openssl/crypto/bn/bn_rsa_fips186_4.c
Shane Lontis 8240d5fa65 FIPS 186-4 RSA Generation & Validation
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6652)
2019-03-12 12:00:52 +00:00

346 lines
12 KiB
C

/*
* Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* According to NIST SP800-131A "Transitioning the use of cryptographic
* algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
* allowed for signatures (Table 2) or key transport (Table 5). In the code
* below any attempt to generate 1024 bit RSA keys will result in an error (Note
* that digital signature verification can still use deprecated 1024 bit keys).
*
* Also see FIPS1402IG A.14
* FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
* must be generated before the module generates the RSA primes p and q.
* Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and
* 3072 bits only, the min/max total length of the auxiliary primes.
* When implementing the RSA signature generation algorithm
* with other approved RSA modulus sizes, the vendor shall use the limitations
* from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of
* FIPS 186-4 whose length does not exceed that of the implementation's RSA
* modulus. In particular, when generating the primes for the 4096-bit RSA
* modulus the limitations stated for the 3072-bit modulus shall apply.
*/
#include <stdio.h>
#include <openssl/bn.h>
#include "bn_lcl.h"
#include "internal/bn_int.h"
/*
* FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2".
*
* Params:
* nbits The key size in bits.
* Returns:
* The minimum size of the auxiliary primes or 0 if nbits is invalid.
*/
static int bn_rsa_fips186_4_aux_prime_min_size(int nbits)
{
if (nbits >= 3072)
return 171;
if (nbits == 2048)
return 141;
return 0;
}
/*
* FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and
* len(q1) + len(q2) for p,q Probable Primes".
*
* Params:
* nbits The key size in bits.
* Returns:
* The maximum length or 0 if nbits is invalid.
*/
static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits)
{
if (nbits >= 3072)
return 1518;
if (nbits == 2048)
return 1007;
return 0;
}
/*
* FIPS 186-4 Table C.3 for error probability of 2^-100
* Minimum number of Miller Rabin Rounds for p1, p2, q1 & q2.
*
* Params:
* aux_prime_bits The auxiliary prime size in bits.
* Returns:
* The minimum number of Miller Rabin Rounds for an auxiliary prime, or
* 0 if aux_prime_bits is invalid.
*/
static int bn_rsa_fips186_4_aux_prime_MR_min_checks(int aux_prime_bits)
{
if (aux_prime_bits > 170)
return 27;
if (aux_prime_bits > 140)
return 32;
return 0; /* Error case */
}
/*
* FIPS 186-4 Table C.3 for error probability of 2^-100
* Minimum number of Miller Rabin Rounds for p, q.
*
* Params:
* nbits The key size in bits.
* Returns:
* The minimum number of Miller Rabin Rounds required,
* or 0 if nbits is invalid.
*/
int bn_rsa_fips186_4_prime_MR_min_checks(int nbits)
{
if (nbits >= 3072) /* > 170 */
return 3;
if (nbits == 2048) /* > 140 */
return 4;
return 0; /* Error case */
}
/*
* Find the first odd integer that is a probable prime.
*
* See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
*
* Params:
* Xp1 The passed in starting point to find a probably prime.
* p1 The returned probable prime (first odd integer >= Xp1)
* ctx A BN_CTX object.
* cb An optional BIGNUM callback.
* Returns: 1 on success otherwise it returns 0.
*/
static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
BIGNUM *p1, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
int i = 0;
int checks = bn_rsa_fips186_4_aux_prime_MR_min_checks(BN_num_bits(Xp1));
if (checks == 0 || BN_copy(p1, Xp1) == NULL)
return 0;
/* Find the first odd number >= Xp1 that is probably prime */
for(;;) {
i++;
BN_GENCB_call(cb, 0, i);
/* MR test with trial division */
if (BN_is_prime_fasttest_ex(p1, checks, ctx, 1, cb))
break;
/* Get next odd number */
if (!BN_add_word(p1, 2))
goto err;
}
BN_GENCB_call(cb, 2, i);
ret = 1;
err:
return ret;
}
/*
* Generate a probable prime (p or q).
*
* See FIPS 186-4 B.3.6 (Steps 4 & 5)
*
* Params:
* p The returned probable prime.
* Xpout An optionally returned random number used during generation of p.
* p1, p2 The returned auxiliary primes. If NULL they are not returned.
* Xp An optional passed in value (that is random number used during
* generation of p).
* Xp1, Xp2 Optional passed in values that are normally generated
* internally. Used to find p1, p2.
* nlen The bit length of the modulus (the key size).
* e The public exponent.
* ctx A BN_CTX object.
* cb An optional BIGNUM callback.
* Returns: 1 on success otherwise it returns 0.
