|
|
|
ctx = (SHA1_MB_CTX *)(storage+32-((size_t)storage%32)); /* align */
|
|
|
|
frag = (unsigned int)inp_len>>(1+n4x);
|
|
last = (unsigned int)inp_len+frag-(frag<<(1+n4x));
|
|
if (last>frag && ((last+13+9)%64)<(x4-1)) {
|
|
frag++;
|
|
last -= x4-1;
|
|
}
|
|
|
|
packlen = 5+16+((frag+20+16)&-16);
|
|
|
|
/* populate descriptors with pointers and IVs */
|
|
hash_d[0].ptr = inp;
|
|
ciph_d[0].inp = inp;
|
|
ciph_d[0].out = out+5+16; /* 5+16 is place for header and explicit IV */
|
|
memcpy(ciph_d[0].out-16,IVs,16);
|
|
memcpy(ciph_d[0].iv,IVs,16); IVs += 16;
|
|
|
|
for (i=1;i<x4;i++) {
|
|
ciph_d[i].inp = hash_d[i].ptr = hash_d[i-1].ptr+frag;
|
|
ciph_d[i].out = ciph_d[i-1].out+packlen;
|
|
memcpy(ciph_d[i].out-16,IVs,16);
|
|
memcpy(ciph_d[i].iv,IVs,16); IVs+=16;
|
|
}
|
|
|
|
#if defined(BSWAP8)
|
|
memcpy(blocks[0].c,key->md.data,8);
|
|
seqnum = BSWAP8(blocks[0].q[0]);
|
|
#endif
|
|
for (i=0;i<x4;i++) {
|
|
unsigned int len = (i==(x4-1)?last:frag);
|
|
|
|
ctx->A[i] = key->md.h0;
|
|
ctx->B[i] = key->md.h1;
|
|
ctx->C[i] = key->md.h2;
|
|
ctx->D[i] = key->md.h3;
|
|
ctx->E[i] = key->md.h4;
|
|
|
|
/* fix seqnum */
|
|
#if defined(BSWAP8)
|
|
blocks[i].q[0] = BSWAP8(seqnum+i);
|
|
#else
|
|
blocks[i].c[7] += ((u8*)key->md.data)[7]+i;
|
|
if (blocks[i].c[7] < i) {
|
|
int j;
|
|
|
|
for (j=6;j>=0;j--) {
|
|
if (blocks[i].c[j]=((u8*)key->md.data)[j]+1) break;
|
|
}
|
|
}
|
|
#endif
|
|
blocks[i].c[8] = ((u8*)key->md.data)[8];
|
|
blocks[i].c[9] = ((u8*)key->md.data)[9];
|
|
blocks[i].c[10] = ((u8*)key->md.data)[10];
|
|
/* fix length */
|
|
blocks[i].c[11] = (u8)(len>>8);
|
|
blocks[i].c[12] = (u8)(len);
|
|
|
|
memcpy(blocks[i].c+13,hash_d[i].ptr,64-13);
|
|
hash_d[i].ptr += 64-13;
|
|
hash_d[i].blocks = (len-(64-13))/64;
|
|
|
|
edges[i].ptr = blocks[i].c;
|
|
edges[i].blocks = 1;
|
|
}
|
|
|
|
/* hash 13-byte headers and first 64-13 bytes of inputs */
|
|
sha1_multi_block(ctx,edges,n4x);
|
|
/* hash bulk inputs */
|
|
#define MAXCHUNKSIZE 2048
|
|
#if MAXCHUNKSIZE%64
|
|
#error "MAXCHUNKSIZE is not divisible by 64"
|
|
#elif MAXCHUNKSIZE
|
|
/* goal is to minimize pressure on L1 cache by moving
|
|
* in shorter steps, so that hashed data is still in
|
|
* the cache by the time we encrypt it */
|
|
minblocks = ((frag<=last ? frag : last)-(64-13))/64;
|
|
if (minblocks>MAXCHUNKSIZE/64) {
|
|
for (i=0;i<x4;i++) {
|
|
edges[i].ptr = hash_d[i].ptr;
|
|
edges[i].blocks = MAXCHUNKSIZE/64;
|
|
ciph_d[i].blocks = MAXCHUNKSIZE/16;
|
|
}
|
|
do {
|
|
sha1_multi_block(ctx,edges,n4x);
|
|
aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x);
|
|
|
|
for (i=0;i<x4;i++) {
|
|
edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
|
|
hash_d[i].blocks -= MAXCHUNKSIZE/64;
|
|
edges[i].blocks = MAXCHUNKSIZE/64;
|
|
ciph_d[i].inp += MAXCHUNKSIZE;
|
|
ciph_d[i].out += MAXCHUNKSIZE;
|
|
ciph_d[i].blocks = MAXCHUNKSIZE/16;
|
