TLS/SSL and crypto library
848113a30b
The One&Done attack, which is described in a paper to appear in the USENIX Security'18 conference, uses EM emanations to recover the values of the bits that are obtained using BN_is_bit_set while constructing the value of the window in BN_mod_exp_consttime. The EM signal changes slightly depending on the value of the bit, and since the lookup of a bit is surrounded by highly regular execution (constant-time Montgomery multiplications) the attack is able to isolate the (very brief) part of the signal that changes depending on the bit. Although the change is slight, the attack recovers it successfully >90% of the time on several phones and IoT devices (all with ARM processors with clock rates around 1GHz), so after only one RSA decryption more than 90% of the bits in d_p and d_q are recovered correctly, which enables rapid recovery of the full RSA key using an algorithm (also described in the paper) that modifies the branch-and-prune approach for a situation in which the exponents' bits are recovered with errors, i.e. where we do not know a priori which bits are correctly recovered. The mitigation for the attack is relatively simple - all the bits of the window are obtained at once, along with other bits so that an entire integer's worth of bits are obtained together using masking and shifts, without unnecessarily considering each bit in isolation. This improves performance somewhat (one call to bn_get_bits is faster than several calls to BN_is_bit_set), so the attacker now gets one signal snippet per window (rather than one per bit) in which the signal is affected by all bits in the integer (rather than just the one bit). Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6276) |
||
---|---|---|
.github | ||
apps | ||
boringssl@2070f8ad91 | ||
Configurations | ||
crypto | ||
demos | ||
doc | ||
engines | ||
external/perl | ||
fuzz | ||
include | ||
krb5@b9ad6c4950 | ||
ms | ||
os-dep | ||
pyca-cryptography@c1f8e46033 | ||
ssl | ||
test | ||
tools | ||
util | ||
VMS | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.travis-apt-pin.preferences | ||
.travis-create-release.sh | ||
.travis.yml | ||
ACKNOWLEDGEMENTS | ||
appveyor.yml | ||
AUTHORS | ||
build.info | ||
CHANGES | ||
config | ||
config.com | ||
Configure | ||
CONTRIBUTING | ||
e_os.h | ||
FAQ | ||
INSTALL | ||
LICENSE | ||
NEWS | ||
NOTES.ANDROID | ||
NOTES.DJGPP | ||
NOTES.PERL | ||
NOTES.UNIX | ||
NOTES.VMS | ||
NOTES.WIN | ||
README | ||
README.ENGINE | ||
README.FIPS |
OpenSSL 1.1.1-pre8-dev Copyright (c) 1998-2018 The OpenSSL Project Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson All rights reserved. DESCRIPTION ----------- The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, fully featured, and Open Source toolkit implementing the Transport Layer Security (TLS) protocols (including SSLv3) as well as a full-strength general purpose cryptographic library. OpenSSL is descended from the SSLeay library developed by Eric A. Young and Tim J. Hudson. The OpenSSL toolkit is licensed under a dual-license (the OpenSSL license plus the SSLeay license), which means that you are free to get and use it for commercial and non-commercial purposes as long as you fulfill the conditions of both licenses. OVERVIEW -------- The OpenSSL toolkit includes: libssl (with platform specific naming): Provides the client and server-side implementations for SSLv3 and TLS. libcrypto (with platform specific naming): Provides general cryptographic and X.509 support needed by SSL/TLS but not logically part of it. openssl: A command line tool that can be used for: Creation of key parameters Creation of X.509 certificates, CSRs and CRLs Calculation of message digests Encryption and decryption SSL/TLS client and server tests Handling of S/MIME signed or encrypted mail And more... INSTALLATION ------------ See the appropriate file: INSTALL Linux, Unix, Windows, OpenVMS, ... NOTES.* INSTALL addendums for different platforms SUPPORT ------- See the OpenSSL website www.openssl.org for details on how to obtain commercial technical support. Free community support is available through the openssl-users email list (see https://www.openssl.org/community/mailinglists.html for further details). If you have any problems with OpenSSL then please take the following steps first: - Download the latest version from the repository to see if the problem has already been addressed - Configure with no-asm - Remove compiler optimization flags If you wish to report a bug then please include the following information and create an issue on GitHub: - OpenSSL version: output of 'openssl version -a' - Configuration data: output of 'perl configdata.pm --dump' - OS Name, Version, Hardware platform - Compiler Details (name, version) - Application Details (name, version) - Problem Description (steps that will reproduce the problem, if known) - Stack Traceback (if the application dumps core) Just because something doesn't work the way you expect does not mean it is necessarily a bug in OpenSSL. Use the openssl-users email list for this type of query. HOW TO CONTRIBUTE TO OpenSSL ---------------------------- See CONTRIBUTING LEGALITIES ---------- A number of nations restrict the use or export of cryptography. If you are potentially subject to such restrictions you should seek competent professional legal advice before attempting to develop or distribute cryptographic code.