*/
int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1,
const BIGNUM *Xp2, int nlen,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
{
int ret = 0;
BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
int bitlen;
if (p == NULL || Xpout == NULL)
return 0;
BN_CTX_start(ctx);
p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
goto err;
bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen);
if (bitlen == 0)
goto err;
/* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
if (Xp1 == NULL) {
/* Set the top and bottom bits to make it odd and the correct size */
if (!BN_priv_rand(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
goto err;
}
/* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
if (Xp2 == NULL) {
/* Set the top and bottom bits to make it odd and the correct size */
if (!BN_priv_rand(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
goto err;
}
/* (Steps 4.2/5.2) - find first auxiliary probable primes */
if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
|| !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
goto err;
/* (Table B.1) auxiliary prime Max length check */
if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen))
goto err;
/* (Steps 4.3/5.3) - generate prime */
if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb))
goto err;
ret = 1;
err:
/* Zeroize any internally generated values that are not returned */
if (p1 == NULL)
BN_clear(p1i);
if (p2 == NULL)
BN_clear(p2i);
if (Xp1 == NULL)
BN_clear(Xp1i);
if (Xp2 == NULL)
BN_clear(Xp2i);
BN_CTX_end(ctx);
return ret;
}
/*
* Constructs a probable prime (a candidate for p or q) using 2 auxiliary
* prime numbers and the Chinese Remainder Theorem.
*
* See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
* Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
*
* Params:
* Y The returned prime factor (private_prime_factor) of the modulus n.
* X The returned random number used during generation of the prime factor.
* Xin An optional passed in value for X used for testing purposes.
* r1 An auxiliary prime.
* r2 An auxiliary prime.
* nlen The desired length of n (the RSA modulus).
* e The public exponent.
* ctx A BN_CTX object.
* cb An optional BIGNUM callback object.
* Returns: 1 on success otherwise it returns 0.
* Assumptions:
* Y, X, r1, r2, e are not NULL.
*/
int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
const BIGNUM *r1, const BIGNUM *r2, int nlen,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
{
int ret = 0;
int i, imax;
int bits = nlen >> 1;
int checks = bn_rsa_fips186_4_prime_MR_min_checks(nlen);
BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
if (checks == 0)
return 0;
BN_CTX_start(ctx);
R = BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
r1r2x2 = BN_CTX_get(ctx);
y1 = BN_CTX_get(ctx);
r1x2 = BN_CTX_get(ctx);
if (r1x2 == NULL)
goto err;
if (Xin != NULL && BN_copy(X, Xin) == NULL)
goto err;
if (!(BN_lshift1(r1x2, r1)
/* (Step 1) GCD(2r1, r2) = 1 */
&& BN_gcd(tmp, r1x2, r2, ctx)
&& BN_is_one(tmp)
/* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
&& BN_mod_inverse(R, r2, r1x2, ctx)
&& BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
&& BN_mod_inverse(tmp, r1x2, r2, ctx)
&& BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
&& BN_sub(R, R, tmp)
/* Calculate 2r1r2 */
&& BN_mul(r1r2x2, r1x2, r2, ctx)))
goto err;
/* Make positive by adding the modulus */
if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
goto err;
imax = 5 * bits; /* max = 5/2 * nbits */
for (;;) {
if (Xin == NULL) {
/*
* (Step 3) Choose Random X such that
* sqrt(2) * 2^(nlen/2-1) < Random X < (2^(nlen/2)) - 1.
*
* For the lower bound:
* sqrt(2) * 2^(nlen/2 - 1) == sqrt(2)/2 * 2^(nlen/2)
* where sqrt(2)/2 = 0.70710678.. = 0.B504FC33F9DE...
* so largest number will have B5... as the top byte
* Setting the top 2 bits gives 0xC0.
*/
if (!BN_priv_rand(X, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY))
goto end;
}
/* (Step 4) Y = X + ((R - X) mod 2r1r2) */
if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
goto err;
/* (Step 5) */
i = 0;
for (;;) {
/* (Step 6) */
if (BN_num_bits(Y) > bits) {
if (Xin == NULL)
break; /* Randomly Generated X so Go back to Step 3 */
else
goto err; /* X is not random so it will always fail */
}
BN_GENCB_call(cb, 0, 2);
/* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
if (BN_copy(y1, Y) == NULL
|| !BN_sub_word(y1, 1)
|| !BN_gcd(tmp, y1, e, ctx))
goto err;
if (BN_is_one(tmp)
&& BN_is_prime_fasttest_ex(Y, checks, ctx, 1, cb))
goto end;
/* (Step 8-10) */
if (++i >= imax || !BN_add(Y, Y, r1r2x2))
goto err;
}
}
end:
ret = 1;
BN_GENCB_call(cb, 3, 0);
err:
BN_clear(y1);
BN_CTX_end(ctx);
return ret;
}