|
memcpy(ciph_d[i].iv,ciph_d[i].out-16,16);
|
|
}
|
|
processed += MAXCHUNKSIZE;
|
|
minblocks -= MAXCHUNKSIZE/64;
|
|
} while (minblocks>MAXCHUNKSIZE/64);
|
|
}
|
|
#endif
|
|
#undef MAXCHUNKSIZE
|
|
sha1_multi_block(ctx,hash_d,n4x);
|
|
|
|
memset(blocks,0,sizeof(blocks));
|
|
for (i=0;i<x4;i++) {
|
|
unsigned int len = (i==(x4-1)?last:frag),
|
|
off = hash_d[i].blocks*64;
|
|
const unsigned char *ptr = hash_d[i].ptr+off;
|
|
|
|
off = (len-processed)-(64-13)-off; /* remainder actually */
|
|
memcpy(blocks[i].c,ptr,off);
|
|
blocks[i].c[off]=0x80;
|
|
len += 64+13; /* 64 is HMAC header */
|
|
len *= 8; /* convert to bits */
|
|
if (off<(64-8)) {
|
|
blocks[i].d[15] = BSWAP4(len);
|
|
edges[i].blocks = 1;
|
|
} else {
|
|
blocks[i].d[31] = BSWAP4(len);
|
|
edges[i].blocks = 2;
|
|
}
|
|
edges[i].ptr = blocks[i].c;
|
|
}
|
|
|
|
/* hash input tails and finalize */
|
|
sha1_multi_block(ctx,edges,n4x);
|
|
|
|
memset(blocks,0,sizeof(blocks));
|
|
for (i=0;i<x4;i++) {
|
|
blocks[i].d[0] = BSWAP4(ctx->A[i]); ctx->A[i] = key->tail.h0;
|
|
blocks[i].d[1] = BSWAP4(ctx->B[i]); ctx->B[i] = key->tail.h1;
|
|
blocks[i].d[2] = BSWAP4(ctx->C[i]); ctx->C[i] = key->tail.h2;
|
|
blocks[i].d[3] = BSWAP4(ctx->D[i]); ctx->D[i] = key->tail.h3;
|
|
blocks[i].d[4] = BSWAP4(ctx->E[i]); ctx->E[i] = key->tail.h4;
|
|
blocks[i].c[20] = 0x80;
|
|
blocks[i].d[15] = BSWAP4((64+20)*8);
|
|
edges[i].ptr = blocks[i].c;
|
|
edges[i].blocks = 1;
|
|
}
|
|
|
|
/* finalize MACs */
|
|
sha1_multi_block(ctx,edges,n4x);
|
|
|
|
for (i=0;i<x4;i++) {
|
|
unsigned int len = (i==(x4-1)?last:frag), pad, j;
|
|
unsigned char *out0 = out;
|
|
|
|
memcpy(ciph_d[i].out,ciph_d[i].inp,len-processed);
|
|
ciph_d[i].inp = ciph_d[i].out;
|
|
|
|
out += 5+16+len;
|
|
|
|
/* write MAC */
|
|
((u32 *)out)[0] = BSWAP4(ctx->A[i]);
|
|
((u32 *)out)[1] = BSWAP4(ctx->B[i]);
|
|
((u32 *)out)[2] = BSWAP4(ctx->C[i]);
|
|
((u32 *)out)[3] = BSWAP4(ctx->D[i]);
|
|
((u32 *)out)[4] = BSWAP4(ctx->E[i]);
|
|
out += 20;
|
|
len += 20;
|
|
|
|
/* pad */
|
|
pad = 15-len%16;
|
|
for (j=0;j<=pad;j++) *(out++) = pad;
|
|
len += pad+1;
|
|
|
|
ciph_d[i].blocks = (len-processed)/16;
|
|
len += 16; /* account for explicit iv */
|
|
|
|
/* arrange header */
|
|
out0[0] = ((u8*)key->md.data)[8];
|
|
out0[1] = ((u8*)key->md.data)[9];
|
|
out0[2] = ((u8*)key->md.data)[10];
|
|
out0[3] = (u8)(len>>8);
|
|
out0[4] = (u8)(len);
|
|
|
|
ret += len+5;
|
|
inp += frag;
|
|
}
|
|
|
|
aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x);
|
|
|
|
OPENSSL_cleanse(blocks,sizeof(blocks));
|
|
OPENSSL_cleanse(ctx,sizeof(*ctx));
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, size_t len)
|
|
{
|
|
EVP_AES_HMAC_SHA1 *key = data(ctx);
|
|
unsigned int l;
|
|
size_t plen = key->payload_length,
|
|
iv = 0, /* explicit IV in TLS 1.1 and later */
|
|
sha_off = 0;
|
|
#if defined(STITCHED_CALL)
|
|
size_t aes_off = 0,
|
|
blocks;
|
|
|
|
sha_off = SHA_CBLOCK-key->md.num;
|
|
#endif
|
|
|
|
key->payload_length = NO_PAYLOAD_LENGTH;
|
|
|
|
if (len%AES_BLOCK_SIZE) return 0;
|
|
|
|
if (ctx->encrypt) {
|
|
if (plen==NO_PAYLOAD_LENGTH)
|
|
plen = len;
|
|
else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE))
|
|
return 0;
|
|
else if (key->aux.tls_ver >= TLS1_1_VERSION)
|
|
iv = AES_BLOCK_SIZE;
|
|
|
|
#if defined(STITCHED_CALL)
|
|
if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) {
|
|
SHA1_Update(&key->md,in+iv,sha_off);
|
|
|
|
aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
|
|
ctx->iv,&key->md,in+iv+sha_off);
|
|
blocks *= SHA_CBLOCK;
|
|
aes_off += blocks;
|
|
sha_off += blocks;
|
|
key->md.Nh += blocks>>29;
|
|
key->md.Nl += blocks<<=3;
|
|
if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
|
|
} else {
|
|
sha_off = 0;
|
|
}
|
|
#endif
|
|
sha_off += iv;
|
|
SHA1_Update(&key->md,in+sha_off,plen-sha_off);
|
|
|
|
if (plen!=len) { /* "TLS" mode of operation */
|
|
if (in!=out)
|
|
memcpy(out+aes_off,in+aes_off,plen-aes_off);
|
|
|
|
/* calculate HMAC and append it to payload */
|
|
SHA1_Final(out+plen,&key->md);
|
|
key->md = key->tail;
|
|
SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
|
|
SHA1_Final(out+plen,&key->md);
|
|
|
|
/* pad the payload|hmac */
|
|
plen += SHA_DIGEST_LENGTH;
|
|
for (l=len-plen-1;plen<len;plen++) out[plen]=l;
|
|
/* encrypt HMAC|padding at once */
|
|
aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
|
|
&key->ks,ctx->iv,1);
|
|
} else {
|
|
aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
|
|
&key->ks,ctx->iv,1);
|
|
}
|
|
} else {
|
|
union { unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
|
|
unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;
|
|
|
|
/* arrange cache line alignment */
|
|
pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));
|
|
|
|
if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
|
|
size_t inp_len, mask, j, i;
|
|
unsigned int res, maxpad, pad, bitlen;
|
|
int ret = 1;
|
|
union { unsigned int u[SHA_LBLOCK];
|
|
unsigned char c[SHA_CBLOCK]; }
|
|
*data = (void *)key->md.data;
|
|
#if defined(STITCHED_DECRYPT_CALL)
|
|
unsigned char tail_iv[AES_BLOCK_SIZE];
|
|
int stitch=0;
|
|
#endif
|
|
|
|
if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3])
|
|
>= TLS1_1_VERSION) {
|
|
if (len<(AES_BLOCK_SIZE+SHA_DIGEST_LENGTH+1))
|
|
return 0;
|
|
|
|
/* omit explicit iv */
|
|
memcpy(ctx->iv,in,AES_BLOCK_SIZE);
|
|
in += AES_BLOCK_SIZE;
|
|
out += AES_BLOCK_SIZE;
|
|
len -= AES_BLOCK_SIZE;
|
|
}
|
|
else if (len<(SHA_DIGEST_LENGTH+1))
|
|
return 0;
|
|
|
|
#if defined(STITCHED_DECRYPT_CALL)
|
|
if (len>=1024 && ctx->key_len==32) {
|
|
/* decrypt last block */
|
|
memcpy(tail_iv,in+len-2*AES_BLOCK_SIZE,AES_BLOCK_SIZE);
|
|
aesni_cbc_encrypt(in+len-AES_BLOCK_SIZE,
|
|
out+len-AES_BLOCK_SIZE,AES_BLOCK_SIZE,
|
|
&key->ks,tail_iv,0);
|
|
stitch=1;
|
|
} else
|
|
#endif
|
|
/* decrypt HMAC|padding at once */
|
|
aesni_cbc_encrypt(in,out,len,
|
|
&key->ks,ctx->iv,0);
|
|
|
|
/* figure out payload length */
|
|
pad = out[len-1];
|
|
maxpad = len-(SHA_DIGEST_LENGTH+1);
|
|
maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
|
|
maxpad &= 255;
|
|
|
|
inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
|
|
mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
|
|
inp_len &= mask;
|
|
ret &= (int)mask;
|
|
|
|
key->aux.tls_aad[plen-2] = inp_len>>8;
|
|
key->aux.tls_aad[plen-1] = inp_len;
|
|
|
|
/* calculate HMAC */
|
|
key->md = key->head;
|
|
SHA1_Update(&key->md,key->aux.tls_aad,plen);
|
|
|
|
#if defined(STITCHED_DECRYPT_CALL)
|
|
if (stitch) {
|
|
blocks = (len-(256+32+SHA_CBLOCK))/SHA_CBLOCK;
|
|
aes_off = len-AES_BLOCK_SIZE-blocks*SHA_CBLOCK;
|
|
sha_off = SHA_CBLOCK-plen;
|
|
|
|
aesni_cbc_encrypt(in,out,aes_off,
|
|
&key->ks,ctx->iv,0);
|
|
|
|
SHA1_Update(&key->md,out,sha_off);
|
|
aesni256_cbc_sha1_dec(in+aes_off,
|
|
out+aes_off,blocks,&key->ks,ctx->iv,
|
|
&key->md,out+sha_off);
|
|
|
|
sha_off += blocks*=SHA_CBLOCK;
|
|
out += sha_off;
|
|
len -= sha_off;
|
|
inp_len -= sha_off;
|
|
|
|
key->md.Nl += (blocks<<3); /* at most 18 bits */
|
|
memcpy(ctx->iv,tail_iv,AES_BLOCK_SIZE);
|
|
}
|
|
#endif
|
|
|
|
#if 1
|
|
len -= SHA_DIGEST_LENGTH; /* amend mac */
|
|
if (len>=(256+SHA_CBLOCK)) {
|
|
j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
|
|
j += SHA_CBLOCK-key->md.num;
|
|
SHA1_Update(&key->md,out,j);
|
|
out += j;
|
|
len -= j;
|
|
inp_len -= j;
|
|
}
|
|
|
|
/* but pretend as if we hashed padded payload */
|
|
bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bits */
|
|
#ifdef BSWAP4
|
|
bitlen = BSWAP4(bitlen);
|
|
#else
|
|
mac.c[0] = 0;
|
|
mac.c[1] = (unsigned char)(bitlen>>16);
|
|
mac.c[2] = (unsigned char)(bitlen>>8);
|
|
mac.c[3] = (unsigned char)bitlen;
|
|
bitlen = mac.u[0];
|
|
#endif
|
|
|
|
pmac->u[0]=0;
|
|
pmac->u[1]=0;
|
|
pmac->u[2]=0;
|
|
pmac->u[3]=0;
|
|
pmac->u[4]=0;
|
|
|
|
for (res=key->md.num, j=0;j<len;j++) {
|
|
size_t c = out[j];
|
|
mask = (j-inp_len)>>(sizeof(j)*8-8);
|
|
c &= mask;
|
|
c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
|
|
data->c[res++]=(unsigned char)c;
|
|
|
|
if (res!=SHA_CBLOCK) continue;
|
|
|
|
/* j is not incremented yet */
|
|
mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1));
|
|
data->u[SHA_LBLOCK-1] |= bitlen&mask;
|
|
sha1_block_data_order(&key->md,data,1);
|
|
mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1));
|
|
pmac->u[0] |= key->md.h0 & mask;
|
|
pmac->u[1] |= key->md.h1 & mask;
|
|
pmac->u[2] |= key->md.h2 & mask;
|
|
pmac->u[3] |= key->md.h3 & mask;
|
|
pmac->u[4] |= key->md.h4 & mask;
|
|
res=0;
|
|
}
|
|
|
|
for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;
|
|
|
|
if (res>SHA_CBLOCK-8) {
|
|
mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
|
|
data->u[SHA_LBLOCK-1] |= bitlen&mask;
|
|
sha1_block_data_order(&key->md,data,1);
|
|
mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
|
|
pmac->u[0] |= key->md.h0 & mask;
|
|
pmac->u[1] |= key->md.h1 & mask;
|
|
pmac->u[2] |= key->md.h2 & mask;
|
|
pmac->u[3] |= key->md.h3 & mask;
|
|
pmac->u[4] |= key->md.h4 & mask;
|
|
|
|
memset(data,0,SHA_CBLOCK);
|
|
j+=64;
|
|
}
|
|
data->u[SHA_LBLOCK-1] = bitlen;
|
|
sha1_block_data_order(&key->md,data,1);
|
|
mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
|
|
pmac->u[0] |= key->md.h0 & mask;
|
|
pmac->u[1] |= key->md.h1 & mask;
|
|
pmac->u[2] |= key->md.h2 & mask;
|
|
pmac->u[3] |= key->md.h3 & mask;
|
|
pmac->u[4] |= key->md.h4 & mask;
|
|
|
|
#ifdef BSWAP4
|
|
pmac->u[0] = BSWAP4(pmac->u[0]);
|
|
pmac->u[1] = BSWAP4(pmac->u[1]);
|
|
pmac->u[2] = BSWAP4(pmac->u[2]);
|
|
pmac->u[3] = BSWAP4(pmac->u[3]);
|
|
pmac->u[4] = BSWAP4(pmac->u[4]);
|
|
#else
|
|
for (i=0;i<5;i++) {
|
|
res = pmac->u[i];
|
|
pmac->c[4*i+0]=(unsigned char)(res>>24);
|
|
pmac->c[4*i+1]=(unsigned char)(res>>16);
|
|
pmac->c[4*i+2]=(unsigned char)(res>>8);
|
|
pmac->c[4*i+3]=(unsigned char)res;
|
|
}
|
|
#endif
|
|
len += SHA_DIGEST_LENGTH;
|
|
#else
|
|
SHA1_Update(&key->md,out,inp_len);
|
|
res = key->md.num;
|
|
SHA1_Final(pmac->c,&key->md);
|
|
|
|
{
|
|
unsigned int inp_blocks, pad_blocks;
|
|
|
|
/* but pretend as if we hashed padded payload */
|
|
inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
|
|
res += (unsigned int)(len-inp_len);
|
|
pad_blocks = res / SHA_CBLOCK;
|
|
res %= SHA_CBLOCK;
|
|
pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
|
|
for (;inp_blocks<pad_blocks;inp_blocks++)
|
|
sha1_block_data_order(&key->md,data,1);
|
|
}
|
|
#endif
|
|
key->md = key->tail;
|
|
SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
|
|
SHA1_Final(pmac->c,&key->md);
|
|
|
|
/* verify HMAC */
|
|
out += inp_len;
|
|
len -= inp_len;
|
|
#if 1
|
|
{
|
|
unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
|
|
size_t off = out-p;
|
|
unsigned int c, cmask;
|
|
|
|
maxpad += SHA_DIGEST_LENGTH;
|
|
for (res=0,i=0,j=0;j<maxpad;j++) {
|
|
c = p[j];
|
|
cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeof(int)*8-1);
|
|
res |= (c^pad)&~cmask; /* ... and padding */
|
|
cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
|
|
res |= (c^pmac->c[i])&cmask;
|
|
i += 1&cmask;
|
|
}
|
|
maxpad -= SHA_DIGEST_LENGTH;
|
|
|
|
res = 0-((0-res)>>(sizeof(res)*8-1));
|
|
ret &= (int)~res;
|
|
}
|
|
#else
|
|
for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
|
|
res |= out[i]^pmac->c[i];
|
|
res = 0-((0-res)>>(sizeof(res)*8-1));
|
|
ret &= (int)~res;
|
|
|
|
/* verify padding */
|
|
pad = (pad&~res) | (maxpad&res);
|
|
out = out+len-1-pad;
|
|
for (res=0,i=0;i<pad;i++)
|
|
res |= out[i]^pad;
|
|
|
|
res = (0-res)>>(sizeof(res)*8-1);
|
|
ret &= (int)~res;
|
|
#endif
|
|
return ret;
|
|
} else {
|
|
#if defined(STITCHED_DECRYPT_CALL)
|
|
if (len>=1024 && ctx->key_len==32) {
|
|
if (sha_off%=SHA_CBLOCK)
|
|
blocks = (len-3*SHA_CBLOCK)/SHA_CBLOCK;
|
|
else
|
|
blocks = (len-2*SHA_CBLOCK)/SHA_CBLOCK;
|
|
aes_off = len-blocks*SHA_CBLOCK;
|
|
|
|
aesni_cbc_encrypt(in,out,aes_off,
|
|
&key->ks,ctx->iv,0);
|
|
SHA1_Update(&key->md,out,sha_off);
|
|
aesni256_cbc_sha1_dec(in+aes_off,
|
|
out+aes_off,blocks,&key->ks,ctx->iv,
|
|
&key->md,out+sha_off);
|
|
|
|
sha_off += blocks*=SHA_CBLOCK;
|
|
out += sha_off;
|
|
len -= sha_off;
|
|
|
|
key->md.Nh += blocks>>29;
|
|
key->md.Nl += blocks<<=3;
|
|
if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
|
|
} else
|
|
#endif
|
|
/* decrypt HMAC|padding at once */
|
|
aesni_cbc_encrypt(in,out,len,
|
|
&key->ks,ctx->iv,0);
|
|
|
|
SHA1_Update(&key->md,out,len);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
|
|
{
|
|
EVP_AES_HMAC_SHA1 *key = data(ctx);
|
|
|
|
switch (type)
|
|
{
|
|
case EVP_CTRL_AEAD_SET_MAC_KEY:
|
|
{
|
|
unsigned int i;
|
|
unsigned char hmac_key[64];
|
|
|
|
memset (hmac_key,0,sizeof(hmac_key));
|
|
|
|
if (arg > (int)sizeof(hmac_key)) {
|
|
SHA1_Init(&key->head);
|
|
SHA1_Update(&key->head,ptr,arg);
|
|
SHA1_Final(hmac_key,&key->head);
|
|
} else {
|
|
memcpy(hmac_key,ptr,arg);
|
|
}
|
|
|
|
for (i=0;i<sizeof(hmac_key);i++)
|
|
hmac_key[i] ^= 0x36; /* ipad */
|
|
SHA1_Init(&key->head);
|
|
SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));
|
|
|
|
for (i=0;i<sizeof(hmac_key);i++)
|
|
hmac_key[i] ^= 0x36^0x5c; /* opad */
|
|
SHA1_Init(&key->tail);
|
|
SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));
|
|
|
|
OPENSSL_cleanse(hmac_key,sizeof(hmac_key));
|
|
|
|
return 1;
|
|
}
|
|
case EVP_CTRL_AEAD_TLS1_AAD:
|
|
{
|
|
unsigned char *p=ptr;
|
|
unsigned int len=p[arg-2]<<8|p[arg-1];
|
|
|
|
if (ctx->encrypt)
|
|
{
|
|
key->payload_length = len;
|
|
if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) {
|
|
len -= AES_BLOCK_SIZE;
|
|
p[arg-2] = len>>8;
|
|
p[arg-1] = len;
|
|
}
|
|
key->md = key->head;
|
|
SHA1_Update(&key->md,p,arg);
|
|
|
|
return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)
|
|
- len);
|
|
}
|
|
else
|
|
{
|
|
if (arg>13) arg = 13;
|
|
memcpy(key->aux.tls_aad,ptr,arg);
|
|
key->payload_length = arg;
|
|
|
|
return SHA_DIGEST_LENGTH;
|
|
}
|
|
}
|
|
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
|
|
case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
|
|
return (int)(5+16+((arg+20+16)&-16));
|
|
case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
|
|
{
|
|
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
|
|
(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr;
|
|
unsigned int n4x=1, x4;
|
|
unsigned int frag, last, packlen, inp_len;
|
|
|
|
if (arg<sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) return -1;
|
|
|
|
inp_len = param->inp[11]<<8|param->inp[12];
|
|
|
|
if (ctx->encrypt)
|
|
{
|
|
if ((param->inp[9]<<8|param->inp[10]) < TLS1_1_VERSION)
|
|
return -1;
|
|
|
|
if (inp_len)
|
|
{
|
|
if (inp_len<4096) return 0; /* too short */
|
|
|
|
if (inp_len>=8192 && OPENSSL_ia32cap_P[2]&(1<<5))
|
|
n4x=2; /* AVX2 */
|
|
}
|
|
else if ((n4x=param->interleave/4) && n4x<=2)
|
|
inp_len = param->len;
|
|
else
|
|
return -1;
|
|
|
|
key->md = key->head;
|
|
SHA1_Update(&key->md,param->inp,13);
|
|
|
|
x4 = 4*n4x; n4x += 1;
|
|
|
|
frag = inp_len>>n4x;
|
|
last = inp_len+frag-(frag<<n4x);
|
|
if (last>frag && ((last+13+9)%64<(x4-1))) {
|
|
frag++;
|
|
last -= x4-1;
|
|
}
|
|
|
|
packlen = 5+16+((frag+20+16)&-16);
|
|
packlen = (packlen<<n4x)-packlen;
|
|
packlen += 5+16+((last+20+16)&-16);
|
|
|
|
param->interleave = x4;
|
|
|
|
return (int)packlen;
|
|
}
|
|
else
|
|
return -1; /* not yet */
|
|
}
|
|
case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
|
|
{
|
|
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
|
|
(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr;
|
|
|
|
return (int)tls1_1_multi_block_encrypt(key,param->out,param->inp,
|
|
param->len,param->interleave/4);
|
|
}
|
|
case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
|
|
#endif
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
|
|
{
|
|
#ifdef NID_aes_128_cbc_hmac_sha1
|
|
NID_aes_128_cbc_hmac_sha1,
|
|
#else
|
|
NID_undef,
|
|
#endif
|
|
16,16,16,
|
|
EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|
|
|
EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
|
|
aesni_cbc_hmac_sha1_init_key,
|
|
aesni_cbc_hmac_sha1_cipher,
|
|
NULL,
|
|
sizeof(EVP_AES_HMAC_SHA1),
|
|
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
|
|
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
|
|
aesni_cbc_hmac_sha1_ctrl,
|
|
NULL
|
|
};
|
|
|
|
static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
|
|
{
|
|
#ifdef NID_aes_256_cbc_hmac_sha1
|
|
NID_aes_256_cbc_hmac_sha1,
|
|
#else
|
|
NID_undef,
|
|
#endif
|
|
16,32,16,
|
|
EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|
|
|
EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
|
|
aesni_cbc_hmac_sha1_init_key,
|
|
aesni_cbc_hmac_sha1_cipher,
|
|
NULL,
|
|
sizeof(EVP_AES_HMAC_SHA1),
|
|
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
|
|
EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
|
|
aesni_cbc_hmac_sha1_ctrl,
|
|
NULL
|
|
};
|
|
|
|
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
|
|
{
|
|
return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
|
|
&aesni_128_cbc_hmac_sha1_cipher:NULL);
|
|
}
|
|
|
|
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
|
|
{
|
|
return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
|
|
&aesni_256_cbc_hmac_sha1_cipher:NULL);
|
|
}
|
|
#else
|
|
const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
#endif
|